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Chapter 1

Dynamics, Probability, and Conformal
Invariance (05w5009)

March 12, 2005 — March 17, 2005

Organizer(s): llia Binder (University of Toronto), Peter W. Jones (Yaleilrsity), Stef-
fen Rohde (University of Washington), Michael Yampolsky{irsity of Toronto)

The study of dynamics in the plane has recently seen a sungienest due to three recent breakthroughs:
the Sullivan-McMullen-Lyubich proof of the Feigenbaum Ueiisality, the introduction by O. Schramm of
SLE processes, and the work of S. Smirnov on percolation fields of Holomorphic Dynamics, SLE, and
Conformal Field Theory (CFT) are now seen to be closely kihkbe glue being provided by renormaliza-
tion arguments, conformal mappings, Brownian Motion, atietomethods related to Conformal Invariance.
Indeed, there is an emerging field where these differentmjcea processes, as well as more classical areas
in conformal mappings, are unified into a more general thedhpough it is still early in the game, much
progress has been made. The workshop has brought togedderdeexperts from the areas of SLE, Holo-
morphic Dynamics, Probability Theory, and Conformal Maygs to present the latest developments in these
areas and search for further unification of the fields.

Holomorphic Dynamics of Rational Maps and Kleinian Groups.

Hyperbolic geometry in 3 dimensions has experienced somyeexeiting progress recently. The main recent
achievement is the completion of the program of Minsky ofvarg Thurston’s Ending Lamination Conjec-
ture (ELC) by J. Brock, D. Canary, and Y. Minsky [15, 3] (boththe incompressible-boundary case). The
Conjecture had the same place in the field as the MLC (Mandiediat is Locally Connected) Conjecture
occupies in Holomorphic Dynamics. It is a rigidity staterheshich postulates that combinatorial invariants
(ending laminations) uniquely describe the geometry of3hmeanifolds. Another exciting recent progress
is the proof of the Tameness Conjecture by Agol [1] and Cale§&abai [4]. It implies, in particular, the
Ahlfors’ Conjecture: If the limit set of a finitely generat&deinian group has no interior, then its area is zero.

These achievements are of particular interest to holomogymamicists as both have analogues in the
dynamics of rational maps (see below) which remain opers, ™iicourse, is largely due to the fact that the
geometric objects (hyperbolic 3-manifolds) provide ani@olidal set of tools to the study of the dynamics
of Kleinian groups, which are at best still being developedhe dynamics of rational maps. However,
the intuition coming from Kleinian groups has historicafiiayed a very important role in Holomorphic
Dynamics. Yair Minsky’s mini-course was a major event of the workshop. In his lestiknsky has
outlined the proof of ELC, and tried to present the materighie form understandable to complex analysts
and dynamicists.

In dynamics of rational maps the counterpart of the Ahlf@shjecture would state that the Julia set of
a rational map is either equal to the sphere (that is has mgotyeinterior), or has area zero. Given parallels
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between the two fields, it is both exciting and unexpectedttiafeeling in rational dynamics is now that
this statement may be false.

A decade ago A. Douady has initiated a program to the end aftageting a quadratic polynomial whose
Julia set has positive measurk. Chéritat [32] has recently been able to push through a large part sf thi
program, and gave a lecture on his results. The Douady’'s@nogonsists in approximating the candidate
guadratic polynomial by a sequence of carefully chosen igiag with parabolic periodic orbits.

Each step of approximation is done through two stages. If wiehe rotation number of a parabolic
point using the digits of its continued fraction expansisr®, a1, . .., a,, o], the first stage consists of
perturbing the parabolic point to a nearby Siegel disk watiation number

[ag,ai,...,an,, verylargeN,1,1,1,1,..;
and the second stage with going back to a parabolic
[ap,a1,...,an, verylargeN,1,1,1,1,...,1,00].

Geometrically, each successive approximation shouletspaond to removing some thin cusps from the filled
Julia set — the hope is to bound the area of what is left froraviaelhe limit filled Julia set would then have
a Cremer point. Such a filled Julia set would coincide witllitka set and have a positive measure.

Chéritat has shown that the second stage of an approximstep may be carried out with an arbitrarily
small loss of measure. Moreover, due to the work of X. Buff An@héritat, making the loss arbitrarily small
at the first stage boils down to several conjectures atylintder renormalizationThe latter was introduced
by M. Yampolsky for proving the hyperbolicity of renormadizon of critical circle maps. Geometrically,
this renormalization boils down to successive blow-upsefgolden-mean Siegel Julia set. A convergence
result for this procedure has been established earlier dyllMlen; what is required now is a proof of the
hyperbolic properties of the limiting fixed point.

The appearance of renormalization-type arguments is canforahis class of problems: for example,
Shishikura [19] used a parabolic renormalization procedardemonstrate the existence of quadratic Julia
sets of Hausdorff Dimensiokused in his proof of HDiK M) = 2. The one-dimensional renormalization
theory (see e.g. [13]) has seen a spectacular progressiseanerks of Douady, Hubbard, and Sullivan which
related it to Holomorphic Dynamics, culminating in a prodftbe Feigenbaum Universality by Sullivan,
McMullen, and Lyubich [11, 14, 21]. Many important problewisscaling invariance and universality still
remain open, however, even in the setting of One-DimensDyaamics.

In particular, a renormalization hyperbolicity result feiegel disks which would imply positive measure
is still missing. However, a lot of numerical evidence existits favour, and moreover, the recent unpublished
work of Shishikura opens an approach for settling this atinje. In the light of the recent proof of Ahlfors’
Conjecture, the existence of positive measure Julia setddviruly be surprising.

Of course, renormalization has been the main tool for tteektat the MLC Conjecture. This counterpart
of ELC in the dynamics of quadratic polynomials, and its leigtlegree generalization, the Fatou Conjecture
are arguably the main open problems in Holomorphic Dynamics

Inthe early 1990'’s Yoccoz proved that MLC holds at all partenealues: in the boundary of the Mandel-
brot set which are at most finitely many times renormalizaHie proof also showed that the corresponding
Julia sets are also locally connected, provided all peciodhits are repelling. Several partial results exist for
infinitely renormalizable values ef however, MLC is still not known in full generality. A partitar example
of an infinitely-renormalizable quadratic for which MLC illsopen is the celebrated Feigenbaum quadratic
polynomial. This particular map is infinitely renormalizahvith the same combinatorial type (a particular
case ofsattelite type

M. Lyubich has spoken on a new progress on this front in his recent jankswvith J. Kahn [7, 8]. In
these works the authors have introduced a new analytic bostiidy of Julia sets, which they call@uasi-
Additivity Law This law is a statement about extremal lenghts of familfesioses, in the vein of the classical
Grotsch Inequality, which is strongly motivated with theatogy with Kleinian groups. They use this law to
prove that the Julia sef(f) of at most finitely renormalizable unicritical polynomil: z — 2% + ¢ with
all periodic points repelling is locally connected, thusyiding a higher-degree analogue of the results of
Yoccoz. The theorem of Yoccoz was a major step towards ML@ veéth the new tool, further progress can
be expected. In particular, it is likely that the Quasi-Atidity Law will lead to MLC for certain infinitely
renormalizable values aefof satellite type, thereby bringing the conjecture closezdmpletion.
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Figure 1.1: The Mandelbrot set near the Feigenbaum paranilegéry”, but locally connected?

As we have seen above, Cremer Julia sets are conjecturpfiplesof having extreme measure-theoretical
properties. Shishikura [19] has established earlier tiede Julia sets can have Hdin 2; and it is well-
known that they are bad topologically, in particular, nelesally connected. All the more surprising that
the recent work of I. Binder, M. Braverman, and M. Yampolskpws that these sets aaégorithmically
computable That is, an algorithm may be produced to, given the valudefiarametet, draw such Julia
sets on the computer screen with an arbitrary magnificafibis nothwithstanding the fact that informative
pictures of Cremer Julia sets have never been prodideBraverman reported on this work, as well as on
his earlier result with M. Yampolsky demonstrating the ati€e of non-computable Julia sets in the quadratic
family. These results led to a lively discussion, as a nurobeatural questions follow. Computability results
for limit sets of Kleinian groups are not yet known. And in tipgadratic case, the size of the set of values
¢ for which the Julia set is uncomputable is interesting — angairticular, whether some such values are
actually computable reals themselves.

Random shapes and conformal invariance

SLE

One of the central topics of the workshop was Stochastic ¢br&8nm) Loewner evolution (SLE) (see [18,
17]). Itis a process defined by using one-dimensional Brawniotion as the driving parameter in Loewner’s
differential equation. There is one free parameter in SUtictvis the speed of the Brownian driving process.
Thus the whole family of conformally invariant processdsEs, is defined. Introduction to the properties of
SLE and the general overview of the subject was give®@dgd Schramm the inventor of SLE in the first
talk of his three-lecture mini-course.

The SLE paths are conjectured to be the scaling limits obuarnatural random processes in the plane,
such as the interface of critical percolation, the Ising eiad the self avoiding walk. Some such statements
have been recently proved by several authors: Smirnov [#QTfitical Percolation on the triangular lattice
(x = 6); Lawler, Schramm, and Werner [10] for the Uniform Spannimge (- = 8), and Loop Erased
Random Walk £ = 2). Quite a few other statements of this sort remain unproviére direction of the
research is currently extremely active. Two of the talkshef imini-course series by Oded Schramm were
devoted to the problem. First, he discussed the so-calleddrdc explorer process, which, as proven by the
speaker and Scott Sheffield, converges to SLBsing the result, they establish that the level lines of the
discrete Gaussian Free Field also converge to,Sltfvas also explained how one can find SLer x # 4
in the Gaussian Free Field.
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Although the conjectures about the valuexofor scaling limits of different lattice models are widely
believed, it is not clear in a few cases which particular fafthe SLE is obtained in the limit — there can
be different parameterizations, boundary conditions, Baaunderstand this situation in a few specific cases,
Monte Carlo simulations of the two dimensional self-avoglivalk (SAW) were discussed at the talk By
Kennedy entitledMonte Carlo comparisons of the self-avoiding walk and SLliis simulations have given
support to the conjecture that the scaling limit of the SAVBli& with parameter 8/3. These past simulations
treated the SAW and SLE as subsets of the plane, i.e., thenptgeization of the curves was ignored. In this
talk the speaker considered the SAW and SLE as parametetizees and compared things that depend on
the parameterization.

Another very active area of research is understanding ofitleegeometric properties of the SLE. It is
known that fors < 4 SLE is almost surely a simple path (Rohde and Schramm [16/]); £ 4 SLE is not
a simple path almost surely, but is still generated by a caaliedtracelRohde and Schramm far # 8,
Lawler, Schramm, and Werner far = 8). The estimate for the upper bound;+ «/8 on the Hausdorff
dimension of SLE trace was established by S. Rohde and Oafchr It was shown by V. Beffara that the
Hausdorff dimension of th§ L E,.-trace is actually equal tb + /8. On the other hand, the conjecture that
the dimension of the boundary of the hull when- 4 is equal tol + 2/« still remains open.

Normalized Schwarzian derivatives of SLE maps and othemg#ac properties of the SLE boundary
were discussed biam-Gyu Kang in his talk Boundary Behavior of SLEHe showed that the normalized
(pre-)Schwarzian derivatives of SLE maps with higher otdems are continuous square integrable martin-
gales with second moment obeying the Duplantier dualitgoAle showed that they have correlations that
decay exponentially in the hyperbolic distance. The BMCcepar the space of functions of bounded mean
oscillation, is the appropriate substitute 16¥° in many results concerning singular integrals. This notiam
be modified in the setting of continuous martingales. Thenadized (pre-)Schwarzian derivatives of SLE
maps with negligible terms are BMO martingales. As a corg|ldney satisfy the John-Nirenberg inequality.
This result may lead to an estimate on the lower bound for tesHorff dimension of the boundary of SLE
hull. The results obtained by Kang allows to make a formaliargnt for the lower bound.

Stas Smirnovin his talk entitledConformally invariant fractalgddiscussed some recent progress and
techniques in the study of the fine geometric propertieso8thE. In particular, he explained the multifractal
analysis of harmonic measure on SLE. In a joint work with Dli&®/ the speaker derived a formula for one
of the multifractal spectra, the so-called integral megrmectum, of the SLE. The spectrum reflects the
behavior of the Riemann map for SLE near the boundary. Usiaget calculations one can see that the fine
behavior of harmonic measure of the boundary, predicted. @uplantier, is very plausible.

Many geometric properties of the SLE were predicted by thigcal physicists (for example Cardy, Du-
plantier).

Overview of the physics point of view on SLE (see [6]) was give the talk byBertrand Duplantier
entitledConformal fractal geometry and Quantum Gravikfore specifically, he discussed the fractal geom-
etry of conformally-invariant (CI) scaling curves. He fead on deriving critical exponents associated with
interacting random paths, by exploiting an underlying duangravity (QG) structure, which uses KPZ maps
relating exponents in the plane to those on a random laitee,in a fluctuating metric. This was accom-
plished within the framework of conformal field theory (CEW)ith applications to well-recognized critical
models, likeO(NN) and Potts models, and to the Stochastic Lowner EvolutibE)STwo fundamental ingre-
dients of the QG construction are relating bulk and Diritbleundary exponents, and establishing additivity
rules for QG boundary conformal dimensions associated mitktually-avoiding random sets. These rules
are established from the general structure of correlatimietfons of arbitrary interacting random sets on a
random lattice, as derived from random matrix theory. Thespts derivation of the multifractal spectra was
also discussed.

An essential role in the derivation is played by the Quanturavidy, i.e. the theory of random two-
dimensional Riemann surfaces, and especially by KnizRukrakov-Zamolodchikov (KPZ) equation [9]. It
would be extremely important both for SLE theory and fori®jfi heory to obtain the rigorous mathematical
justification of the Quantum Gravity and KPZ.

The talk of Angel was devoted to the construction of the rigorous theory afrdte random Riemann
surfaces.

One can also consider the talk &f Dubedat entitled Commutation of SLElated to this program. In
the talk he discusses questions pertaining to the definiticeveral SLEs in a domain (i.e. several random
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curves). In particular, the speaker derived infinitesintahmutation conditions, discussed some solutions,
and show how to lift these infinitesimal relations to glotedations in simple cases. All these relations agree
to what is predicted by the means of Quantum Gravity, andd¢iveysome insights on how Quantum Gravity
can be defined using SLE.

The workshop finished with an informal talk Bygter Jones In the talk he presented his new result related
to the welding problem for the SLE. Peter Jones proposed iyfafi{random) homeomorphisms of the circle
which are conjectured to be the welding homeomorphisms &. Slhe family of the homeomorphisms is
related to the Gaussian Free Field on the unit circle. Hedilmussed the connection of this new family with
some previous conjectures.

Other random shapes

Other random shapes were discussed during the workshop.

One of the most important questions in the Geometric fundti@ory is understanding of the extremal
behavior of the multifractal spectra. The answer to the tipresvould incorporate the Makarov’s and Jones-
Wolff’s dimension theorem, affirm the famous Brennan'’s eatjre, and answer many classical questions
related to the coefficient growth problem for the univalamtdtions. It is known that the extremal behavior
of the spectra is the same for general and for the simply-ected domains, and that this behavior “almost”
occur on Julia sets. Nice upper estimates on the spectracktaimed by H. Hedenmalm and S. Shimorin
using the technique of Bergman spaces.

D. Beliaevin the joint work with S. Smirnov proposed a new class of randiactals, so-calleRandom
Snowflakeslt is proven that the almost extremal behavior of the irségreans spectrum also occur for the
class of objects. Because of the stochastic nature of tldorarsnowflakes, the explicit calculations of the
multifractal spectra for them are much easier to controlingyshe random snowflakes new rigorous lower
estimates on multifractal spectra are obtained. The ettsrae now extremely close to the conjectured
values.

A generalization of the simple random walk and SLE to two- higéher-dimensional processes is another
active area of research. One of such analogies was giv&idikyKenyon in the talk entitledSimple random
surfaces The talk was devoted to the speaker’s joint work in progrel David Brydges and Jessica
Young. They consider a natural model of random immersedsesfin a (finite or infinite) 2-complex. This
is in many ways a natural generalization of the simple rana@ik. Although little is known about this
model, certain expectations can be computed using the Griegrction on 1-forms.

While SLE provide at least conjectural limit for various twiimensional lattice model, nothing like
this exists in higher dimensiongs. Sladein the talk entitledScaling limits and super-Brownian motion
explained how critical percolation and related models canldéscribed by super-Brownian motion, in high
spatial dimensions. The talk provided a survey of sevesllte and gave all the necessary background on
super-Brownian motion.

Complex Analysis

Holomorphic Dynamics, the analytic theory of Kleinian gpsyand SLE have their roots in classical complex
analysis and geometric function theory. In this section gmort on some developments and talks that are
dealing with fundamental questions from complex analy$lsey are not necessarily directly related to the
topics described above, but in most cases the relevance tetitral theme of the workshop is very obvious.
Joan Lind discussed how properties of the driving term in the Loewgiagion affect the geometry of
solutions to the Loewner equation. Since the Schramm-Leeevolution is the Loewner equation driven by
one-dimensional Brownian motion, this can be viewed as dle¢erministic” counterpart to the path proper-
ties of SLE. A natural space of driving terms is the space dltier continuous functions with exponent 1/2,
with the Hoelder norne replacing the speed in SLE. It was shown that for < 4 the Loewner equation
always generates simple curves whereas:for 4 selfintersections and even topologically wild compacts
can occur. This phase transitionat= 4 is the deterministic counterpart to the phase transitioBLE at
rx = 4 from simple to non-simple curves. In her talk she also itatgtd by means of examples that there is
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no simple other phase transition that would correspondddrdmsition at = 8 from "swallowing curves”
to "space filling” curves.

Another topic very closely related to the Loewner equati@s wiscussed bipon Marshall. He (and
independently Rainer Kiihnau) discovered in the early 5980 elementary algorithm for computing con-
formal maps (see [12]). The algorithm is fast and accuratecbnvergence was not known. Given points
20, , zn, IN the plane, the algorithm computes an explicit conformapraf the unit disk onto a region bounded
by a smooth curve with zg, , 2z, € v. Marshall reported on joint work with S. Rohde, proving comgence
for Jordan regions in the sense of uniformly close boundaaird gave corresponding uniform estimates on
the closed disc for the mapping functions. Improved estsate obtained if the data points lie on a smooth
or a K-quasicircle. The algorithm was discovered as an aqimate method for conformal welding, however
it can also be viewed as a discretization of the Loewner wifféal equation.

A central topic of complex analysis is quasiconformal magpi Quasiconformal mappings appear nat-
urally in the deformation theory of Riemann surfaces andaarmdispensible tool in Kleinian groups. Since
their introduction to complex dynamics in the proof of Stdin’'s no wandering domain theorem, they have
become one of the most powerful tools in dynamics. They arartain tool in the work of Marshall-Rohde
and of Lind, as well as a cornerstone of the work of Peter Jdessribed aboveKari Astala andDaniel
Meyer both talked about exciting developments related to therthebquasiconformal maps. Astala de-
scribed his deep joint work with Paivarinta [2], solviriget Calderon’s inverse conductivity problem: In
tomography, or inverse problems in general, one aims taméie the structure of an object from indirect
observations. Such methods have a variety of immediatécapiphs, ranging e.g. from medical imaging
to different industrial processes. A typical example is étedmine the (conductivity) structure of a body
from (electrical) measurements on the boundary. From thibenzatical point of view this question has a
clear and precise formulation, asking if the DirichletNeumann boundary data determines the coefficients
of a differential operator in the interior of a domain. In lédk, Astala discussed recent joint work with
L. Paivarinta, solving the problem in two dimensions. Quex analysis, quasiconformal methods and, in
particular, the function theoretic view to elliptic PDE’s\wkloped by Bers, are unavoidable for the solution
in its full generality.

Self-similar sets in two dimensions often can be quasisytmoadly (quasiconformally) mapped to stan-
dard sets: For instance, limit sets of quasifuchsian gramusJulia sets of hyperbolic rational maps are
guasiconformal circles (if they are topological circleShe powerful tools to prove such statements, an ex-
plicit geometric characterization of quasicircles (thdfats three-point condition) and the- Lemma about
holomorphic motions, are not available in dimensions higihan two. Already in three dimensions, there are
self-similar surfaces (such as the product of the van koolw#ake with the real line, known as "Rickman’s
rug”) that cannot be quasisymmetrically parametrized leypglane. Daniel Meyer discussed quasisymmetric
parametrizations of fractal surfaces in three dimensighQuasisphere is the image of the sphere under
a quasiconformal map (dR3). The largest known class of quasispheres are called siiswhzey are
topologically 2-dimensional analogues of the snowflake/euFor those surfaces the gqc-embedding can be
constructed explicitly. Many questions about the mappiehavior can be answered, at least numerically.
For instance, Meyer showed that the "harmonic measure ooval=ll”, i.e. the image of Lebesgue measure
of the sphere under the quasisymmetric parametrizatiandimaension strictly smaller than the dimension
of the snowball. This can be viewed as an analog of the cekstbidakarov theorem concerning harmonic
measure of simply connected planar domains, and its highergional generalization by Bourgain. The
question if the dimension is greater than two (reminiscéntolff's example) was raised, at this point a
positive answer is suggested by numerical results.

Nick Makarov reported on joint work with H. Hedenmalm on the quantum Hethew flow. The Hele-
Shaw flow is closely related to the Loewner differential gégpraand describes the geometry of a growing
"cell”. Itis used to model the interface between two fluidddferent viscosity (such as water and oil). It
appears as the formal limit of diffusion limited aggregatial A.

Michel Zinsmeister talked about joint work with S.Rohde. The physicists Hagtiand Levitov proposed
a stochastic model for Laplacian growth, based on compositof random” conformal maps, depending on
a parameted < o < 2. Fora = 2, the process is a version of DLA. SLE can also be viewed ass(takng
limit of) random compositions of conformal maps, but thdetiénce is that in SLE the growth is restricted to
a specified boundary point, whereas in the Hastings-Lewitogel HL () the growth is uniformly distributed
with respect to harmonic measure. Incidentally, the speeaise HL(0) was considered in the late 1980’s by
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Richard Rochberg and his son and called "stochastic Loesv@ution”. As no result was published, the
name did not stick. Indeed, the celebrated work of Hastings leevitov appeared about ten years after
Rochberg’s unpublished work. Zinsmeister proved someroig® results about Hk(). In particular, he
proved that the scaling limit fax = 0 exists, he described this limit in terms of the Loewner eiquatand
proved that the Hausdorff dimension of the random set is bsirsurely. Fory near two, he explained how
the Carleson-Makarov formalism can be adopted to the cusedting to obtain nontrivial lower bounds for
the dimension of the cluster. He also discussed the formiétl dif the model and its relation to the Hele-Shaw
equation.

A. Poltoratski described joint work with N. Makarov. He generalized themigéin of Toeplitz operators
to larger spaces of analytic functions. After that he stddie problem of injectivity of Toeplitz operators
in these spaces. It turns out that many problems of classiady/sis, such as distributions of zeros of entire
functions (Levinson), completeness of bases of reproduaennels (Beurling-Malliavin), spectral problems
for the Schroedinger and string operators (Krein, Marchbenk), naturally become a part of the picture. One
can use the Toeplitz approach together with some of the teckances in complex and harmonic analysis
to give shorter proves and further generalizations to tassital results.
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Chapter 2

Computational Fuel Cell Dynamics-Ili
(05w5073)

March 19-24, 2005

Organizer(s): Keith Promislow (Michigan State University), Jean St-RigBallard Power
Systems), Brian Wetton (University of British Columbia)

Report Prepared By: Paul Chang

Introduction

Replacing today’s fossil fuel economy with a hydrogen onelda@lleviate much of today’s environmental
and political problems. The transport and consumption g6ifduels has contributed to oil spills, fossil
fuel scarcity issues, political instability in the middlast, etc. Hydrogen consumption, on the other hand,
would not since hydrogen can be produced by electrolyzingmand the latter is abundant and ubiquitous.
Moreover, Proton Exchange Membrane (PEM) fuel cells (a keymonent of the hydrogen economy) pro-
duce only water as its byproduct, and therefore greenhoasesgand other air pollutants would cease to be
produced.

Key challenges remain, however, in the transition to a hgdnoeconomy. Infrastructure for producing
and distributing hydrogen needs to be established. An en@aab means for storing hydrogen needs to be
developed. And, if PEM fuel cells are to supplant the intecombustion engine, PEM fuel cells need to be
as (if not more) durable, efficient, economical, and poweafithe latter. Our community aims to meet this
last challenge.

Cost-effective and rapid improvement of current fuel celsigns requires computationally fast and ac-
curate fuel cell models; a pure trial-and-error approadati@arly expensive and slow. The development of
fuel cell models requires the talents of a diverse group @ngists and engineers: chemists and physicists
are needed to understand the fundamental chemical and meaharocesses and their interactions, mathe-
maticians are needed to develop fast and stable numergaitaims to solve the governing model equations,
engineers are needed to implement these models to optimizeéll design which in turn directs future
model development, and finally experimentalists are regluio validate these models. Many members of
our community are able to play one or more of these roles,ihaegew are experts in all roles, it is clear
that a high degree of collaboration is needed.

The CFCD workshops hosted by Ballard Power Systems and PiNt8reon Fraser University in June
2001, and at BIRS in April 2003, gave focus to these actwitiEhese meetings brought together a diverse
mix of scientists and engineers to exchange expertise afidd@ommon ground, and provided future re-
search directions. The CFCD IIl workshop is a continuatibthese efforts, providing a forum where the

LUniversity of British Columbia
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INSIDE A FUEL CELL GAS DIFFUSION
LAYER

GAS
FIELD FLOW DIFFUSION AMNODE POLYMER  CATHODE FIELD FLOW
PLATE LAYER CATALYST MEMBRANE CATALYST PLATE

Figure 2.1: The layers comprising a fuel cell. [5]

latest fuel cell knowledge and technologies can be sharatifacusing the multi-disciplinary efforts of its
participants. This important work will certainly lead tcetlllevelopment of a new generation of analytical
and computational tools for PEM fuel cell design, and ultishathe realization of the hydrogen economy.

Proton Exchange Membrane Fuel Cells and Modelling Activites

PEM fuel cells generate power by consuming hydrogen andexy4s earlier mentioned, hydrogen can be

produced by electrolyzing water, but in cases where puredgegh fuel is unavailable, it can be obtained by

processing available fuels including natural gas, propdiesel, methanol, etc. Oxygen is drawn directly

from air. A PEM unit cell consists of a polymer membrane saicted between a pair of gas diffusion layers

sandwiched between a pair of bipolar plates (See Figure ¢ polymer membrane is usually made of

Nafion and the gas diffusion layers are often teflonated cafiboe paper. The bipolar plates are usually

made of graphite. At the interface between the gas diffulsipar and membrane lies a catalyst layer which
facilitates the power-generating electrochemical reasti The catalyst is usually Platinum, but because
Platinum is such an expensive component of the fuel celerothatalyst materials are being developed as
possible replacements.

Channels are carved in the bipolar plates which deliver dyeln (on the anode side) and oxygen (on the
cathode side) to the reaction sites. The channel configuratin be straight, serpentine, or cross-flow. The
hydrogen diffuses through the gas diffusion layer to thedenmatalyst sites where it disassociates into two
protons and two electrons. The electrolyte membrane, eegapd protonic and poor electronic conductor,
allows the protons to diffuse to the cathode side while tieetebns are conducted through the bipolar plates
through an external circuit where useful work can be peréatmrhe protons and electrons then meet with
the oxygen, which has diffused through the cathode diffufager, at the cathode catalyst sites where water
and heat is produced. The net electrochemical reactiomiglgi

2H2 + 02 — 2H20 (21)

A key advantage of PEM fuel cells is its operation at low terapges (around@0°C). However, this
necessitates a catalyst layer as the activation potentiahé electrochemical reactions is much too high at
these temperatures. Reducing Platinum loadings at the@des, or the complete replacement thereof, is a
priority for the fuel cell community due to high cost of Plaim; but to do so without degrading the power
output capabilities of the fuel cell requires an undersitagaf the fundamental processes which drive the
catalyzed reactions. Existing approaches to modellingattelyst layer include interface models in which the
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Figure 2.2: A 2D unit cell slice.

layer is infinitesimally thin, microscopic or single-por@dels in which the layer consists of pores filled with
gas and pores filled with electrolyte and catalyst, and aggtate models in which the layer is composed of
spherical agglomerates of carbon grains supporting RiatirResearch in this area is active and ongoing.

The electrolyte membrane is a complex polymer comprisede@ibi spines from which typically hy-
drophilic SO3 groups extend. These are arranged in a nanoscale configuwdtich facilitates the selective
diffusivity of the membrane, enabling the fuel cell to penfrclose to the thermodynamic limit for efficiency.
While the membrane must be well hydrated to allow the protorgsoss over, the overproduction of liquid
water may saturate the surrounding porous electrodes, fih@oglas channels, and lead to a pronounced drop
in local power density. The control of the motion and disitibn of liquid water in both the nano-structure
of the membrane and the surrounding fibrous electrodesasreefto as water management, and is critical to
effective cell operation. The understanding of water managnt is also key to optimizing fuel cell design.

Many efforts have been undertaken to develop fuel cell nsodlich incorporate these effects. These
models can be roughly classified as either fully three dinoerad, or reduced dimensional where quantities
are averaged in one or more directions. There are also matiéh look at specific aspects of the fuel cell.

In recent years, several large computational fluid dyna@é®) code vendors have become interested
in developing comprehensive three dimensional fuel cethpatational models. Some examples are the
modules developed by CFX [2], StarCD [4], and the more acadEEMLAB [3]. These CFD codes provide
convenient 3D meshing and visualization tools and robusesefor the traditional fluid dynamics elements
of fuel cell models. These codes also provide a platform &idated models of elements unique to fuel
cells to be integrated into the “big picture”. However, prehary models suggest that the delicate balance
of temperature, condensation and liquid water transpdahérgas diffusion layers will be difficult to capture
accurately in these general packages. It is apparent tigetrlacale problems such as electrical coupling of
unit cells in the stack and long time transients will haveadiandled by specialized codes.

Reduced dimensional models exploit the high aspect ratibeofinit cell, roughly 1000 to 1 down chan-
nel versus thru membrane, and solve for quantities averagegarticular direction. For instance, unit cell
models which assume a straight channel design and aver#ge énoss channel direction are comprised of
two one-dimensional models for transport along the chaamethru the membrane electrode assembly, cou-
pled through their boundary conditions. With such simpiifirometries, these models are computationally
speedier than their CFD counterparts, yet certain highreedsional effects may not be captured with these
models. A 2D slice of such a unit cell model is shown in Figuiz 2 should be mentioned that this type of
fuel cell, which uses pure hydrogen, is one of many designagmmes.

Currently, there are condensation and two phase flow modetss diffusion layers. These are based on
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hydrophobicity and capillary forces combined with porgsind permeability factors associated with the gas
diffusion layer. This coupling of forces leads to difficekiin predicting water formation within the various
regions of the gas diffusion layer and catalyst areas. Thasemeters are extremely difficult to measure and
to correlate to model results.

Studies of water mobility and proton motion through the Nafioembrane and similar PEM products
have also been conducted. Some of the questions of intezestilave been considered by researchers of
biological membranes. Various effects can be consideesdjing from molecular level models, hydraulic
pumping, nano-technology and capillary forces.

Presentation Highlights
The following is a summary of the presentations presentedatvorkshop.

e Bernhard Andreaus (Simon Fraser Universitiderforms kinetic Monte Carlo simulations of CO oxi-
dation on supported catalyst particles in the nanometegerahhe goal is to improve our understanding
of the catalyst structure and the prevailing kinetic meéras, which can help us improve catalyst uti-
lization and optimize rates of current generation.

e Daniel Baker (General Motors)AC impedance tools have the potential of isolating the veicontri-
butions to the fuel cell polarization curve. Daniel Bakeeg@nted some findings in the low frequency
range (much less than 1 KHz), and showed that the impedarectrapn this frequency range offers
a very sensitive tool for measuring gas-phase transpotaese. Of particular interest is a low-
frequency inductive effect that becomes observable atiérgies less than around 1 Hz. On another
note, General Motors will build an environmental chambercfar testing at the University of Ontario
Institute of Technology. It will include temperature anéataze humidity control. Quoted as the best
facility in North America when completed.

e Jay Benziger (Princeton UniversitylRecent studies at Princeton have discovered that multipéely
states and autonomous oscillations occur in PEM fuel celistd a positive feedback between the
resistance of the polymer membrane and the water productithe fuel cell. It was also discovered
that additional steady state multiplicity arises from tloeigling of the mechanical properties of the
polymer electrolytes and their electrical and chemicapprties. Control of the construction of PEM
fuel cells is key: if the sealing pressure is too low the meankrelectrode contact is poor, whereas
if the sealing pressure is too high water is squeezed outeofrttmbrane thus increasing membrane
resistance. A series of experiments that show the effeatgtdr inventory on the dynamics of fuel
cell performance was presented, as well as a lumped panametke!| of a differential PEM fuel cell.

A model explaining these experimental results was alsoldped by Keith Promislow.

e Peter Berg (University of Ontario IT) and Arian Novruzi (Wersity of Ottawa): Presented a dry,
non-isothermal, macroscopic model for the catalyst layae model couples variables for these three
phases: 1) electric potential for the Carbon/Platinum,x3)gen and water vapor concentrations and
pressure in the pores, and 3) proton concentration, watgent electric potential in the membrane.

e Uwe Beuscher (W. L. Gore and Associates, In&.jtetailed model is under development for studying
the material and structural properties of the membranealysitayer, and gas diffusion layer. The Gore
Electrode Model (GEM) is a one-dimensional descriptionidssential processes in the PEM fuel cell.
Transport processes that are considered include protospoat in the catalyst layers and membrane,
electron and gas transport in the catalyst layers and gasidifi layers, and water transportin all these
domains. Need for degradation modeling mentioned.

e Viola Birss (University of Calgary)Developing non-noble metal ORR catalysts using sol-getrem
sis, a simple and low cost approach known to yield nanopdétie composite materials. These new
catalysts have demonstrated very good ORR activity in asioliutions after adsorption on carbon and
subsequent heat treatment, with a maximum in performangerammum in H2O, generation after
prepartion af00°C.
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Radu Bradean (Ballard Power System$&)resented a model for controlling the MEA water content.
Such a model is used to provide input into the design of opeyatrategies of automotive fuel cell
stacks. The measurements of MEA water content during fuebperation, stack purging after shut-
down, and natural cooling after shutdown is reasonablyipted by the model.

Felix Buechi (Paul Scherrer InstitutePresented a fast 1+1D model used for parameter space analysi
of along-the-channel current and species distributione ifodel accounts for heat transport in the
MEA and along the channel, and has been validated againstimgntal data in a wide parameter
space. Measured electrical interactions with a two cetlkstand a non straight channel design.

Brian Carnes (University of Victoria)Presented a general model, named BFM2, for the transport of
water and protons within PEMSs. It rigorously accounts folttaamponent transport using the Binary
Friction Model for transport in a porous medium. The modeswhown to provide an excellent fit

to experimental conductivity data. Mentioned the need dooimer (different properties than manu-
factured membranes) and membrane property measuremelniding the direct relationship between
conductivity and water content at different operating dbods.

Paul Chang (University of British ColumbiaPresented a stack model which accounts for electrical
and thermal coupling effects between unit cells. This mislebmprised of a four parameter 1+1D
unit cell model which was validated using a significantlygkand varied data set. A two dimensional
end plate model is also included. Runs with simulated aniemalere presented, where a unit cell
received substantially less coolant flux and oxidant fluxtiig neighbours. Experimental validation
presented by Gwang-Soo Kim.

Juergen Fuhrmann (Weierstrass Institute BerliPresented a model for Direct Methanol Fuel Cells
using the control volume method. The model includes fulgoteed catalytic reaction chains, evapo-
ration/condensation/dissolution reactions, two-phase fif water and a gas mixture in a hydrophilic-
hydrophobic porous medium, and Stefan Maxwell diffusion.

Herwig Haas (Ballard Power Systemd}EM fuel cell models often lack validation in respect to pre-
dicted MEA water distributions. Two experimental methodsédbeen developed at Ballard which can
serve to validate these models. These methods were prdsemdaliscussed.

Erin Kimball (Princeton University):Presented a simplified lumped parameter Stirred Tank Reacto
model for the kinetics and mass transport in a different@MPfuel cell; this model captures the
dynamic water balance in response to changes in load, feedtieanperature. Highlighted how the
model matches dynamic results from a differential PEM fedll and what it predicts for more complex
flow patterns.

Hyunchul Ju (Pennsylvania State UniversitiPresented a model for two-phase flow (of water) which
accounts for catalyst active area reduction due to liquittmeoverage, liquid water transport through

hydrophobic porous media, and liquid water droplets enngrgt the gas diffusion layer/channel inter-

face. Emphasis on understanding water transport and gfiediooding.

John Kenna (Ballard Power System&jave an overview of Ballard Power System fuel cell products
and simulation models, and how stack requirements are nednaith the use of bounded design space
analysis tools. The bounded design space methodologystlosvinteraction of multiple variables as
well as the effect of advancing technology to be clearly @ized. Introduction of design space tools
and using DOE hydrogen energy roadmap has helped focugd@sltamulation and modeling efforts
towards meeting their targets.

Gwang-Soo Kim (Ballard Power SystemPBresented experimental results which elucidated the elec-
trical and thermal cell interactions which occur in a sta8gecific anomalies were introduced for this
purpose. For electrical interactions, different bus phatgerials and a partially inactive cell was intro-
duced. For thermal interactions, the geometry of the cadlew field channel in a bipolar plate was
modified. Results were compared with model predictions.
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e Andrei Kulikovsky (Research Center Jliciresented a 1+1D model of PEM and direct methanol fuel
cells. The direct methanol fuel cell model reveals a newctfighere, for infinitely small total current,
a “bridge” of finite local current density forms near the indé the oxygen gas channel. This bridge
forms only in the presence of methanol crossover, and shi@uits the electrodes. This phenomenon
explains a well known effect of mixed potential in direct imatol fuel cells.

e Xianguo Li (University of Waterloo)Presented a fuel cell stack model which takes into account a
variety of factors. A new flow field design was also proposeged\for significant data was mentioned
including cell voltage and pressure drop measurementsrigigieificant mass transfer control (low
stoichiometries, wide range of temperatures and relativeitlities including over-saturation).

e Chun Liu (Pennsylvania State Universityintroduced a general energetic variational procedure for
modeling the free interfacial motions in complex fluids. Thethod employs a phase field approach to
capture the moving free interfaces, and gives a naturallomuipetween the flow field and the different
interfacial properties.

e Simon Liu (National Research Council Canad®&yesented an overview of PEM fuel cell modelling
activities at NRC. The capabilities of commercial modelgugtware are illustrated by means of sev-
eral engineering case studies the authors have condudteglpast four years, involving computational
fluid dynamics, computational solid mechanics, computetiectrochemical engineering, and compu-
tational materials. Need for an increased level of activitiwo phase flow modelling was mentioned.

e Graeme Milton (University of Utah)Outlined the basic theory of linear composite materialstaed
effective properties. Discussed approximation schemes asl average field approximations, effective
medium schemes, differential schemes, and asymptoticadsthA brief overview of the subject of
bounds on the effective properties of composites, and ttimapmicrostructures which achieve them.
Authored a book on the subject [1].

e John Pharoah (Queens UniversityPresented a gas diffusion layer model and investigatedfthet®
of several properties of the gas diffusion layer on fuel pefformance, including thermal conductivity,
mass diffusivity, and relative permeability. A new methodthe determination of anistropic transport
coefficients was outlined, and the results were comparedrteitly used values.

e Keith Promislow (Michigan State UniversityPresented a model of ignition dynamics and bistable
operation of a Stirred Tank Reactor PEM fuel cell. In dry irdas operation, the positive feedback
between current, water production, and membrane resistaads to two stable “ignited” states, which
correspond to a uniform current distribution or a partiaktinguished cell with localized current
production. Comparison with experimental data gatheredblyyBenziger.

e Isaac Rubinstein (Ben Gurion UniversityQver-limiting conductance is a phenomenon where steady
state current higher than the limiting one is readily pagsedugh a cation exchange membrane.
Electro-convection driven by nonequilibrium electroosimalip at the solution/membrane interface
was suggested as a mechanism drawing together the overimlienomena at cation exchange mem-
branes. Numerical calculations and experimental resiéte whown which support this case.

e Tobias Schaeffer (City University of New YorBased on the work of Grimshaw et al., Tobias Schaeffer
presented a 1D transient model for membrane swelling anttaiion, and the effects these changes
have on membrane hydration. Results were compared with@esin situ type test with a membrane
immersed in a solution.

e Juergen Schumacher (Fraunhofer Institute for Solar En&gstems)Overview of different modeling
approaches at the Fraunhofer Institute for Solar Energie8ysat the unit cell, stack and system scales.
These models include a two dimensional non-isothermal infedeplanar self-breathing fuel cells
(validated with experimental results), a dynamic two-ghféaw model for unit cells, and a simplified
dynamic stack model with energy, mass, and charge trankgsrqgmena. Fuel cell system modeling
using the Colsim package of Fraunhofer ISE was also pregemtech includes a fuel cell stack model,
models for reformers, power inverters, heat storage umits\ps, compressors, valves, and controllers.
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e Sirivatch Shimpalee (University of South CarolinRyesented a model which relates the electrical con-
ductivity of the gas diffusion layer to fuel cell performandRelative in-plane to thru-plane electrical
conductivity including contact resistance are experiraynmeasured, and the interaction of flow-field
geometry with the gas diffusion layer is also studied.

e Jean St.-Pierre (Ballard Power SystemByesented a simplified 1D unit cell model for low cell voltage
which elucidates our understanding of unit cell behaviouthie mass transfer limited regime. This
model was validated and can be used to extract mass trarsd#iceents from full size unit cells.
Criteria were also defined to ensure model applicability.

e John Stockie (Simon Fraser Universityrevious work has shown that mass transport limitationisen t
catalyst layer, rather than the gas diffusion layer, isoesjble for limiting current density behaviour.
A catalyst layer model which captures this effect is presgénand results are compared to existing
results from both experiments and simulations in the liteea

e Henning Struchtrup (University of VictoriaPresented a simplified conductivity model, named BFCM,
for perfluorosulfonic acid membranes to investigate thenomkn parameters in the general transport
model BFM2 (See Brian Carnes). This model was shown to peoaichore consistent fit to 1100 EW
Nafion than other established models, and was able to ptedicbnductivity of a Dow and Membrane
C membrane.

e John Van Zee (University of South Carolinalpresented experimental data relating PEM fuel cell
performance to rapid changes in the voltage. This dynantia\deur depends on the type of flow-field
and the voltage range of the voltage change. Overshoot asiersimoot of the steady state current
density profile were observed for fixed flowrates when the $t@chiometry varied between 1.2 and
1.1. The dimensionless peak current and percentage ofrmarsurrent is shown to depend on starting
cell voltage and the range of voltage change. These peakmiesl primarily by oxygen, even though
operating conditions are close to fuel starved conditions.

e Adam Weber (Lawrence Berkeley National LaboratoBfesented a model for transportin PEMs. Itis
based on a physical model that is semi-phenomenologicdbdwed into account Schroeder’s paradox.
The model addresses two different transport mechanismeyrvand liquid-equilibrated, as well as the
simultaneous occurrence of both modes. The model thusdsithg gap between one- and two-phase
macroscopic models currently used in the literature.

e Brian Wetton (University of British Columbia)in overview of PEM fuel cell operation is given, with
emphasis on stack design. Some of the fundamental scieqiiistions related to device performance
are outlined, and a summary of modelling approaches andsa@iumodelling in the application is
given.

e Ziheng Zheng (University of New Brunswicld:new Magnetic Resonance Imaging (MRI) method-
ology was presented to measure membrane gas phase difigsfficients. The MRI challenges of
low spin density and short gas phase relaxation times, &glygfor hydrogen gas, have been success-
fully overcome with a modified one-dimensional, SinglefRélamped Imaging with T1 Enhancement
(SPRITE) measurement. The diffusion coefficients of bottirbgen gas and sulfur hexafluoride were
measured in a model polymeric membrane, which is of potentierest as a gas separator in metal
hydride batteries.

e Christoph Ziegler (Fraunhofer Institute for Solar Energysg&ms):Presented a dynamic, two-phase
flow model which accounts for Schroeder’s paradox. Cyclitawvomograms are simulated and mea-
sured, and a hysteresis effect is found in the measuredmxésuThis is likely due to the accumulation
of liquid water at the cathode side of the cell.

Personal Remarks from the Organizers

There are other notable fuel cell meetings: the Gordon QGente on Fuel Cells, the American Society of
Mechanical Engineering meetings on Fuel Cell Science, assians at the larger Electrochemical Society
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meetings. There are also several possibilities for gemaeatings on industrial mathematics: the SIAM
annual meetings and the larger ICIAM meetings every fourgiddowever, at both of these kinds of meeting,
the mathematical researcher with a focus on the fuel cellion is an outsider. The CFCD series of
meetings at BIRS is a chance for this activity to be at thereentith participation of experts in mathematical
areas that will be used in the next generation of models, pplication experts to identify where modelling
activity should be focused. BIRS provides a really wondesfiportunity for these communities to meet.

We would like to thank the staff and directorship of BIRS feeir enthusiastic support of our workshop.
Banff was the perfect setting to hold this workshop: the stigescenery, the recreational facilities, the food
attracted many top-notch participants who otherwise mighthave come. Given the opportunity, we would
welcome the chance to hold our next meeting at BIRS again.
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Representations of Kac-Moody Algebras
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versity of California, Berkeley)

The particular focus of this workshop was on the combinat@spects of representation theory. It
brought together senior mathematicians working in theesgmtation theory of Kac-Moody algebras with
students and postdoctoral fellows who are in the initiadjs$aof their career in this field. The participants
represented the field quite well, in subjects ranging fromdlyebraic aspects of the representation theory
of infinite—dimensional algebras, the combinatorial atpetthe crystal base theory and the path model, the
geometric aspects of quiver varieties and the mathemaiigedics aspects of the Bethe Ansatz. Towards the
end of the conference a good picture emerged of the develupanel the interplay between the different
aspects of the subject.

We outline the main developments which were presented atdsked in the workshop.

Algebraic Aspects

The study of Kac—Moody Lie algebras began in the 1970’s ane @enatural generalization of the theory
of semisimple Lie algebras. A Kac—Moody Lie algebra, [K] ahkn is defined by am x n integer valued
matrix A = (a;;) (called the generalized Cartan matrix) satisfying the d@doms: a;; = 2 and fori # j
a;; =0 <= aj = 0. Such matrices were classified by Vinberg and were shown tatisfy one of
the following mutually exclusive conditions: (a) the mati$ positive definite, (b) the matrix is positive
semidefinite and and every proper principal minor is positlefinite, (c) there exists a vectoof positive
integers such thatlv is a negative vector. In case (a) the associated Lie algsbaasemisimple finite
dimensional Lie algebra while in the other cases the Lielakyés infinite dimensional. If the matrixd
satisfies condition (b) or (c) it is said to be of affine or indi&é type respectively.

The affine Lie algebras and the representation theory oéthlgebras is widely studied and is motivated
by important applications in physics. One such applicatiomes from the underlying symmetry of two
dimensional conformal field theories which also led to thelgtof vertex algebras. Another application is
that of the quantized universal enveloping algebras intibery of quantum integrable systems. Both these
applications in turn, brought important ideas to the stufdhe representation theory of these algebras. The
talks in the conference that focussed on the algebraic séde given by Bakalov, Brundan, Greenstein, Her-
nandez, Loktev and de Moura. The talks dealt with repretientaof affine Lie algebras and its applications
to physics. The representation theory or indeed the streician arbitrary Kac—Moody algebra is in general
poorly understood. However in the last two years some pesghas been made in understanding the rep-
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resentation theory of certain infinite families of Kac—Mgdde algebras and S. Viswanath reported on this
new development.

All the talks discussed so far focussed on the integrablesgmtations of the Kac—Moody algebra which
are the analogs of the finite—dimensional representatibasemisimple Lie algebra. A closely related cate-
gory is the Bernstein-Gelfand-Gelfand categ6ryC. Stroppel presented some new results for the category
O associated to a Kac-Moody algebra and indicated a vergintrg new connection with knot invariants.

Vertex operator algebras

These were introduced by R. Borcherds as an algebraic togtlitty the underlying the operator product

expansion operation in conformal field theory. They werdrimsental in the proof of monster moonshine

conjecture. Chiral algebras which are a generalizatioreaiex algebras were introduced later and play an
important role in the geometric Langlands program. An algebstructure that emerged from the study of

chiral algebras in conformal field theory are the Lie confakalgebras and its higher dimensional analogs
the Lie Pseudoalgebras, [3]. B. Bakalov discussed theifitzg®n of Lie Pseudoalgebras and the relation
to solutions of the classical Yang—Baxter equations.

Representations of indefinite type Kac—Moody algebras

For many years there was limited progress in the represemtheory of Kac-Moody algebras associated to a
generalized Cartan matrix of indefinite type. The best sidimongst these were the algebras of hyperbolic
type and even there, results are hard to come by. More rgcémtiKleber and S. Viswanath identified
infinite families of algebras of indefinite type whose reprgation theory parallels and in fact generalizes
that of s/,,. Roughly speaking, the algebras they consider are obtaingektending” the Dynkin diagram of
a Kac—Moody algebra by a tail which is the Dynkin diagranzf. Clearly the finite—dimensional algebras
of classical type belong to this picture. But now, one caw alkow the infinite series coming from the
simple laced exceptional algebras, this includes the gdierLie algebraF;, which has been studied by
mathematicians and physicists. In his lecture, S. Viswadiscussed the representation ring of these algebras
and showed that the tensor product of the integrable repiasens decomposed in a stable way: namely as
the length of the tail went to infinity, the multiplicity of éhisotypical components remained the same. Using
this, he explained how to define a stable product on a suit&et®r space, analogous to the ring of symmetric
functions coming from the representation theorygof.

Ben Webster, a graduate student at Berkeley and one of thieipants of the conference noticed that
this stabilization feature can be explained clearly usinigey realizations of representations of Kac—Moody
algebras. His preprintis now available on the archive,.[29]

Representations of affine Kac—Moody algebras

Affine Kac-Moody algebras are one of the most important anill stedied class of Kac-Moody algebras.
The main reason for this is that they can be realized as thersal (one—dimensional) central extension of
the Lie algebra of Laurent maps from to a semisimple Lie algefhe representation theory of the affine
algebras are “controlled” by the center, and there is stgkiifference between the representations where the
center acts by a positive integer (positive level repreg@nis) and those where the center acts trivially (level
zero representations). One outcome of the workshop wasyageed understanding and formalizing of the
connection between these two families of representations.

The irreducible finite—dimensional representations ofngizad affine algebras play a key role in the theory
of quantum integrable systems. The structure of these septations is quite complicated and there are a
number of approaches to studying them, [1], [4], [5], [7], [20], [27]. Two of these approaches have had
significant success recently and were discussed in theramde. One is the approachgfcharacters, an idea
that was introduced by Frenkel and Reshetikhin and furthelied by Frenkel and Mukhin. D. Hernandez
discussed his work og-characters and showed how his methods could be used tossotugecture on the
structure of a particular family of modules, the so-callddli§év—Reshetikhin modules. This also allowed
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him to establish that these characters solved a system atiegs called the Q—system arising in the study
of integrable systems. A. deMoura (joint work with V. Charigsented an alternate approach to defining the
g—characters which leads to a parametrization of the blog&adralizing results of [8]) in the category of
finite—dimensional representations of quantized affinelaigs.

A second approach is to consider the- 1 limit of representations of quantum affine algebras which le
to the idea of Weyl modules in this context. These modulegwlefined and initially studied by Chari and
Pressley who also had a conjecture on the structure of thedeles. About the same time, B. Feigin and
S. Loktev defined the notion of a fusion product of finite—dirsienal representations of a simple Lie algebra
and showed that these could be regarded as modules for theopokl valued subalgebra of the affine
algebra. S. Loktev discussed (joint work with various cbaus) in his lecture the relationship between the
Weyl modules and fusion products and also generalizatib&eyl modules to other algebras. J. Greenstein
(joint work with Chari) discussed extensions in the catggdirfinite dimensional representations of affine
Lie algebras and a new realization of current algebras.

A new connection between the theory of Yangians [D] &@riehlgebras was also presented during the confer-
ence.W-algebras are endomorphism algebras of certain inducedle®tbr a finite dimensional reductive
complex Lie algebra. There is a natural way to associatelpmteint element such an algebra (Slodowy
slice). In fact, the coordinate ring of the Slodowy slicessrmorphic to the an appropriate associated graded
version of thelV -algebra. In special cases it has been observed beforanttias iway one gets the Yangian
of level ¢. J. Brundan reported on his joint work with A. Kleschev, wéérey consider arbitrary nilpotent
matrices. They describe a presentation of these algebriab \d@ads to a generalization of the of Yangians,
the so-called shifted Yangians. Because of the Schur-Welltgf or rather it's quantized version, they obtain
also a close connection with the degenerate cyclotomic élaldebra and representations of the Lie algebra

9loo

Projective functors in the Bernstein—Bernstein—GelfaagtgoryO [2] are the functors obtained as direct
summands of the functors given by tensoring with finite disi@mal representations. Such functors have
been classified by Gelfand and Bernstein.

A different approach to this problem was presented duriegnieeting by C. Stroppel. The advantage
of the approach is that it not only recovers the known redultsalso can be easily generalized to the Kac-
Moody case. Further, the approach by deformation theoo/@ens a new and very interesting connection
to knot and tangle invariants

Combinatorial Representation theory

Macdonald polynomials play an important role in repres@rieheory and govern in many cases the com-
binatorial aspects of a theory. In his talk M. Haiman expdlirthe latest developments in this field. In
particular, he explained a new combinatorial formula forcelianald polynomials. The advantage of this
formula is that fact that it gives deep insights into the cite of these polynomials and provides a new
approach to understanding the charge formula of LascouxSehéitzenberger. M. Shimozono gave a talk
on finding a Schubert calculus on affine Grassmanians andiegpl the importance of this in enumerative
algebraic geometry. Roughly speaking the idea is to find anggbetween the Schubert bases of the coho-
mology and homology of the affine Grassmanian associatef, tdJsing this he and his collaborators hope
to find the structure constants of the homology. This shoivid the decomposition of the fusion product of
positive level representations generalizing the theavtdod Richardson rule for the tensor product of finite
dimensional representations«if,.

The theory of crystal bases developed independently by iKasa [2], [16] and Lusztig [23] has become
a very important tool in many aspects of representationrthethe associated graph reflects in many ways
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important properties of the representation. Differentasp of the theory of crystals were discussed at the
meeting: in the case of finite dimensional representatidradfime Kac-Moody algebras for example, it is
only conjectured [17] that crystal bases exist in the gdrease. Proofs for the existence in special cases
need case by case considerations. The other importantipdht of constructing combinatorial models of
these graphs, [20], [21], [26]. Of course, different mod&ishe same graph may be particularly adapted
to different properties, so a third important point is to ersland the relationship between different existing
models

K. Misra gave a report on further development of the seconlpm mentioned above. He presented results
on a joint work with Kashiwara, Okado and Yamada. They caicsfverfect crystals for the integrable highest
Weighth)-moduIes of levek > 0. These perfect crystals are finite graphs, but the graphhéoinfinite
dimensional integrable highest weight modules can thermobstoucted as semi-infinite tensor products of
these graphs.

The crystal graph can be also very helpful in constructirgebaf the representation spaces. One case was
reported on the conference by A. Premat. The aim was to eaisttmonomial basis for Demazure modules.
Of course, there is the global / canonical basis by KashiaadhLusztig, but which is in general not always
easy to compute in an explicit way. Using a combinatorial elddr the crystal basis by Young diagrams,
she reported that the transition matrix between the moridmgis constructed by her and global bases are
upper triangular with ones in the diagonal.

An important step in developing a crystal graph theory foitdilimensional representations of untwisted
affine Kac-Moody algebras was presented by D. Sagaki andif.Ndne set of Lakshmibai-Seshadri paths
makes sense for affine Kac-Moody algebras even in the casewieenot a weight in the Tits cone. Suppose
A is of level zero and dominant integral for the underlyingtérdimensional Lie algebra. They show that
after the projection on the space modulo the imaginary roet@an endow this set with the structure of a
crystal graph. In fact, this set has a tensor product decsitipo, it is the product of the corresponding sets
for the fundamental weights. Since these are combinatorgalels for the crystal graph of quantum Weyl
modules, it follows that in this way they provide a uniformyata get a combinatorial way for the quantum
Weyl modules of all untwisted affine Kac-Moody algebras.

Another successful tool to obtain combinatorial models dorstal bases / crystal graphs for irreducible
highest weight crystals of quantum (affine) algebras.

The Young walls consist of colored blocks with various stsbat are built on a given ground-state wall
and can be viewed as generalizations of Young diagrams. dlée for building Young walls and the action
of Kashiwara operators are given explicitly in terms of camalorics of Young walls. The crystal graph of
a basic representation is characterized as the set of alteedoroper Young walls. The character of a basic
representation can be computed easily by counting the nuoflgelored blocks that have been added to the
ground-state wall.

This theory has been developed by Seok-Jin Kang, J. H. KweA, &im, H. Lee, D.-U. Shin and
others. A report on the present state of the theory was gimdnaapossible connection between modular
representation theory and crystal bases.

A first step in the understanding of the connection betweerKyoto path model for representations of affine
guantum algebras and the path model by Littelmann was pexséry P. Magyar. In the case of the basic
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level-one representation, he derives a direct connecgomden the two path models by generalizing the path
model to a class of semi-infinite concatenations of patHidakeins.

Let g be a simple complex Lie algebra and denoteghthe affine Kac—Moody algebra associated to the
extended Dynkin diagram. It is a natural approach to undedsthe infinite dimensional highest weight
representations Gf by first studying them ag-modules. To do so, one needs restriction formulas. A natura
filtration by finite dimensional subspaces of such a repitasien is given by itgi—stable Demazure modules.

In the case wher® = V (¢A() corresponds to a multiple of the highest weight of the vacoenesen-
tation (and some more general cases), G. Fourier (joint wdthk P. Littelmann) presented a very effective
approach. In this case the Demazure modules are indexedrhinaot coweights, and it was explained
that the Demazure module decomposeg-asodule into a tensor product of Demzure modules correspond
ing to fundamental coweights. This decomposition can beetikas the natural generalization and uniform
formulation of many partial results know before.

For these “smallest modules” an explicit decompositionielg in the classical case (and in many non-
classical cases). In fact, it turns out thatgamodule they are isomorphic to some Kirillov—Reshetikhin-
modules.

As a consequence one can give a description ofittrdule structure oF (A) for an arbitrary dominant
weight as a semi-infinite tensor product of finite dimensigpanodules.

The Bethe Ansatz

The Bethe Ansatz is a method to obtain eigenvectors for aioesét of operators. The corresponding Bethe
vectors correspond then in the general case to certain péessrsatisfying the Bethe equations. There are
two methods to obtain these vectors, one coming from thaalrigase theory and another method to obtain
to obtain eigenvectors comes from representation theoaffiok Lie algebras.

E. Mukhin showed that the Bethe equation for the nonhomogeGa@audin model could be solved by certain
orthogonal polynomials. He also addressed a similar prolite other models, namely the trignometric
model and the XXZ model. All these involve looking at suigbhite dimensional representations of affine
Lie algebras.

Another problem on this subject was addressed by Anne 8ahilln the case of a given spin model, the
Bethe vectors are indexed by certain rigged configuratiwhsyeas the solutions obtained by representation
theory are indexed by elements of a crystal graph. So it israkto ask for the relationship between these to
methods.

A. Kirillov and N. Reshetikhin provided a combinatorialddtion between certain restricted rigged con-
figurations and highest weights in crystal. This bijectiasweneralized later by A. Kirillov, A. Schilling and
M. Shimozono. A. Schilling gave a report on this subject araspnted the latest development: An extension
of the bijection above to a bijection between the rigged camfitions parameterizing the Bethe vectors and
the crystals parameterizing the eigenvectors obtainedpgsesentation theoretic methods. This result was
obtained by defining a crystal graph structure on the segged configurations.

The tensor product of evaluation representations of affine-Moody algebras lifts to the fusion product
of integrable modules. The fusion tensor product inducesgitading of the multiplicity spaces for the

decomposition of tensor product of irreducible modulesrdkie underlying simple Lie algebra. Poincaré
polynomials for graded multiplicity spaces can be regartedeneralizations Kostka-Foulkes polynomials.
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The structure of these polynomials is closely related tsthecture of irreducible characters of corresponding
affine Kac-Moody algebras. The latest progress in this toravas reported by R. Kedem.

Talks

Speaker: Bojko Bakalov

Title: Lie Pseudoalgebras

Abstract: One of the algebraic structures that has emegmahtly in the study of the operator product
expansions of chiral fields in conformal field theory is thbad.ie conformal algebra. A Lie pseudoalgebra
is a “higher-dimensional” generalization of the notion dfia conformal algebra. On the other hand, Lie
pseudoalgebras can be viewed as Lie algebras in certaid@sensor categories.

I will review the classification of finite simple Lie pseudgabras, and | will discuss their relationship
to solutions of the classical Yang-Baxter equation andredr Poisson brackets. | will also describe the
irreducible representations of the Lie pseudoalgéBia), which is closely related to the Lie-Cartan algebra
Wy of vector fields, wherév = dim 9. (Based on a joint work with A. D’Andrea and V. G. Kac.)

Speaker: Jon Brundan

Yangians, Whittaker modules and cyclotomic Hecke algebras

There has recently been some progress in understandingadgei®as introduced originally by Kostant
in 1978. These algebras can be viewed as quantizations &ldldewy slice associated to a nilpotent orbit
in a semisimple Lie algebra. In typ&, it turns out that these quantizations of the Slodowy slieeciosely
related to the Yangian of the Lie algehyg,. Actually, they are generalizations of the Yangians whigh w
call shifted Yangians.

In recent work with A. Kleshchev, we have worked out the cambirics of the finite dimensional rep-
resentations of shifted Yangians. The approach uses in sangéal way a theorem of Skryabin relating
representations of these algebras to certain categorggsnefalized Whittaker modules. In particular, we are
able to reprove and generalize the known results aboutseptations of Yangians, all as a direct application
of the Kazhdan-Lusztig conjecture.

There is also a close connection between shifted Yangiahthardegenerate cyclotomic Hecke algebras,
thanks to a Schur-Weyl duality which interpolates betwdendassical Schur-Weyl duality and Drinfeld’s
affine analogue of it. This leads to a natural representaltieoretic construction of some higher level Fock
spaces for the Lie algebrd.,, complete with their dual canonical bases.

Speaker: Jacob Greenstein
An application of free Lie algebras to current algebras

We realize the current algebra of a Kac-Moody algebra as éientmf a semi-direct product of the
Kac-Moody Lie algebra and the free Lie algebra of the Kac-Mpalgebra. We use this realization to
study the representations of the current algebra. In péatiove see that everyd-invariant ideal in the
symmetric algebra of the Kac-Moody algebra gives rise inreon&cal way to a representation of the current
algebra. These representations include certain well-krfawilies of representations of the current algebra
of a simple Lie algebra. Another family of examples, whicé thre classical limits of the Kirillov-Reshetikhin
modules, are also obtained explicitly by using a constomotif Kostant. Finally we study extensions in the
category of finite dimensional modules of the current algeifra simple Lie algebra.

Speaker: Mark Haiman
Title: A combinatorial formula for Macdonald polynomials
Abstract: I'll explain recent joint work with Jim Haglund and Nick Loghn which we prove a combi-

natorial formula for the Macdonald polynomiélu(x; q,t) which had been conjectured by Haglund. Such a
combinatorial formula had been sought ever since Macdanaiolduced his polynomials in 1988.
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The new formula has various pleasant consequences, ingdltit expansion of Macdonald polynomials
in terms of LLT polynomials, a new proof of the charge formafaLascoux and Schutzenberger for Hall-
Littlewood polynomials, and a new proof (and more generasio@) of Knop and Sahi's combinatorial
formula for Jack polynomials.

In general, our formula doesn’t yet give a new proof of thetpoty theorem for Macdonald polynomials,
because it expresses them in terms of monomials, ratheSitlaur functions. However, it does yield a new
combinatorial expression for the Schur function expansiben the partition: has parts< 2, and there is
hope to extend this result.

Speaker: David Hernandez
Title:The Kirillov-Reshetikhin conjecture and solutiarfsT-systems.

In this talk we present a proof of the Kirillov-Reshetikhiangecture for all untwisted quantum affine
algebras : we prove that the characters of Kirillov-Redtéti modules solve the Q-system, and so we get
explicit formulas for the characters of their tensor praduiMoreover we establish exact sequences involving
tensor products of Kirillov-Reshetikhin modules and prévat their g-characters solve the T-system. For
simply-laced cases these results were first obtained by jNakavith geometric arguments which are not
available in general. The proof we presentis different amely algebraic, and so can be extended uniformly
to non simply-laced cases.

Speaker: Seok-Jin Kang
Title: Combinatorics of Young walls and crystal bases.

We will discuss the construction of irreducible highestgiicrystals using Young walls. We will also
discuss the possible connection between modular repeggentheory and crystal bases.

Speaker: Rinat Kedem

Title: Constructions of affine Lie algebra modules via gihdiensor products via generalized Kostka
polynomials.

The graded tensor productis a tensor product of finite-dgioeral g-modules, endowed with a g-equivariant
grading. This grading is related to the action of the loogehfg on the "fusion product” of representations
of conformal field theory, and was originally defined by Feighd Loktev. A conjecture, which has been
proven in some special cases is that the graded multipliéign irreducible g-module in the graded tensor
product is related to the Kostka polynomial or one of its galized or level-restricted versions.

I will discuss how this graded tensor product allows us tostautt integrable modules in two very
different ways. One is in terms of the inductive limit of theaged tensor product of an infinite number
of g-modules. The other is a generalization of the semi-infindestruction of Feigin and Stoyanovksy,
which allows us to compute the characters of arbitrary hgheight integrable modules. This last requires
use of the inverse of the matrix of generalized Kostka pafyiads, and hence gives an interesting alternating
sum expression for characters corresponding to non-rgalarhighest weights in terms of rectangular ones.

Speaker: Sergei Loktev
Title: Weyl modules ovesl,.-valued currents

Abstract: We discuss Weyl modules ovér-valued currents in one and two variable.

For one—dimensional currents a construction of basis,qe®g by V.Chari and the speaker, will be de-
scribed. If there will be enough time, the relation to Demrezuodules and fusion modules will be discussed.

For two—dimensional currents relation to the space of diagooinvariants and parking functions, ob-
served by B.Feigin and the speaker, will be explained.
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Speaker: Kailash Misra

Title: Perfect crystal foer’)

Abstract: The crystal base theory developed by Kashiwadairaiependently by Lusztig provides an
important combinatorial tool to study the representatmfrssymmetrizable Kac-Moody algebras. It is known
that the crystal base for affine Kac-Moody Lie algebras candieretely realized as a subset of the semi-
infinite tensor products of perfect crystals. In this talk widl present a perfect crystal for the integrable

highest weighIfo)—moduIe of levelk > 0. This is a joint work with Kashiwara, Okado and Yamada.
Speaker: Adriano A Moura
Title: Blocks of Finite Dimensional Representations ofSliaal and Quantum Affine Algebras.

Abstract: It is well known that the category of finite dimessal representations of classical or quantum
affine algebras is not semisimple. To understand its blodlongosition in the quantum case, P. Etingof
and the speaker introduced the notion of Elliptic Charactelowever, the original definition using analytic
properties of the R-matrix imposed some un-natural regiris to the problem (—g— should be different
from 1). In particular, it was unclear how to compute the sileal limit of the block decomposition. In this
talk based on joint work with V. Chari we present a definitidietliptic Characters from the point of view of
the Braid Group action and the theory of g-Characters. Tllosvaus to obtain the block decomposition for
generic q as well as for g=1.

SPEAKER: Evgeny Mukhin
TITLE: Multiple orthogonal polynomials in Bethe Ansatz.

ABSTRACT: We show that the Bethe Ansatz equation for the homogeneous!,, Gaudin model and
two finite dimensional representations one of which is a sgitnimpower of vector representation, is solved
in term of zeroes of multiple orthogonal Jacobi-Pifieirtypomials. Equivalently, the spaces of polynomials
with two finite ramification points with special exponent®at of the points have a basis explicitly given via
multiple orthogonal Jacobi-Pifieiro polynomials. In a g&mway, multiple orthogonal Laguerre polynomials
appear in the Bethe Ansatz related to the trigopnometric Gaunddel and multiple orthogonal little g-Jacobi
polynomials in the Bethe Ansatz related to the XXZ model.

This is a joint work with A. Varchenko.

Speaker: Alejandra Premat
Monomial Bases for Demazure Modules

Abstract: We will discuss certain monomial bases of quarid@mazure modules for the algebra Ug(affine-
sln) and show how to compute them using a description of theta@rgraphs by Young diagrams. We will
also see that the transition matrices from these bases @lttal bases are upper triangular with ones in the
diagonal.

Speaker: D. Sagaki - S. Naito
Crystal of Lakshmibai-Seshadri paths associated to a-leel integral weight for an affine Lie algebra

Let A = Zielo m;w;, With m; € Zx¢, be an integral weight of level zero that is a sum of levebzer
fundamental weightsz;, ¢ € Iy, for an affine Lie algebrg. We study a certain crysta@(\).;, which is
(modulo the null root ofj) the crystal of all Lakshmibai-Seshadri paths of shapand prove that thB(\),;
is isomorphic as a crystal to the tensor prod@;el0 ]B%(wi)gmf‘ of the crystalsB(cw; )., @ € Ip. Here

we note that for each € I, theB(w;). turns out to be isomorphic as a crystal to the crystal basheof t
level-zero fundamental modul& (cw;) over the quantum affine algebig(g).
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Speaker: Anne Schilling
Title: Crystal structure on rigged configurations

Abstract: Rigged configurations label the Bethe vectorsgif@n spin model. According to a bijection by
Kirillov and Reshetikhin (generalized by Kirillov, S., $hozono) rigged configurations correspond to highest
weight crystal paths. The natural question arises whetteretexist "unrestricted” rigged configurations
corresponding to any crystal path, not necessarily higlvegght. In this talk we define unrestricted rigged
configurations and describe the crystal structure on this se

Speaker: Mark Shimozono
Title: Schubert calculus on the affine Grassmannian

Abstract: We present a generalization of the Robinson+&&tkd-Knuth correspondence which conjec-
turally realizes the Cauchy identity that gives the perfeiting between the Schubert bases of cohomology
and homology of the affine Grassmannian of tyﬁéll/An_l. This involves two kinds of tableaux that are
defined using respectively the weak and strong Bruhat oaietise affine Weyl group. Whemgoes to infin-
ity the bijection converges to the usual RSK map. We statea Rile for the multiplication in cohomology,
which uniquely determines the basis.

We are also investigating the properties of a jeu de taqgjardthm on weak order tableaux which may
lead to a rule for the structure constants for homology. &lemmstants generalize the fusion Littlewood-
Richardson coefficients that come from the tensor produmesentations at a given level.

This is ongoing joint work with Thomas Lam, Luc Lapointe, alehnifer Morse.

Speaker: Catharina Stroppel
Title: The classification of projective functors for Kac-bldy Lie algebras

We consider the Bernstein-Gelfand—Gelfand category @la¢hto a semisimple complex Lie algebra.
Projective functors are the direct summands of the fungfiven by tensoring with finite dimensional repre-
sentations. These functors were classified by BernsteiiGaifdnd. We want to give an alternative approach
to this classification using deformation theory. We will &ip how this alternative proof can be generalized
to the Kac Moody situation giving rise to a classification ofjgctive functors. As an explanation we briefly
mention the connection to knot and tangle invariants.

Speaker: S. Viswanath
Dynkin diagram sequences and tensor product stabilization

In this talk, we will consider sequences of Dynkin diagrathsof the formX —o—o0—0—--- —0—0—Y
whereX andY are two fixed Dynkin diagrams arkds the number of intermediate nodes. The classical series
Ay, By, Cy, Dy, are all of this form and we can construct many more such sefigsdefinite Kac-Moody
algebras as well (e.8,,, G, (E — E)p,--).

Our goal will be to show that for th&,, multiplicities of irreducible representations in tengooduct
decompositions exhibit a stabilization behaviorkas— oc. This parallels the situation for the seridg
where this result is implied directly by the Littlewood-Rardson rule. We'll use Littelmann’s path model to
do this.

The stable values of these multiplicities can be used aststei constants to define a “stable tensor
product” operation on a spa@®( X |Y") that could be called the “stable representation ring”. Yéibw that
this multiplication operation is indeed associative, mgi® (X |Y") a bonafide C algebra that captures tensor
products in the limitt — oo.

Speaker: Milen Yakimov
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General finiteness of the fusion tensor product

Kazhdan and Lusztig proved a finiteness result for the fusgosor product for smooth modules over an
affine Kac-Moody algebra which can be viewed as an analogedEitt that the product of finite dimensional
modules over a simple Lie algebra is finite dimensional. b d¢tassical situation Kostant’s theorem from
the late 70’s provides a much more general finiteness: fosahglgebra k of a complex simple Lie algebra
g which is reductive in g, the category of finite length, adsitike (g,k)-modules is stable under tensoring
with finite dimensional g-modules (with applications toemiry O, Harish-Chandra modules, etc.). We will
describe a proof of an analog of this theorem for the fusiosde product of smooth affine modules, based
on an approach different from the one of Kazhdan and Lusztig.

Conclusion

The important ideas which emerged from the workshop weredlagion between the Demazure modules,
the level zero representations of affine Lie algebras , thd Wedules and the path model for these represen-
tations. It is hoped that these relations should help inisgla conjecture of Kashiwara which predicts that
the Kirillov—Reshetikhin modules for the quantum affineeddgas admit a crystal basis. Also, it now appears
very likely that the specialization t9 = 1 of the tensor product of representations of the quantumeaffin
algebra should be the fusion product of the representatitthe classical affine algebras. While much of the
work reported was on the untwisted affine algebras, it alsafne clear that the corresponding problems for
the twisted affine algebras were also important.

The average age of participants was younger then usual antewavere well represented among the
speakers and participants. We consider this a success. difisivop has already stimulated research activity
amongst its participants. S. Viswanath [28] and Ben Wel2&rhave already posted articles following up
on results presented at the conference. Several otheboddigons between the participants, Hernandez and
Greenstein, Hernandez and deMoura are ongoing and pregliotild be available soon. On the whole we
believe that the workshop was very useful and provided a geodie for interaction between the various
directions of research in representation theory.
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Chapter 4

Workshop in Homotopical Localization
and the Calculus of Functors (05w5078)

April 2—-7, 2005

Organizer(s): Kristine Bauer (University of Calgary), Ralph Cohen (StadfUniversity),
George Peschke (University of Alberta), Hal Sadofsky (l@rsity of Oregon)

Overview and Introduction to the Subject

This workshop focused on two relatively recent developmanhomotopy theory: homotopical localization,
and the calculus of homotopy functors. An effort was madertonte the, as of yet, sparsely explored
interrelationship between these two subjects. To deveksmae of purpose and perspective, let us mention
a few evolutionary highlights of algebraic topology/howmmy theory, and observe how its concerns and
viewpoints progress over time (we use present day termjypydtoroughout):

1. Early activity in the subject centered around combinatamvariants of polyhydra, such as the Euler
characteristic, Betti numbers, etc. These were adequatadsify the members of certain families of
spaces, such as connected surfaces which are compact d&oditlibundary. More generally, they
provided a tool for distinguishing spaces.

2. Nextfollowed a functorial approach to invariants for th&connectivities in general topological spaces:
homotopy groups, various species of (co-)homology thepré¢c. As a ‘biproduct’ the homotopy
invariance of the earlier invariants was obtained.

3. The next evolutionary layer came with the notion of a hapgtfunctor (one which preserves ho-
motopy equivalences). This provided a unifying platform &l of the specific and geometrically
motivated constructs which characterized the previowgestln addition, it set the stage for a system-
atic comparison of such functors; e.g. which functors detdmmotopy theoretical property in a given
space? which homotopy functor factors through another? etc

4. With homotopy functors in the center of view, the need émi$ to study such resulted in the study of
functors on the category of homotopy functors.

Each step further in this development was motivated by tbhsgmct of gaining insight in earlier steps. As
history testifies, each step has been successful in thisdlega

How do homotopical localization and the calculus of homgtiymctors fit in? Homotopy localization of
spaces or spectra generates homotopy functors with cerdlictable properties. Such functors fit naturally
into framework of 3 above. Building on ideas and the groundwaovided by the works of Adams [1],
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Bousfield [5, 6], Bousfield-Kan [9], Sullivan [23], and otkex flurry of activity over the 1990’s culminated
in a fully developed theory which permits implementationsuitable model categories; see the works of
Farjoun [13] and Hirschhorn [17].

The calculus of homotopy functors belongs to level 4. abdtveims to study a homotopy functér by
a tower of homotopy functors

=T F— 1T, 1 F— - —TF —TyF.

This tower is strikingly analogous with Taylor polynomigd@oximations of a smooth function as we’ll
describe below.
At this point we'd like to describe homotopical localizatiand the Goodwillie Calculus in more detail.

Mathematical Background

We will be working in categories where it is possible to do lndopy theory or something related to homotopy
theory. The most basic example of such a category is the @at&gof topological spaces.

There are many variations on this category, some of which@msidered in Goodwillie’s work, and some
of which have been considered in the work of other authorse €am do homotopy theory in the category
of topological spaces with distinguished basepoifiis(where all functions must preserve the basepoint),
topological spacesversome fixed base spa&g and the category of spectid, We will useZ, in the suc-
ceeding and take this opportunity to describe three basistoactions. LefX be a space with a distinguished
basepoint:, and! be the unit interval. Theuspensionf X is

SX = xX)/({0,1} x X UT x {x0}).

Thebased loop spacen X is
QX = MapE((I, {01 1})7 (X7 .%'0))

in other words, all continuous maps from the intervalfowhich take the endpoints of the interval to the
basepoint. Themash producdf X with Y is

XAY = (X xY)/({wo x Y UX x {yo}}).

SinceS features prominently, and may not be familiar, we also deedt briefly, taking liberties with
the definition for the sake of concisenessspgectrum may be thought of as being a sequence of topological
spaces with basepoints

{Xo, X1,...}

together with continuous functions (preserving basegdint
SZZXZ — Xi+1

which are nice inclusions.
It is not important to elaborate the details of the morphigtins functions) inS, these being somewhat
technical but to note the most germane properties of thegoay. There is a functor

S*: T, — S
which takes a spac¥ with distinguished basepoint to the spectrum
(X, %X, 22X ... }.

In S, the functionX(-) is invertible, and fibers of maps (equivalent to) desusperssdf cofibers.
There is also a smash productSrwhich is also denoted and which is determined by wanting

S®(XAY) = S®(X)AS®(Y).

Ain S plays a role similar t@ in a category of modules.
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Our interest inS arises because any functor
X — h(X)
from 7. to graded groups which satisfies the axioms of a homologyytis@ctually given by
X —m(S*(X)NH)

for an appropriately chosen spectruim So spectra represent homology theories.

Goodwillie’s Calculus

We begin by considering a functor
F:T->T

such thatF" preserves weak homotopy equivalences. For purposes oficity)ypve also assume thdf(x)
is contractible £ is reduced. There is a special class of such functors which are reféo@asexcisive An
excisive functor is a functor which takes homotopy pushqueses to homotopy pullback squares. Loosely
this condition can be though of as taking cofiber sequencepaifes to fiber sequences of spaces. In other
words, if F' is excisive, then the functor

X = m(F(X))

satisfies the axioms of lmomology theory (It is a consequence as discussed above that linear fgrater
represented by spectra; in fact an excisive reduced fufrctor based spaces is represented by the spectrum
F(S9).)

One reason excisive functors have a special role is that iwyrmases homology theories are computable,
so that even if we can’t always identifif (X) precisely, we can at least compute its homotopy groups.
Gooduwillie considers excisive functors to be analogougedr functions in single variable calculus.

One way to think about the beginning of the functor calcututoiimagine searching for an algorithm
which allows one to approximate an arbitrary (reduced homgtfunctor by an excisive one. In ordinary
calculus, the analogy is to finding a linear approximatioariarbitrary function.

Gooduwillie solves this problem in [14]. Given an arbitrasduced homotopy functaf, Goodwillie
gives an algorithm for computing a linear (excisive) fumcto

PF:T—T

which comes with a natural transformatign: 7/ — P, F which isinitial among natural transformations
from F to linear functors. That is, given any natural transforowati : ' — G whereG is linear,v factors
throughn. With the restrictions we've given, it is easy to describe #hgorithm for making?, F'. With the
restrictions we've given, there is a natural map

F(X) — QF(SX).

The target functor (as a functor &f) is also a reduced homotopy functor, so the constructiorbedterated.
ThenP; F'is (loosely) the limit of

F(X)— QF(2X) — Q*F(2%°X) — ...

The notion of a linear approximation to a functor turns outéqust the beginning of an analogy between
Taylor polynomials and Taylor series. Goodwillie calls acisive functor is 1-excisive.” Goodwillie gives
a definition ofn-excisive roughly speaking, a functor is-excisive if it takes any: + 1-cubes of spaces in
which every square is a pushout to some 1 cubes of spaces in which the initial corner is the pullback of
the rest of the cube. From this definition it is obvious that gasier to be + 1 excisive tham excisive (that
is, n-excisive functors are automaticaly+ 1-excisive).

For each (reduced, homotopy) functy there is am-excisive approximatior,, I’ and a natural trans-
formationn,, : FF — P, F which is initial among natural transformations frafhto n-excisive functors.
Just asl-excisive functors are to be thought of as analogous tollifeections,n-excisive functors should
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be thought of as analogous to polynomial functions of degre®o P,, F' can be though of as the degree
polynomial approximation td". Because: — 1-excisive impliesn-excisive, the universal property of the
natural transformation

Mo F— P, F

implies there is a functat,, : P,F — P, _1F so that

Tn ©Mn = Tin—1-

There are two important structural observations to make.H&rst the natural transformationg give us
a tower of functorq P, F'} and the natural transformatiop give compatible maps fromy' into this tower.
One can ask what the relationship is betwéeand the homotopy inverse limit of this tower. In particular,
one hopes that for any particular spa€eF' is analyticat X (thatis,F(X) = lim(P, F)(X)).

Second, recall that linear functors are described by spe&olynomial functors of degree greater than
1 don’t have such a simple description, but for eaclthe fiber of the natural transformatian : P, F —
P,,_1F is completely describe by a spectrum with #té symmetric groupy,,, acting on it, and techniques
for determining what this spectrum actually is are descriie[16]. This functor should be though of as
a homogenous functor of degree So while excisive functors of degreemay be somewhat complicated,
they are described by a finite number of extensions of fusatdrich are themselves determined by equiv-
ariant spectra. In principle, this leads to descriptionoflytic) functors from spaces to spaces in terms of
equivariant stable data together with extension inforamati

This is already interesting in the case whétes the identity functor. In this case the functor is, of cayrs
understood, but because homotopy groups are extremeblyudlito compute for most topological spaces, the
homotopy groups of the functor evaluated at most intergspaces are not understood. The homogenous
layers are discussed in [16] and [19], and the entire towdisisussed in [2]. This work is further developed
for particular values of the spacé in[3] where the homotopy groups of the spaces in the Gooivtdiver
shed light on the homotopy groups &f.

Homotopical localization

Homotopical localization has its roots in algebraic lozation. Serre introduced@-theory as a tool that
allowed him to prove local versions of classical theorerks the Hurewicz theorem. Some years later the
implicit ideas are developed in different directions by Kgu and Sullivan.

Quillen, in [22], gives a development of localization in “o&l categories”. At its most fundamental, this
gives conditions where a new category can be constructeddroold category by “inverting” some collection
of morphisms which are to be thought of as equivalences ém#w category). A specific and commonly
used example is to take the old category to be the categompoidgical spaces and the equivalences to
be maps which induce isomorphisms Bn(—; Q). (More examples can be easily produced by substituting
other coefficients fo).)

Sullivan, in [23] takes a different approach. He descrilmesafset of primes$ and sufficiently nice CW
complexesX a constructionX s which “inverts” primes inS. That s, if X — Y is a map which induces an
isomorphism inf,.(—; Z[S~!]), then the induced mafis — Y will be an equivalence.

Bousfield in [5] generalized these ideas considerablyofology theor,.(—) is a homotopy invariant
functor from spaces to graded abelian groups which satisféessual properties of singular homology except
that if « represents the one point space, the graded gih(p) is not required to be concentrated in dimension
0. Given such a homology theory, Bousfield constructs a funtie from the category of spaces to itself
which he callsE-localization, and a natural transformatigrfrom the identity functor ta”. E-localization
is determined up to homotopy by the following two properties

1. LgX is E-local.

2. The natural transformation evaluatedXagives a mapX — Lz X which is initial (up to homotopy)
among maps fronX to E-local spaces.

Here byY is E-local, we mean that it (A) = E.(x), then[A, Y] = x, the one point set. So all maps from
AtoY are homotopic to the constant map.
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Fundamental to the construction of Bousfield’s localizationctors are the class of maps which are
to localize to homotopy equivalences. Bousfield ([8]), Dfidr2]) and other authors study more general
localizations based on collections of maps which are to ipecequivalences.

There is a sequence of homology theories related to coboikhi®wn as Johnson-Wilson theories

E(O)*(_) = H*(_; Q)v E(l)*(_)v E(z)*(_)v s

(here E(1).(—) is closely related to compleX -theory). Since work of Morava as expanded by Miller,
Ravenel and Wilson [20] and the celebrated Nilpotence Téradd 1, 18] localization with respect to these
theories has become one of the central organizing prirgipfestable homotopy, and to a lesser extent,
unstable homotopy. Localization with respect to the homgptbeoryE (n) is generally denotedl,,(—), and
this family of localizations are referred to as the chrombttcalizations.

Scope of workshop

The workshop was intended to center on areas where the gsleifunctors meets homotopical localizations.
Let L be a homotopical localization functor on some categbng guaranteed to come with an important
structure; a natural transformation from the identity fiond¢o Z:

nx : X — L(X)

such that
nLx : LX — L(LX)

is a homotopy equivalencé. (s homotopy idempotent).

This is also a property satisfied by the functors in Good&illiTaylor Tower when interpreted suitably.
Consider the category whose objects are homotopy funatoms ffor example) to 7. ThenP,, applied to
this category of functors is idempotent and comes with aradttansformation from the identity functor. In
Dwyer’s presentation at the workshop, he described howddymeP,, as a homotopical localization.

One of the more fascinating results in these area is thatmiédand Mahowald in [3]. This paper analyzes
the Goodwillie tower of the identity functor from spaces pases. One of the main results is that for certain
spaces (at least for spheres) the layers in the Goodwilliertdor the identity functor are essentially the
chromatic localizationsl,,,. While the implications of this fact are far from completefyderstood, Michael
Ching’s work presented at this workshop displays these siijeets (the derivatives of the identity functor)
arising as the spaces in an operad.

A second place where an interaction between chromaticizatains and Goodwillie’s techniques was
demonstrated at this meeting was in Kuhn's report on his wirlX is a spectrum, it determines a certain
infinite loop space (writtef2*>° X'). Kuhn is able to use a number of techniques including Goltidwalculus
to computeF, (2> X) in terms of £, (X) for homology theories,.(—) related to chromatic localizations.

While initially the calculus of homotopy functors was desg for functors on spaces or spectra, the
theory has in the mean time found parallel instances in a euoflother categories, such as chain complexes,
vector spaces and the category of open subsets of a manifuklbegs for an eventual full bodied framework
for the calculus of homotopy functors on suitable modelgaties.

There were two main goals to this conference. First, we sotagintroduce researchers in the calculus
of functors or homotopical localization to each other’'sjeab Second, we sought to develop an overlap
of these two research areas by exploring current researbbtinareas. Towards the first objective, Tom
Goodwillie provided a series of expository lectures whiid lout the foundations of the calculus of functors.
A complementary series of lectures were provided by Bill Bwywho gave an excellent introduction to
localizations and explained how to construct GoodwilliEggy/lor stages as homotopy localizations within a
suitable category of diagrams of spaces as mentioned afidwase lectures laid the groundwork for what
followed.

Outcome of the meeting
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While it is unfair to categorize the contributions of the ti@pants of this conference into such a short
list of topics, it is beneficial to enumerate those topicsalifiorm current trends in the calculus of functors
and homotopical localizations. What follows is a short cdatjpn of those topics which pertain most to the
intended goals of this meeting.

e Manifold Calculus: As mentioned in the introduction, théccitus of functors has applications to areas
reaching beyond homotopy theory. In particular, Good@/glimachinery can be applied to functors
from the category of open sets of a manifold to the categotgdlogical spaces. In tandem lectures,
Ismar Volic and Brian Munson gave a gentle introduction tanifedd calculus. The talks pertained
to research in both the machinery of calculus (Munson’sltesadress the lifting problem from the
second stage of the tower to the third stage of the tower),applications of this machinery to the
study of embeddings (Volic described joint work with Padcanbrechts and Greg Arone related to
finite type invariants of knots).

e Calculus and Operads: Recently, there has been a flurry ieftadtying to understand an apparent
operad structure on the layers of the Goodwillie tower ofitlemntity functor from spaces to spaces.
One of the great testimonies to the beauty of the calculuaradtbrs is complexity of the Goodwillie
tower of the identity functor, which is seemingly innocuolrsparticular, this complexity is the main
obstacle to obtaining a chain rule. Motivated by our indtinom the calculus of real variables, we
would expect that the layers of the tower f6ro G, whereF andG are homotopy functors of spaces,
would be the composition of the layers Bfwith the layers ofz. However, the expected formulation
fails. Rather, the identity functor plays a critical rola.His talk, Michael Ching showed that the layers
of the identity functor form an operad, and conjectured atsmh to the chain rule problem, relying
on the left and right module structures of the layergroénd the layers ofr over this operad. An
alternative approach to understanding the operad steictuthe layers of any homotopy functor of
spaces equipped with a natural transformafionF’ — F was suggested in the talk of Andrew Mauer.
Mauer’s approach relies on the formulation of the layersughsa functor in terms of the cross effects
of this functor. This is also related to Dev Sinha’s talk, ihigh he presented another formulation of
the operad structure on cross effects of the identity of tiansg at least for spheres. The relationship
between Sinha’s work and Ching’s work can be seen by relatitig of their operads to the Lie operad.

e Tensor calculus of homotopy functors: ad hoc special sedsidom Goodwillie with an outline of an
obstacle toward a ‘theory of differential forms’ of homoydjpinctors (spaces) to (spectra).

e Relationships between calculus of functors and locabrati Nick Kuhn’s work withK (n) localiza-
tions and calculus, Taylor stages in the calculus of homofwpctors are homotopy localizing functors
in a suitable category of diagrams of spaces: Bill Dwyer

Abstracts of Talks

M. Ching Operads and calculus of functors

I'll talk about some aspects of the relationship betweerctileulus of homotopy functors and the theory of
operads. In particular, I'll describe the operad structutehe derivatives of the identity functor and try to
explain how the derivatives of other functors might fit intidstframework.

C. Casacuberta Continuity of homotopy idempotent functors
A functor L in a simplicial model category is called simplicial or contous if it defines a map from
map X,Y) — map LX,LY) for all X, Y, which is natural and preserves composition and identity. A
shown by Farjoun and Hirschhorfi;localizations can be constructed as continuous funcfbinsis, a nec-
essary condition for a homotopy idempotent functor to bevedgnt to somef-localization is that it be
equivalent to a continuous functor.

In joint work with different coauthors, we discuss contiyudf homotopy functors in several model
categories, with emphasis on simplicial sets, spectraganmdpoids. In the latter, remarkably, continuity is
automatic.



40 Five-day Workshop Reports

W.G. Dwyer Localization and Calculus | and Il

A general discussion of the idea of localization in homottimory. Followed in part Il by specialization to
the localization of diagram categories, and further spieeiton to the case of a particular diagram category
associated to the Goodwillie tower.

E. Farjoun Open problems and some recent progress in localization afidlarization theory

The talk will revisit some of the progress made recently idenstanding localization and co-localization
functors. We shall list some interesting problems and descelated partial progress. The talks will concen-
trate mostly on general properties of localization withpesst to a map in both algebraic homological algebra
and topological categories.

T. Goodwillie Introduction to the Calculus of Homotopy Functors, I,11,cail

Overview of basic definitions and results (excisive anrexcisive approximations of functors, classification
of homogeneous functors, chain rule); key examples; mawtation. Followed in part Il by: more about
homogeneous functors, with an emphasis on results whiclireeqo information about connectivity.

A geometric view of the functor/function analogy. In thisewi, Top is a variety and functors Top:
Spectra are global functions. | will say which categoriestae tangent spaces of Top. | will discuss tangent
vector fields and more generally tensor fields, in both a doatd-free way and a coordinate-dependent way.
I will show that there are two tangent connections, both atWwilare flat, and that their difference is the tensor
field known as smash product of spectra. | will say somethbauthigher-order jets and about differential
operators. | cannot make much sense of differential formxsget 0-forms and 1-forms), but | may talk about
them anyway. Applications are work in progress, but | willkeaure to at least say something trivial about
some nontrivial examples, and maybe something nontribialibsome trivial examples.

M. Hovey E(n). — E(n)-comodules
I will recap my results with Neil Strickland about the struct of the category oE(n). E(n)-comodules
(e.g. the Landweber filtration theorem works there as wklljll describe why we need to know more about
comodules (derived functors of product in the category aficdules form the”,-term of a spectral sequence
converging to théZ'(n)-homology of a product of spectra; this is relevant for theoahatic splitting conjec-
ture). Then | will describe some new results | have about threkt injective?'(n).. E(n)-comodules. There
are onlyn + 1 isomorphism classes of indecomposable injectives, and imesestingly, the endomorphism
ring of thek-th one is(E(k)")*(E(k)"), whereE (k)" is the completion of2(k) at Ij.

So in the category of(n).. E(n)-comodules, you are seeing all tih&k)" operations fof) < k < n,
and therefore seeing all the different stabilizer grodpdor 0 < k£ < n. This is a good thing, since the
relation between the different stabilizer groups is bdlsieehat the chromatic splitting conjecture is about.

N. Kuhn Periodic homology of infinite loop spaces

If E. is a homology theory, one can ask to what extentiihehomology of an infinite loop space is deter-
mined by theF.-homology of the associated spectrum. Using a combinafitredHopkins-Smith Periodicy
Theorem, as packaged in the telescopic functors of Boudisidne, and Goodwillie calculus, | can give a
quite definitive answer to this question when the homologpti is Morava K-theory. There are calculations
still to be done that may inform on the Telescope conjecture.

A. Mauer-Oats An operad from the derivatives of a monad

McClure and Smith have a simple idea that explains how to yredin operad from a functor operad by
evaluating on the unit of the smash product. The cross effda (reasonably good) mondare a functor-
operad of spaces. We explain the proper way to prolong a vatitite functor to spectra, and use this to
produce an operad of symmetric spectra. If a certain problecofibrancy can be overcome, the spectra in
the operad will be the derivative spectraiof

B. Munson The layers of the embedding tower
| will discuss the layers of the embedding tower and themtiehship to the obstructions to finding embed-
dings.
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D. Sinha A pairing between graphs and trees

We give an elementary pairing between graphs and treeshviéwiilitates the study of the Lie operad and
free Lie algebras. It arises in topology through both horgglof configuration spaces and (conjecturally) in
studying Hopf invariants and Whitehead products. We skigsghossible application in using the embedding
calculus to define knot invariants, and hope that it mightfiaterest in the homotopy calculus as well.

D. Stanley Complete invariants of t-structures

Let R be a Noetherian ring. We give a classification of Bousfields®#a on the bounded derived category of
R. This also gives complete invariantste$tructures on the same category. We also show thatdtreictures

on the unbounded derived categoryimodules do not form a set.

I. Volic Embedding calculus and formality of the little cubes operad

I will first give a brief introduction to embedding calculusdasay how a certain Taylor tower can be assigned
to an isotopy functor. Then | will describe joint work with &y Arone and Pascal Lambrechts in which the
central observation is that the stages of the Taylor towérdrcase of Emtd\/, V'), the space of embeddings
of a manifold in a vector space (up to immersions), have thettre of maps of certain modules over the
little cubes operad. Using Kontsevich’s formality of thigesad, one then concludes that the cohomology
spectral sequence for Efild, V') arising from the Taylor tower collapses rationally. In thpesial case of
spaces of knots, this was conjectured by Vassiliev. Addiily, using the interplay between embedding
and orthogonal calculus, one also deduces that the ratohaimology of EmbM, V') only depends on the
rational homotopy type af/ when2dim(M) + 1 < dim(V).

M. Weiss Stratifications and homotopy colimit decompositions

This talk will discuss the art of converting stratificatioiméo homotopy colimit decompositions, perhaps
with applications to the theory of surface bundles. Everyl Wwehaved stratified space has a homotopy
colimit decomposition indexed by a certain topologicakgatry in which all endomorphisms are invertible
up to homotopy. In many cases one can do better and matchrdidiction with a homotopy colimit
decomposition indexed by a discrete category in which afloemorphisms are invertible. The matching
property means roughly that the strata correspond to tmeagahism classes of the indexing category.

List of Participants

A determined effort was made to ease the entry into theseststl)y young researchers. Specifically, out of
34 participants, 3 were graduate students and a number ofeowienin the first 3 years of their postdoctoral
career. We had talks from one of the graduate students amdtinee of the postdocs.

Arlettaz, Dominique (Universite de Lausanne)

Bauer, Kristine (University of Calgary)

Casacuberta, CarlegUniversity of Barcelona)

Chebolu, Sunil (University of Washington)

Ching, Michael (Massachusetts Institute of Technology)
Chorny, Boris (University of Western Ontario)

Dover, Lynn (University of Alberta)

Dror-Farjoun, Emmanuel (Hebrew University of Jerusalem)
Dwyer, William (Notre Dame University)

Gooduwillie, Tom (Brown University)

Gutierrez, Javier (University of Barcelona)

Hovey, Mark (Wesleyan University)

Krause, Eva (University of Alberta)

Kudryavtseva, Elena(University of Calgary/Moscow State University)
Kuhn, Nick (University of Virginia)

Lambrechts, PascalLouvain-la-Neuve)

Mauer-Oats, Andrew (Northwestern University)

McCarthy, Randy (University of Illinois at Urbana-Champaign)
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Munson, Brian (Stanford University)

Nicas, Andrew (McMaster University)
Nikolaev, Igor (University of Calgary)
Palmieri, John (University of Washington)
Peschke, GeorgéUniversity of Alberta)
Prince, Tom (University of Alberta)

Ravenel, DouglagUniversity of Rochester)
Sadofsky, Hal(University of Oregon)

Scull, Laura (University of British Columbia)
Sinha, Dev(University of Oregon)

Stanley, Don(University of Regina)
Varadarajan, Kalathoor (University of Calgary)
Volic, Ismar (University of Virginia)

von Bergmann, JengUniversity of Calgary)
Weiss, Michael(University of Aberdeen)
Zvengrowski, Peter(University of Calgary)
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Chapter 5

Complex Data Structures (05w5504)

April 9-14, 2005

Organizer(s): Jim Berger (Statistical and Applied Mathematics Instifutéancy Reid
(University of Toronto), James Stafford (University of dato), Mary Thompson (Univer-
sity of Waterloo)

Introductory Remarks

Projects, and pilot projects, within the National ProgramGomplex Data Structures (NPCDS) met April 9
- 14 at the Banff International Research Station. Leade@oimputer Experiments, Data Mining, Genomics
and Survey Methods each organized a day of activity in tlesipective fields. An additional day was devoted
to three pilot projects that have inaugural workshops Iiisryear in the areas of Biomedicine, Forestry and
Marine Ecology. Research presentations were incredibigdand included topics that concerned pharma-
cophore identification, complex HIV proteomic data struef) communications security, studies of complex
traits, social behaviour, forest fires, high throughputamsits, tracking of leatherback turtles, turbulence, and
so on. Underlying such a diverse set of topics was a genuimenom interest in complex data, regardless
of its origin. This, in effect, bonded participants in theision of what NPCDS can bring to the statistical
sciences community in Canada. As such the event was institafrie generating considerable enthusiasm
for the Program’s model. Concretely, the establishmenntfrdisciplinary projects with quantitative lead-
ership was viewed as a vehicle that gives our community atgreaice in the research agenda’s of other
disciplines. These projects have the potential to creatdtare in our discipline where training takes place
in intensely interdisciplinary environments ensuring gguiesearchers become effective collaborators in the
long run. This was evident by the number of excellent pregents given by graduate students including
Norberto Pantoja Galicia, Jason Loeppky, Pritam Ranjarsarah.

The Science

Data Mining

Certainly this workshop started in extremely strong faslsietting the tone for the remainder of the week. The
first day’s topic was data mining, a field with many connotagithough organizers were able to encapsulate
much of the research in this area through a focus on the regettproblem. Data mining is a new and
fast-changing discipline, which aims at the discovery afistral and unexpected patterns in large volumes
of data. It came to life in response to the challenges and rypities provided by the increasing number
of large, complex, high-dimensional databases coveriqpmant areas of human activity, coming from the
industrial, economical, social and biomedical sectors.
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Stan Young of the National Institute of Statistical Scieneeldressed the use of Gibbs sampling for
pharmacophore identification, a problem where large liesaof molecules are searched for comparatively
similar reactive properties. Here the binding of a smallexale to a protein is inherently a three dimensional
matching problem. As crystal structures are not availatmerfost drug targets, there is a need to be able to
infer the key binding features of small molecules and th&pasition in space, the pharmacophore from
bioassay data. They use fingerprints of 3D features and aficettihn of Gibbs sampling to determine the
common pharmacophore parts for a set of compounds. We uggia detection method to map the features
back onto the binding conformations. The method works favkm pharmacophores. We show the basic
algorithm is fast, 15 minutes for 15 molecules, and it canledeal with a hundred compounds and tens
of thousands of conformations. They demonstrated the saftdause of PharmID on a multiple binding
mode problem. Being able to sort out multiple pharmacophfytan the same data set is potentially useful
in cell-based assays where different molecules could limditlifferent biological targets. Knowing the
3D pharmacophore for a biological target was a key for mofieiefit compound design and 3D database
searching.

Stan’s talk was followed up by a mesmerizing demonstraticth@ predatory behaviour of the Human
Immunodeficiency Virus (HIV). This was in the context of GgerHatzakis's (McGill University) lecture
concerning modeling HIV complex clinical and proteomicadstructures. Within the context of Clinical/Bio-
Informatics, it is common to use numerical techniques to@hadd optimize clinical management of patients
treated for Human Immunodeficiency Virus-1 (HIV-1). HIV @tion is for the most part chronic and asymp-
tomatic. Optimal therapy should suppress the HIV-virusypnt the emergence of antiviral drug-resistance
and control long-term side effects. In George’s preseamtdtie addressed the former 2 aspects. To achieve
virus-suppression one has to longitudinally follow and enstand how an HIV-patient progresses. However,
clinical and laboratory follow-up information is non-statary and characterized by transients and trends.
George used Artificial Intelligence based models to follv progression of a subset of patients from the
Electronic Anti-Retroviral Therapy (EARTH) Internatidagohort and addressed several what-if scenarios
related to morbidity and mortality. Also, to identify thopatients that could mostly benefit from the new
class of drugs based on the CCR5 and CXCR4 chemokine inrgblie analyzed the proteomic sequences
of the V3 loop on over 1000 patients coming from the HOMER B®art. Clustering techniques were
presented.

Further presentations concerned the development of pkatidata mining tools as demonstrated most
effectively by Antonio Ciampi and Steven Wang who spoke dit dassification trees and clustering cate-
gorical data respectively. Perhaps one of the most compglliesentations was given by Shirley Mills and
Ted Normington, both of Carleton University, who are invaxvin various research projects in consultation
with the Communications Security Establishment: Data ngnn action leading to secure national borders
(we hope).

Genomics and Statistical Genetics

Not to be outdone by the data miners the second day of the wopksas devoted to the genetic revolution
that is taking both the medical world and our imaginationstoym. Advances in many areas of Genomics
have become the most exciting story in the biological, l#ad health sciences in recent years, and have
captured the imagination of the public at large. One of thestnmderesting technological breakthroughs in
genomics has been the miniaturization of classical expariation techniques in molecular biology. This
has led to the ability to conduct massively parallel experits on the scale of the whole genome. The most
widely known examples of such technology are various kirfdmioroarrays or DNA chips, which can now
measure the expression activity of most of the predicteégi@nhumans. There exist similar high-throughput
technologies to detect Single Nucleotide PolymorphisnNR(8hips), protein abundance (proteome chips),
RNA activity, protein-protein interaction systems, antdess.

For the first time in history, biologists are facing huge vo&s of noisy data. The challenge of analyzing
this data has been described as the biggest bottleneck iermbiblogy. Huge dimensionality and small
sample size creates a challenge throughout an experinment,the design, visualization and exploratory
phases, to the analysis itself.

The genetics/genomics theme at the meeting was led by Dmt Ei@nke, VP of the Ontario Cancer
Research Network (OCRN) who spoke on the use of high throutgdgnomics to predict disease risk and
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treatment response. Here the coincidence of functionalBvant polymorphisms in genes that are part of
a single pathophysiologic pathway may cause significaktfasan individual and collectively account for

a large proportion of population at attributable risk. Fwstance, the activities of phase | enzymes such as
the cytochrome P450s, phase Il enzymes, such as glutatbitnaesferases, DNA repair enzymes, cell cycle
control enzymes and apoptosis effectors. Polymorphismeadah of these enzymes that individually would
confer only minor increased disease susceptibility cooltectively cause significant individual risk. Many
case-control studies evaluating isolated polymorphismues ffailed to identify significant disease association,
potential victims of underpowered study designs.

In anticipation of genome-wide disease association ssudieinternational human variation-mapping
(HapMap) project was launched in October 2002 to catalogoekb of LD and haplotype diversity
(http://genome.gov/10005336). As much as 85% of the hunemoige may be organised into haplotype
blocks that are 10,000 bases or larger. The exact patteriNBf\@riants within a given haplotype block
differs among individuals, though for most less than 5 digthaplotype clades exist. This limited haplotype
diversity makes complete genotyping of individuals of Mern European or Asian descent possible with
measurement of as few as 50,000-100,000 haplotyping SNBAIFts) and measurement of approximately
250,000-500,000 htSNPs in individuals of African descent.

Brent and colleagues are studying haplotype diversity fiepes with colon cancer and controls to detect
associations with the presence of the disease and withmesatresponse to those with cancer receiving
chemotherapy. Tests such as these will reduce health cst®amd reduce the social cost of cancer. With an
investment from Genome Canada our group will measure ovélidnbSNPs in 2400 individuals over the
next 6 months. The statistical analysis of this data setprvdsent new issues in multiple testing correction
and multivariate analysis.

Rafal Kustra and Celia Greenwood are leading efforts toroomthe new statistical issues in this context.
They present an initial analysis of the first batch of dataniiméernational effort to derive a prognostic test of
colon cancer using dense maps (hundreds of thousands) etigerarkers and detailed clinical and lifestyle
data. They discussed attempts in building a predictive timawlate model using boosting and proposed a
dimension reduction techniques motivated by statistindle@volutionary genetics. Their untested proposal is
intended to spark discussion on dealing with huge dimeisityrof genomic data in the presence of highly
refined existing knowledge about genetics, knowledge whakld potentially be used to construct more
successful predictive models.

Rafal and Celia were followed up by Shelley Bull who addrdsssues in multiple testing and effect
estimation for candidate gene and genome-wide studiesmplex traits. While it is well-recognized that
the examination of multiple hypotheses corresponding tdtiphet SNPs within a candidate gene and/or to
multiple genes or genetic markers across the genome candeafiated false positive rates and failure to
replicate findings in an independent sample, the impact dfiphes testing and strict type | error control
on effect estimation has received less attention. To p@etissues in context Shelley first considered some
background concerning gene discovery and gene charatterizand the related data structures. Approaches
to multiple testing adjustments in genetic linkage and eission analysis, whether family-based or case-
control designs, can usefully depend on the correlatiarcgire among neighbouring genetic loci. However,
multiple testing and stringent type | error control typlgahduce bias in the associated effect parameter
estimates. They proposed a bootstrap algorithm and resagriphsed estimators that yield bias-reduced
estimates from the original sample in general settings.

Jenny Bryan then spoke on statistical problems in geneesingtfrom high-throughput data. The term
"high-throughput data” encompasses a large variety ofetu@gssays in which a response is measured across
a range of condition or subjects for a large number genesi(dtir practically an entire genome). This
certainly includes transcriptional profiling via microays, as well as highly parallel phenotypic studies in,
for example, the yeast deletion set. Acommon use of suchslai@luster genes, with the hope that apparent
gene clusters will have substantial overlap with biolobimme groups, such as pathways, protein complexes,
or regulons. Jenny cast this problem in the form of a tradéitatistical inference problem and drew some
practical conclusions about preferred algorithms and soatiers. She used this framework effectively to
generate group discussions on the general’disparate daifg&¢ation problem in gene clustering (should we
create meta-datasets and then cluster? should we clusésetlaseparately and then merge? should we use
biclustering-type techniques?).

The final genomics speaker, Bob Nadon, addressed data snagiware, and pedagogy in big sci-
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ence biology. Big science biology is generating massiva dats that provide motivation for algorithm
development and potential for long-term funding. This @mnhg collaboration between biology and the
computational sciences will be most productive if knowledgd tools are made available in formats readily
accessible to applied scientists. Bob described such egtrioj microarray analysis that integrates software,
pedagogy, and data analysis research.

Pilot projects

After two exciting days devoted to Data Mining and Genomitesralees were treated to a short day composed
a simply a morning session in which nascent NPCDS projecis featured. This was extremely rewarding
for both the speakers and audience, the latter be given a séhgure directions of NPCDS while the former
received an abundance of helpful advice and suggestiorssist heir endeavours.

The first of these speakers, John Braun, discussed fordsggamder the title Forests, Fires and Stochas-
tic Modelling. He asserted that statisticians have an irgmbrole to play in the study of various aspects of
forestry. The talk began with a description of how an upcaMiPCDS workshop would facilitate interac-
tions between statisticians and researchers into wildérebiour as well as forest ecology and hydrology.
This was followed up by a description of a work in progresstamed with a problem of forest fire prediction
given observed lightning strokes. The prediction problemat solved; however, the talk will describe how
interactions with forest fire researchers have spurredidprent of statistical methodology.

John's lecture was followed up by a joint effort from Chrigléiand Joanna Flemming who both gave an
overview of statistical methods in marine ecology. Thiduded a general overview of the Marine Ecology
Workshop to be held at Dalhousie in August, 2005 as part oNfREDS programme. They also gave brief
descriptions of example problems involving the dynamigslafikton levels in the tropical Pacific and a more
detailed analysis of a problem involving tracking data aftheerback turtles, a long distance migrant.

The third presentation was given by Peter Song who discumsedray of methods he has developed for
use in biomedical research. This included a personal oereif the methodological development in the
of longitudinal and clustered data analysis (LCDA). Arglyathe methodology of the LCDA has provided
powerful tools to practitioners for their subject-mattendvative research in past two decades or so. In his
talk, he covered both Liang and Zeger's marginal models badgeneralized linear mixed models. Peter
used a few real world data sets as running examples to enldéwessions.

Computer Experiments for Complex Systems

The design and analysis of experiments continue to makeriapoand far-reaching contributions to sci-
entific investigation. Historically, experimenters hawdied on physical experiments to help understand
processes. The rapid growth in computing power has madeotin@wutational simulation of complex sys-
tems feasible and has helped avoid physical experimentttat might otherwise be too time consuming,
costly, or even impossible to observe. The advent of suckspicead computer experiments raises a host of
challenging statistical issues, which this project wilpkte.

The fourth day of the workshop was devoted to the topic of agiepexperiments and was marked by
a large number of student presentations which were all guitellent. Jason L. Loeppky, a postdoctoral
student at UBC, addressed issues in model calibration. Gmmmodels are widely used in engineering and
science to simulate physical phenomena. Before using a e@mmodel, for example to optimize systems,
a natural first step is often to assess whether it reliablyessmts the real world. Data from the computer
model are compared with data from field measurements. Sigifield data may be used to calibrate or tune
unknown constants in the computer model.

Calibration is particularly problematic in the presenceystematic discrepancies between the computer
model and field observations. In Jason’s talk he introdudédebhood based approach to the estimation of
the calibration parameters and further showed how one amédhis to test the reliability of the computer
model. The approach and the test were illustrated throughiessof examples, and compared to the results
of a Bayesian implementation.

Zhiguang Qian, a graduate student at Georgia Institute diff@ogy, discussed building surrogate mod-
els based on detailed and approximate simulations, whilerRiRanjan, a graduate student from SFU, dis-
cussed designing efficient simulations for exploring feagiof response surfaces. Pritnam’s talk was partic-
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ularly interesting as in many engineering application, isrinterested in identifying the values of the inputs
in computer experiments that lead to a response above gpo#fied threshold. In his talk he introduce sta-
tistical methodology that identifies the desired contouhminput space. The proposed approach had three
main components. Firstly, a stochastic model is used tocaqpate the global response surface. The model
is used as a surrogate for the underlying computer model eowddes an estimate of the contour together
with a measure of uncertainty, given the current set of cderguals. Then, a strategy for choosing subse-
guent computer experiments that improve the estimationetbntour is outlined. Finally, he discussed how
the contour is extracted and represented. The methodddtiystrated with an example from a multi-class
gueuing system.

Yet another graduate student, Crystal Linkletter of SFléspnted where she discussed inert column
variable selection. In many situations, simulation of ctergphenomena requires a large number of inputs
and is computationally expensive. ldentifying which irpuatost impact the system can be a critical step
in the scientific endeavour so that these factors can bediuitivestigated. In computer experiments, it is
common to use a Gaussian spatial process to model the odtthe simulator. Crystal introduced a new,
simple method for identifying active factors in computeresning experiments. The approach is Bayesian
and only requires the generation of a new inert variableéretinalysis. The posterior distribution of the inert
factor is used as a reference distribution with which we ss#iee importance of the experiment factors. The
methodology was demonstrated on simulated examples assvetl application in material science.

The final speaker of the day was Derek Bingham, who leads theDPproject in this area and su-
pervised a number of the students who presented. In Der@k'$atin hypercube sampling was presented
as a popular method for evaluating the expectation of fonstin computer experiments. However, when
the expectation of interest is taken with respect to a nafeun distribution, the usual transformation to
the probability space can cause relatively smooth funstionbecome extremely variable in areas of low
probability. Consequently, the equal probability cellserent in hypercube methods often tend to sample an
insufficient proportion of the total points in these areasrdX introduced Latin hyper-rectangle sampling to
address this problem. Latin hyper-rectangle sampling isreetalization of Latin hypercube sampling that
allows for non-equal cell probabilities. A number of exasgplvere given illustrating the improvement of
the proposed methodology over Latin hypercube samplinky kgispect to the variance of the resulting esti-
mators. Extensions to orthogonal-array based Latin hytersampling, stratified Latin hypercube sampling
and scrambled nets were also described.

Complex survey data

Survey data now being collected by many government, heatifsacial science organizations have increas-
ingly complex structures precipitating an urgent demamahéw statistical methodology to further research
in substantive areas. In cross-sectional studies, whigladen at one point in time, it is typical to use very
complex sampling designs, involving stratification andstding as the components of random sampling.
There can also be complexities in the resulting data file duke patterns of nonresponse. In longitudinal
studies, which follow individuals or groups of individualger time, there is additional complexity stemming
from possible complex correlation structures induced Ipeated measurements on the same sampling unit,
by irregularly spaced data and differing numbers of rekabservations on individuals. This datatype, with
all it various complexities, is increasingly common in salngive areas due to its power to infer causality, to
separate individual and population trends and to detectggmsin time.

The final day of the workshop was devoted to the efforts of theeyy methods project within NPCDS,
although due to many of the team members being drawn to thénmged the International Statistical Institute
in Australia, the session was limited to four speakers. Kbedess this is a very active project, involving
many graduate students one whom presented in this session.

The first speaker was Milorad Kovacevic of Statistics Canata discussed survey bootstrap methods
and analysis of survey data. Here a variety of approachessfonating design-based variances of estimated
model parameters were reviewed. The particular approadioofstrapping through the rescaling of the
survey weights - which he call the survey bootstrap, wasgmtesl as gaining popularity due to its portability.
Namely, once bootstrap samples have been taken and bpoistights calculated, the user estimates the
quantities of interest in exactly the same way with the fathple and with each of the bootstrap samples,
and then combines these estimates to obtain variance éssinTehere are situations, however, in which this



50 Five-day Workshop Reports

direct variance estimator may be unstable. Recently, ndsthave been proposed for making inferences
using an estimating function bootstrap in a model-basdthgeivhich seem to provide more stable results.
These methods have been adapted to produce different elesssgal estimating function survey bootstraps. In
Milorad’s presentation he covered some of these new der@afs. Results of a simulation study motivated
by a real-life analysis were presented.

The next speaker, Brajendra Sutradhar considered geretajuasilikelihood approaches for survey
based incomplete longitudinal binary data. When the respeariable in a longitudinal model is subject
to missing completely at random (MCAR) or missing at rand®dAR), the existing ‘independence’ or
‘working correlations’ based generalized estimating ¢igna (GEE) approaches yield consistent estima-
tors for the effects of the covariates. These GEE based &stimmmay, however, be inefficient. There also
exists a true correlation structure based GEE approachabvdéh exponential family based longitudinal
responses subject to MCAR or MAR. The existing correlatiadeis used in such incomplete data analy-
sis are, however, quite restricted. In Brajendra’s pregemt he exploited a robust correlation model based
generalized quasilikelihood (GQL) approach, where theatation model can accommodate AR(1), MA(1)
and exchangeable correlation structures for longitudiiredry responses. Furthermore, for the cases when
individuals are selected based on a complex survey samgdimgme rather than simple random sampling, it
becomes necessary to incorporate the survey weights irstimeagion approach. For this purpose, Brajendra
developed a survey design based GQL (DBGQL) estimatingt@gquapproach as a generalization of the
GQL approach. The DBGQL estimation approach was illustirbieanalysing a real life binary longitudinal
data set subject to MCAR or MAR.

The next talk, a joint effort by Roland Thomas and Irene Luswéparticular interest as the research
resulted from a collaboration borne out of NPCDS/SAMSI fafforts in the context of the SAMSI the-
matic program: Latent Variable Models in the Social Scisndée title of their talk was "Latent Regression
with Social Science Data: A Comparison of Various MethodmtSimulation and Complex Survey Data
Examples” The presentation focused on methods for estigagigression coefficients for the linear latent re-
gression models frequently encountered in social sciezgsarch. In the social sciences, latent variables are
typically measured using batteries of questionnaire itkora which latent variable scores can be predicted
in numerous ways. These scores comprise fallible estinwdtibe underlying latent variables, and it is well
known that naive methods of analysis based on these scardikely to result in biased estimates. These
biases are quantified not only for simple scoring methodsalso for methods based on Item Response
Theory (IRT). The conclusion is that the use of scores, naen&iow sophisticated, yields unacceptably
large bias and should be avoided. An alternative approactiiscrete structural equation modeling (SEM) is
also evaluated. This approach, which implicitly includes (RT model structure, is shown to provide lower
levels of regression parameter bias, though its bias cam@nored for the smaller sample sizes. Finally,
the speakers described a recent adaptation (Bollen, 198& mstrumental variables approach to social sci-
ence data, and shows that this simple approach provide&l@islof parameter bias comparable to the more
computationally involved discrete SEM method. The perfance of the various approaches was compared
using simulation, and is also illustrated on complex sud@ia from Statistics Canada’s Youth in Transition
Survey.

The day, and indeed the workshop, ended in fine form with eeptation from yet another graduate stu-
dent, this time Norberto Pantoja Galicia from the Universit Waterloo who was one of the participants of
the internship program that is jointly funded by NPCDS aratiStics Canada. Norberto discussed a nonpara-
metric test for association of interval censored eventsgimehe National Population Health Survey (NPHS).
Here outcomes from the questionnaire of the NPHS a longialdiurvey conducted by Statistics Canada,
offer the necessary information to explore the relatiopdietween smoking cessation and pregnancy. A
formal nonparametric test for association was presenteid.t€st requires estimation of the joint density for
interval censored event times, which takes into accounpbexities of the sample design.

Concluding Remarks
For NPCDS this event at BIRS was timely as the Program is ntlyrentering the second half of its four-year

funding cycle and it offered an opportunity for participatd assess what has been accomplished thus far.
The general view was "a lot!”; with potentially seven natbprojects established in a two year span the
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Program has engaged the broader community in a robust wagdit@rustbe attributed to the many indi-
vidual researchers who are investing time and energy ingcetideavour. During the week at Banff, general
meetings were held where progress, and the future of thegamggvas discussed openly. For example, is-
sues concerning capacity led to consideration of an RFRdoning initiatives, which is now being actively
pursued. In addition, plans for the renewal of the prograve lieen set in motion.
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A BRIEF INTRODUCTION

The idea of building mathematical structures out of locéhdeas been a cornerstone of both modern Mathe-
matics and Physics. Manifolds, distributions, simpliciaimplexes, vector bundles, and homogeneous spaces
attest to this fact. The mathematical tools that measuereslibtruction preventing us from gluing local data
in a compatible way are the various cohomology theories.

In the middle of the last century the theory of algebraicet@s was establishing itself as a invaluable tool
that allowed “geometric methods” to be applied to aritheadtgquestions. But already A. Weil had explicitly
singled out that one of the most powerful classical toolmelg the construction of the quotient of a manifold
by the action of a Lie group (homogeneous spaces), had nessfat analogue for algebraic groups acting
on varieties. (The reason being that the Zariski topologg wériety, which plays the role of the classical
topology for a manifold, is too weak: there are too few opés setrivialize actions, and these sets are too
big). The answer to this riddle came from the work of Serre @n@rothendieck. The resulting theory of
principal homogeneous spaces (Torsors for short), hingesd endowing schemes with the étale topology,
and using various theories of “descent” to produce a cohemromology theory to go with it.

Several of the fundamental problems in algebra and numkeryhare related to the problem of classi-
fying G-torsors and in particular of computing the Galois cohorgglé/ ! (k, G) of an algebraic groug:
defined over an arbitrary field. The study of Galois cohomology is still in its early staged anany natural
qguestions and long standing conjectures are still open.inQuhe past two decades new insight into this
theory began arising under the influence of algebraic gegnaeid algebraid<-theory. We note that new
possibilities provided by algebrai€-theory still only begin to manifest themselves in full stgéh.

It has also recently become apparent that torsors can alssdzeto understand affine Kac-Moody Lie
algebras and groups and superconformal algebras. It ishpmsbut at this point not known, that these
methods could extend to a more general class of Lie algeBrasr{ded Affine Lie Algebras) around which
there is today a considerable amount of interest.

Exploring the connections between these two aspects afrar§he algebraic Geometry on one hand,
and the infinite dimensional Lie theory on the other, was drie@purposes of the meeting.
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SUMMARIES OF TALKS

G—forms and cohomological invariants
by E. Bayer—Fluckiger (EPFL Lausanne, Switzerland)

Let k£ be a field of characteristigZ 2. Milnor’s conjecture, recently proved by Voevodsky, pides a
classification of quadratic forms ovkiup to isomorphism. This gives hope for progress in relatezstjons,
for instance the classification of quadratic forms invarkana finite group.

Let G be a finite group. One of the natural examplegefforms is given by trace forms of G—Galois
algebras. IfL is a G—Galois algebra, let us denote by its trace form. Lefy, be the unitG—form — if
we denote byl the splitG—Galois algebra, then we haye, = ¢o. If G has odd order, then it is known
thatqr ~a qo (Where~ denotess—compatible isometry). If the—Sylow subgroups of are elementary
abelian of rank, then in a joint paper with J-P. Serre we give a completeraitdor the isomorphis of the
trace forms of twa=—Galois algebras in terms of ardimensionainod 2 cohomological invariant.

Let us denote byV (k) the Witt ring of the fieldk, and let/ = I(k) be the ideal of even dimensional
quadratic forms. Letl be the2—cohomological dimension df. Let L and L’ be two G—Galois algebras.
Then Milnor’s conjecture implies that if € 74, then the quadratic forms ® ¢, and¢ ® ¢, are isomor-
phic. Philippe Chabloz recently proved that these formsaateally isomorphic a&/—forms. Going futher
in this direction, note that Milnor’s conjecture impliesathif ¢ € 19! and if we denote by, (¢) its
cohomological invariant, thep ® qr, ~ ¢ ® g1 ifand only ife;_1(¢) U d(qr) = eq—1 U d(qr/). This talk

presented some partial generalisations of this fact. Omeefine a notion ofz—discriminantfor ¢,, denoted

by d(qr.). Itis then natural to conjecture that® ¢, and¢ ® ¢ are isomorphic a&—forms if and only

if eq—1(¢) Uda(qr) = eqa—1 Uda(qr.). This is known in some cases, by the work of Chabloz, Monsurro
Parimala, Schoof and the author.

Essential dimension of homogeneous forms
by G. Berhuy (Nottingham University, UK)

The essential dimension of an algebraic structure is rgutlel minimal number of independent parame-
ters needed to describe it up to isomorphism. This notiorbleas defined first by Reichstein an Buhler for
Galois extensions of given grodpin a more geometric way, then extended to &hjorsor by Reichstein (
whered is an algebraic group defined over an algebraically closédidifecharacteristi®).

In this talk, we compute the essential dimension of the gef@mogeneous polynomial of degrée n
variables when the.c.d. of n andd is a (possibly trivial) prime power. For this, we define a nawmerical
invariant attached td--torsors in a geometric way, namely the canonical dimensidfe then relate the
canonical dimension of a certafdL,, /uq-torsor to the essential dimension of the generic homogeneo
polynomial, and we use the properties of canonical dimensi@compute it.

The algebraic connective K-theory
by S. Cai (UCLA, USA)

By using the Brown-Gersten-Quillen spectral sequence,iveeaysimple definition of the algebraic con-
nective K -theory, the universal homology theory overriding tiehomology (chow groups) and algebraic
K-theory. The definition of a homology theory (a Borel-Moouadtor) is verified, and standard properties
are proved. Relations with -homology andX -theory are explored.
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Groupe de Picard et groupe de Brauer des compactificateseslid’espaces homogenes, |
etll

by J-L. Colliot-Thélene (Université Paris-Sud, France
et B. E. Kunyavskit (Bar-llam University, Israel)

Soit k un corps de caractéristique nulleune cloture algébrique de etg = Gal(k/k). SoientG un
k-groupe connexe eX/k un espace homogeéne d& Le stabilisateur @onetrique c’est-a-dire le groupe
d’isotropie d’unk-point deX = X x, k est bien défini &-isomorphisme non unique prés. @ote H
ce groupe. Supposons le grouffeconnexe. Il y a alors uk-tore T' naturellement associé ai+espace
homogeneX, tel queT soit le plus grand quotient toriqd_étor de H. Soit X, unek-compactification lisse
de X. La k-varieté X est unirationnelle, le groupe de Picaric(X ) est ung-module continu discret
Z-libre de type fini et le groupBr(X.) est fini. On noteBr; (X,) le noyau de I'application de restriction
Br(X.) — Br(X,.). Le quotient du groupe de BrauBr(X.) par I'image du group®r(k) est un sous-
groupe du groupe finif (g, Pic(X,)).

A tout g-module continu discret/ et tout entier naturelon associe le groupe

Shal, (k, M) = Ker[H' (g, M) — [ [ H'(h, M),
h

ou h parcourt les sous-groupes fermés procycliqueg de

Théoreme ASoient: un corps de caraéfristique nulleG un k-groupe lireaire connexeX unek-variét®e
espace homame de&G, de stabilisateur §onétrique connexe. Soi . unek-compactification lisse d& .

(i) Le g-modulePic(X ) est ung-module flasque, c’est-dire que pour tout sous-groupe fegrh C g,
onaH'(h, Homg(Pic(X,), Z)) = 0, soit encoréixt} (Pic(X.), Z) = 0.

(i) Pour tout sous-groupe fer@procycliqueh C g, on aH*(h, Pic(X.)) = 0.

(i) SoitT le k-tore assod auG-espace homameX, et soit7’ son groupe des caragtes. SiG est
un groupe lirgaire quasitrivial, i.e. extension d’'ulrtore quasitrivial par unk-groupe simplement connexe,
alors le quotient du group8r; (X.) par I'image du groupeBr(k) s'injecte dans le group8hal, (k, T), et
est isomorphe ce dernier groupe sK (k) # () ou sik est un corps de nombres.

Sous I'hypothese de (jii), nous montrons commenttaoduleZ-libre de type finiPic(X ) est déterming,
a addition pres d’ug-module de permutation, par letore T' — en particulier il ne dépend pas du groupe
quasi-trivialG.

Ce théoreéme est une extension naturelle de résultatsisatans le cas ol = 1 (Voskresenskii 1975,
Colliot-Théléne et Sansuc 1976, Borovoi et Kunyavskib2). Ces résultats furent rappelés dans le premier
exposé.

Uningrédientimportant de la démonstration du theaénest le théoreme suivant, pour la démonstration
duquel un ingrédient essentiel nous a été suggéré paabber.

Théoreme BSoit A un anneau de valuation disete de corps des fractiorn’s, de corps ésiduelk de
caraceristique nulle. Soi un K-groupe quasitrivial et soi?/ K un G-espace homame de stabilisateur
géonetrigue connexe et de tore assdtiivial. Soit. X un A-sckéma propre, egulier, ineégre, dont la fibre
gérérique contienfy comme ouvert dense. Alors il existe une composante de liwitléd de la fibre spciale
de X/ A qui est gonetriquement irkgre sur son corps de bage

Totaro’s question on zero-cycles 63, F;, and E torsors
by S. Garibaldi (Emory University, Atlanta, USA)

It is a natural naive question to ask: How can one tell if aemilbn of polynomial equations has a
common solution over a given field? A more sophisticated version of this question asks: If &tarX
has a zero-cycle of degrde doesX necessarily have A-point, i.e., a closed point of degré@ Various
examples show that some restrictions on the varktsire necessary for a positive answer. Several people
(Veisfeiler, Serre, Colliot-Thélene) have suggestegdifieses that may be sufficient to guarantee a positive
answer.
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In a 2004 paper, Totaro asked whethé&f-8orsor.X that has a zero-cycle of degrée- 0 will necessarily
have a closed étale point of degree dividihgvhereG is a connected linear algebraic group. This question is
closely related to several conjectures regarding excegltedgebraic groups. Totaro gave a positive answer to
his question in the following case&: simple, split, and of typé/s, type F, or simply connected of typ&s.
Detlev W. Hoffmann and | proved that the answer is also “yes’dll groups of typ&ss and some nonsplit
groups of typef; and Es. We make no restrictions on the characteristic of the bakk fidhe key tool is a
lemma regarding linkage of Pfister forms.

Twisted forms of toroidal Lie algebras

by P. Gille (Université Paris-Sud, France)
jointly with A. Pianzola (University of Alberta, Canada)

The main thrust of our project is the study of Toroidal Lieeddgas via cohomological methods This leads
us to the theory of reductive group schemes as developed yekazure and A. Grothendieck [8]. More
precisely, Algebraic Principal Homogeneous Spaces (aieccTorsors for short) and their accompanying
non-abelian étale cohomology, arise naturally once teig point of view is taken into consideration.

Let A be a finite dimensional algebra over a figldAn R-form of A is an algebrd. over R for which
there exists a faithfully flat and finitely presented extensi/ R such that

L®rS~s AQ S

(isomorphism ofS-algebras).

SinceA®; S ~ (A®, R) ®g S, the R-algebral is nothing but ark-form (trivialized bySpecS in the
flat topology ofSpecR) of the R-algebrad ®;. R. SinceSpecR is affine, the isomorphism classes of such
R-algebras are parametrized By (R, Aut, Ar) (pointed set of Céch cohomology on the flat sid&péc 2
with coefficients omAuty Ar). The group sheahuty Ag is in fact an affineR-group scheme (becausgeis
finite dimensional). IfAut;, A is smooth (for example if chdr = 0), then.S may be assumed to be an étale
cover.

Because of connections with Extended Affine Lie Algebrasl(Eéfor short), the case whek is a ring
of Laurent polynomial in finitely many variables is of spédraportance (one variable corresponding the
affine Kac-Moody case ). For simplicity, we will restrict caftention to this special this case.

We assume henceforth thatis of characteristi®). Fix n > 0 and letR,, = k[tF!,...tX']. For any

1 1 1 . . —
positived, defineR,, 4 = k[tfd , tQid L -tfd], and letR,, o, be the inductive limit of all the?,, 4.

By definition, forms are trivialized in somgppf extension of the base ring. In the case of Laurent
polynomials, one has very precise control over the triginfj base change.

TheoremLet A be a finite dimensionai-algebra. EveryR,,-form L of A is isotrivial (i.e. trivialized by
a finite étale cover ofR,,). More precisely, there exist a finite Galois extensiof% and a positive integed
such that
L®g, (Rna®k K) ~r, j0,8 A®k (Rpa @k K).

Similarly, every reductive group scheme o¥&y is isotrivial.

Multiloop algebras are the quintessential examples of fordéssume: to be algebraically closed, and
fix once an for all a compatible famik¢,,),,~o in k> of primitive roots of unity (thug/, = &,).

We begin by introducing the ingredients needed in the defimdf multiloop algebras. Let = (o1, ...,0¢)
be a commuting family of finite order automorphisms of kRalgebraA. Let m; be the order of;.

For eachiy, ..., i,) € Z", consider the simultaneous eigenspaces

Ai iy, ={rz€A: oj(x) = E,Z{l] forall1 <j <n}

(which of course depend only on themodulo them ;). Finally, consider the rings extensiét), C R, m =
k[tfl/ml ,tffl/m”] wherem = (mj,...,m,). Themultiloop algebraassociated to this data is tle

gee e

algebra } }
L=L(A0)=®A; i @tV/™ /™ c AQk Rym
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Observe thal has a naturak,,-algebra structure. One easily verifies that g, Ry, m ~R,, n A @& Rnm,
and thatR,, . /R is free of finite rank (hencégppf. In fact étale and even Galois). Thiiss an R,,-form of
A which is trivialized by the extensioR,, m/R...

Let g be a finite dimensional split simple Lie algebra over an algiehlly closed field: of characteristic
zero. In nullity 1 loop algebras provide us with concrete realization of tHmafKac-Moody algebras (a
result of V. Kac). We can in fact prove a much stronger assertin nullity 1 everyform of g is a loop
algebra. This follows from the following result of Pianzola

TheoremLet G be a reductive group scheme over = k[ti']. Then
H'(K[t£'),G) = 1.

This result ought to be thought as a the validity of “Serre jEcture | * fork[tfl] (the usual Conjecture
I, which is consequence of a Theorem of Steinberg, corrafipgrio the generic fiber oR;; namely the
function fieldk(¢1)).

With this in mind, we now turn our attention to the case- 2 where some interesting and unexpected
behaviour arises. Assume now ttfais a field of dimension 2. Serre’s Conjecture Il assertsthigtk, G) =
1 whenevelG is a semisimple algebraic of simply connected type. At tlesent time, this conjecture is still
open. There is however one case where the conjecture is kimolaid, and this is precisely the case when
K = k(t1,t2).

By analogy with the one dimensional case, it seems inetabtaise the following.

Question LetG be a semisimple group scheme ofet= k¢, t3']. Assumes is of simply connected type.
152

Is H'(R, G) trivial? . More generally, ifG /R is semisimple and : G — G is its universal covering with
(central) kernelu, is the boundary mapl * (R, G) — H?(R, u) bijective ?

We have shown that the the boundary nap( R, G) — H?(R, i) is always surjective. Furthermore, if

G is split, thenH! (R, G) = 1 (and therefore the answer to the above question is positie) somehow
surprisingly however, the answer in general is negativei@e constructed an explicit counterexample, but
the classification of these exotic objects seems hard). dihed seems to be directly related to anisotropic
kernels.

Diagrams and torsors
by J.F. Jardine (University of Western Ontario, London,ddiot Canada)

Maps between objecty andY in a homotopy category can be identified with path componehts
category of cocycles, in great generality. This corresgoicé can be used to give a simple demonstration
of the identification of isomorphism classes of torsorsoos are generalizations of principal bundles) for
sheaves of group§ with maps in the homotopy category of simplicial sheavesis Tdentification is a
homotopy theoretic classificatigr+-torsors; this classification result has been known atévisllof generality
since the late 1980s, but the new proof is much simpler an@ wamnceptual.

A G-torsor can be characterized as a sh&afdmitting aG-action for which the corresponding Borel
constructionEG x ¢ X is isomorphic to a point in the homotopy category of simplisheaves. More gen-
erally, for arbitrary index categorids I-torsors are defined to be diagrams of weak equivalenceswhliaice
trivial homotopy colimits. Using the machinery of QuillenTheorem B (which is one of the main foun-
dational results of algebrai&’-theory), one can show that homotopy colimit and derivedbawk together
define a bijection

[, BI| = 7o(I — Tors)

relating morphisms from a point t81 in the homotopy category with the set of path components f th
category ofl-torsors. This definition of-torsor and the homotopy classification both exist quitecgelty,
and specialize to definitions of higher torsors and motivisars with corresponding homotopy classification
results.

Higher torsors can be thought of as special types of diagralish take values in simplicial sheaves,
and are defined on sheaves of categofiesriched in simplicial sets. Sheaves of groupoids enriched
simplicial sets are the objects of a homotopy theory whickdgsivalent to the full homotopy theory of
simplicial sheaves, for which the fibrant objects reprebégtier stacks. The homotopy classification result
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for higher torsors does not depend on the theory of highekstand the result for the full category of sheaves
of categories enriched in simplicial sets was unexpected.

A bound for canonical dimension of the (semi-)spinor groups
by N. Karpenko (Universite d’Artois, Lens, France)

In the talk we discuss theanonical dimensiond(G) of a linear algebraic grou@ defined over a field
F which was introduced recently by Berhuy—Reichstein. Theegal question raised by Berhuy—Reichstein
is to determine:d(G) for every split simple algebraic groug.

For the spinor group, representing a particularly difficalse of the above general question, one knows
thated (Spin,,, | ;) = cd (Spin,,, ;,), S0 that we will discuss onlyd(Spin,,, , ;) here.

Although the canonical dimension of, say, a smooth projectariety X can be expressed in terms of
algebraic cycles oX, there are no general recipes for computidgX ) or cd(G). A better situation occurs
with the canonicalp-dimensiorcd,,, a “p-local version” ofcd, wherep is a prime: a recipe for computing
cd,(G) of an arbitrary split sSimpl&- is obtained by Merkurjev and Karpenko. In particular, ong ha

nin—1)

—92l4+1
2 T

cda(Spin,,) =
wherel is the minimal integer such that > n + 1 (and for any odd prime, one has:d, (Spiny,, ;) = 0).
Sincecd (G) > ¢d,(G) for any G andp, we have dower boundfor the canonical dimension of the spinor
group, given by its canonicatdimension.
We establish the followingpper boundor spinor groups:

cd (Sping,, ;1) < n(n —1)/2.

This result improves the previously known upper bourtd + 1)/2, established by Berhuy—Reichstein.
The proof makes use of the theory of non-negative inteimestiof duality between Schubert varieties, and
of the Pieri formula for a variety of maximal totally isotriesubspaces.

Note that the lower bound fexl(Spin,,, , ; ), given bycdz (Spin,,, , 1), coincides with our upper bound if
(and only if)n + 1 is a power of2. Therefore, for such, we get the precise value:if+ 1 is a power o2,
then
n(n—1)

5 .

Our second main result is the following upper bound for theisgpinor groupsSpins,, . », obtained by
the similar technique: for any odd one has

Cd(Spin2n+1) = Cd(Spin2n+2) =

cd(Sping,45) < n(n—1)/2+2° -1,

wherek = vz (n + 1) (the2-adic order ofn + 1).

Importance of the spinor and semi-spinor groups in thisexins explained by the fact that these groups
represent the only difficult cases of the following generadstion: letG be a split simple algebraic group,
having a unique torsion prime(a primep is atorsion primeof G if and only if cd,(G) # 0); is it true that
cd(G) = cd,(G)?

Zero cycles on homogeneous varieties
by D. Krashen (IAS, Princeton)

The study of projective homogeneous varieties and theariamts has been a source of many interesting
problems and has various applications in recent years. »ample, Panin’s description of the algebraic K-
theory of homogeneous varieties has resulted in the usefakireduction formulas of Merkurjev, Panin and
Wadsworth. The study of algebraic cycles and the motivelsexd varieties has also played an important role
in quadratic form theory, and in particular, Voevodsky's@irof the Milnor conjecture. The structure of the
Chow groups and motives of these varieties continues to laetire area of research with many unresolved
guestions.
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In the talk, we introduce tools for studying the Chow group-afimensional cycles on a projective variety
using results from Suslin and Voevodsky’s work on algebsaigular homology. This allows us to connect
the study of the group of zero cycles to studying the more gaocally naive notion of R-equivalence (i.e.
connecting points with rational curves) on symmetric pa@aadrthe original variety.

We apply these ideas by showing that the symmetric powergméio homogeneous varieties may be
related to spaces which parametrize commutative étakelgeibras in a central simple algebra. To make this
precise, we define moduli spaces of étale subalgebras mteatsimple (or Azumaya) algebra. These spaces
are very interesting in their own right, as many open quastin the area of central simple algebras concern
the existence and structure of certain types of subfieldsdiwision algebra. We show that in certain cases
these moduli spaces are R-trivial, and we apply this to detéeng the Chow group of zero cycles for certain
homogeneous varieties. This allows us to show that the Chioupgof zero dimensional degree zero cycles
is trivial for involution varieties as well as for certaingei-Brauer flag varieties. This was previously known
to be true for involution varieties of index no more thHatby work of Swan, Karpenko and Merkurjev) and
for Severi-Brauer varieties (by work of Panin).

On Cachazo-Douglas-Seiberg-Witten Conjecture for sirhelgebras
by S. Kumar (University of North Carolina at Chapell Hill, &%

Let g be a finite dimensional simple Lie algebra over the complariners. Consider the exterior algebra
R := A(g @ g) on two copies ofg. Then, the algebr& is bigraded with the two copies @f sitting in
bidegrees (1,0) and (0,1) respectively. To distinguishwilledenote the first copy of by g; and the second
copy ofg by go.

The diagonal adjoint action gfgives rise to g-algebra structure oR compatible with the bigrading. We
isolate three ‘standard’ copies of the adjoint repres@ntatin R2, whereR? is the total degre2 component
of R. Theg-module map

d:g— N(g), $H3I:Z[$,€i]/\fi,

considered as a map tc (g; ) will be denoted by:;, and similarly,

¢z :g — N*(g2), and
c3:9 — 91802, T Z[x,ei]®fi,

K2

where{e; }i<i<n is any basis ofy and{ f; }1<i<n is the dual basis of with respect to a normalized Killing
form (, ) of g. We denote by”; the image of;.
Let J be the (bigraded) ideal d& generated by the three copi€s, C2, Cs of g (in k%) and define the
bigradedg-algebra
A:=R/J.

The Killing form gives rise to a-invariantS € A'! given by

SSZ Z€Z®fz

2

Motivated by supersymmetric gauge theory, Cachazo-Daeu§kiberg-Witten made the following con-
jecture. They proved the conjecture for classiggbubsequently, Etingof-Kac proved the conjecturegfof
type G by using the theory of abelian idealstin

Conjecture [CDSW] (i) The subalgebrai? of g-invariants in A is generated, as an algebra, by the element
S.

(iiy S* =o0.

(iiiy S"~' £ 0, whereh is the dual Coxeter number.

The aim of this work is to give a uniform proof of the above @mjire part (i). In addition, we give a
conjecture, the validity of which would imply part (ii) oféhabove conjecture.
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To prove part (i), we first prove that the graded algeBfds isomorphic with the singular cohomology of
a certain (finite dimensional) projective subvarigtyof the infinite Grassmannia)yi associated tg, where
B := R/{(Cy & C3). The definition of the subvariety, is motivated from the theory of abelian ideals
in the Borel subalgebra of g. This isomorphism is obtained by using Garland’s resulttenltie algebra
cohomology ofii := g ® ¢CJt]; Kostant’s result on the ‘diagonal’ cohomolgy dfand its connection with
abelian ideals ith; and a certain deformation of the singular cohomology afitroduced by Belkale-Kumar.

Steenrod operations in algebraic geometry
by A. Merkurjev (UCLA, USA)

Steenrod operations in algebraic geometry were origirddfjned by Voevodsky in the context motivic
cohomology. P.Brosnan found an elementary definition ofSteenrod operations on the Chow groups of
algebraic varieties. His definition uses equivariant Chosugs of Edidin and Graham and the construction
relies on embedding to a smooth scheme.

In the talk a new direct construction of the Steenrod openatimodulo 2 is presented. Namely, the
Steenrod operations (of homological type) of a schéfrare defined as the Segre classes of the tangent cone
of X. All the standard properties of the Steenrod operationdegsroven directly.

Non-commutative version of purity
by I. Panin (Steklov Institute, St. Petersburg, Russia)

Let F be a covariant functor from the category of commutativesittgthe category of sets. We say that
F satisfies purity forR if

() Im[F(Ry) — F(K)] = Im [F(R) — F(K)].
htp=1

For certain functorsF(R) injects intoF (K) for all regular local ringsk. In this case the purity of for R
implies that
() F(R,) = F(R) C F(K).
htp=1

Now we switch to a specific functor. For that consider a charéastic zero fieldk, a reductive algebraic
k-groupG (connected one) and a functdrwhich takes a commutativealgebrar to H} (R, G). We make
the following conjecture:

the functorF satisfies the purity for regular local rings containirg

The conjecture is a kind of extension of the known conjectiir&. Grothendieck and J.-P. Serre. They
conjectured the injectivity. Here a purity is conjecturéidcan be viewed as a non-commutative version of
Gersten’s conjecture ik -theory. In the talk we discussed in certain details thigecmnres for interesting
examples of reductive groups like PGLSL; 4, O(q), SO(q).

Algebras of prime degree over function fields of surfaces

by R. Parimala (Tata Institute, Mumbai, India)
jointly with M. Ojanguren (Lausanne University, Switzerth

It is an open question whether division algebras of primaekegre cyclic. Over number fields, cyclicity
of all central simple algebras is a classical theorem duedssktBrauer-Noether. Further the index and
the exponent coincide for all division algebras over a nunfileéd. Artin raised the question whether the
index and the exponent coincide for central simple algebvas aC,-field. Artin's question is answered in
the affirmative for function fields of surfaces over an algétally closed field of characteristic zero by de
Jong. We explain a method of proof of cyclicity of prime degyedgebras over such fields using de Jong’s
techniques.
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Tori in quasi-split groups
by M. S. Raghunathan (Tata Institute, Mumbai, India)

In this talk a proof of the following result was outlined:

Let k£ be any field and~ a quasi-split:-algebraic groupS a maximalk-split torus inG, Z(S) = T the
centraliser ofS and N (S) the normaliser of. LetW = N(S)/Z(S) be the Weyl group-scheme ovierLet
i : W — Aut(T) be the natural inclusion. Nowisomorphism classes of tori of dimensib= dimension
T) are in bijective correspondence with elements of the Galohomology setl ! (k, Aut(T)). A necessary
and sufficient condition that a torus overk is realisable as &- subtorus ofG is that clas§B] of B in
H'(k, Aut(T)) be in the image ofi*(k, W). This is a consequence of the following stronger assertain:
7 : HY(k,N(T)) — H'(k,W)andi : H'(k, N(T)) — H'(k,G) be the natural maps. Thenmaps
kerneli(= i~!(trivial class inH! (k, G)) onto H' (k, W).

A key ingredient of the proof is the theorem of Steinberg gwatry regular semisimple-conjugacy class
in G contains &:-rational point.

Group-theoretic compactification of Bruhat-Tits buildéng

by B. Rémy (Lyon 1, France)
jointly with Yves Guivarc’h (Rennes 1, France)

Let G be a simply connected semisimple algebraic group, defined anon-archimedean local field
F. We denote by the locally compact group of its rational points, and we dery X the Bruhat-Tits
building of G, -. We are interested in compactifying the vertidéés of X by group-theoretic means, so that
we eventually obtain structure results on the rational {3di)- (i.e. parametrizations of remarkable classes
of closed subgroups @ ). We first prove convergence of some sequences of compactsyigroups of
G'r in the Chabauty topology. This enables us to define the dksompactification of/x. We obtain then
a structure theorem showing that the Bruhat-Tits buildioigghe Levi factors all lie in the boundary of the
compactification. We obtain an identification theorem with polyhedral compactification, previously de-
fined by E. Landvogt. We finally prove two parametrizatioroifeans extending the correspondence between
maximal compact subgroups and verticeskofone is about Zariski connected amenable subgroups, and the
other is about subgroups with distal adjoint action.

Cyclic algebras ovep-adic curves
by D. Saltman (Texas University, USA)

The study of the structure of division algebras goes backy&ads since they were first defined. The issue
has always been how to describe their structure. The firshpbes of division algebras were so called cyclic
algebras - defined simply using a cyclic Galois extensioncé&then non-cyclic algebras have been found,
but only with complicated (precisely composite) degreeergtthe degree of a division algebra is an integer
describing its size. Thus in some ways the first question athiwision algebras is still unsolved, namely,
whether all division algebras of prime degree are cyclic.

Another strain in the theory of division algebras is theirdst over special fields, where over time the
“special” fields have gotten more and more general. Thisaaar is best illustrated by the Hasse-Brauer-
Noether-Albert theorem that all division algebras overbgldfields are cyclic. In this talk we discussed a
“higher dimensional” special field, namely, the functioridief a curve over a-adic field. What we showed
was that whem is a prime not equal tp, then any division algebra of degre@ver such a field is cyclic.

Of equal importance to the actual result is the methods we. Uidee fields we are concerned with are best
viewed as the function field of surfacever thep-adic integers. By a result of Grothendieck, such surfaces
have Brauer group 0. What this means is that the divisiorba#geover such surfaces are determined by their
so called “ramification”. As a consequence of this, showirag & division algebra is cyclic is equivalent to
showing that one can “split” its ramification by a cyclic Gialextension of the right size. It turn out that
another way to view this result is that it is a result on spliitramification over surfaces, and as such it has
had application to a much broader class of fields than trédztesl
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The arguments of Grothendieck and Tits on splitting fields
by B. Totaro (Cambridge University, UK)

One of the great achievements of mathematics is the 19thugeriassification of the simple Lie groups
by Killing and Cartan. There are four infinite families of ggs and just five exceptional groups. Chevalley
showed in 1958 that the same classification works for the Isiralgebraic groups over any algebraically
closed field.

The classification of simple algebraic groups over an abyjtfield is much richer. Itincludes as a special
case some of the fundamental problems of algebra, such adas$sification of quadratic forms over an
arbitrary field. Nonetheless, one can hope to answer basgtigns such as: given a simple algebraic group
of a given type over a field, what degree of field extension edee to make it into the standard (Chevalley)
group?

Using the idea of torsors, and the definition of the Chow rihg dlassifying space, we give an improved
proof of a theorem by Grothendieck which gives a strong cotime between the classification of simple
algebraic groups over arbitrary fields and the topology efdbrresponding compact Lie groups.

As aresult, we can do topological calculations and readchédirimation about splitting fields. Tits solved
these problems for many types of groups, but we are able @ sbése problems in the remaining cases,
notably for the group®’s andSpin (n). We find, for example, that any algebraic group of typeover any
field becomes isomorphic to the Chevalley gratip after a field extension of degree dividiRg80. The
number2880 is best possible. This is satisfying in that questions aldguthe largest exceptional Lie group,
have often been the hardest of all questions about Lie groups
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Introduction

A family of (not necessarily infinitely many) non-overlapgi congruent balls inl-dimensional space of
constant curvature is called a packing of congruent balteeéngivend-space that is either in the Euclidean
d-spaceE? or in the sphericadl-spaceS? or in the hyperboliei-space®. The goal of this report is to give

a state of the art description dfdimensional sphere packings. On the one hand, the researsphhere
packings seems to be one of the most active areas of (disgetenetry on the other hand, it is one of the
oldest areas of mathematics ever studied. The topics disdua separate sections of this report are the
following ones:

- Hadwiger numbers of convex bodies and kissing numbershargs;

- Touching numbers of convex bodies;

- Newton numbers of convex bodies;

- One-sided Hadwiger and kissing numbers;

- Contact graphs of finite packings and the combinatorial&®gproblem;

- Isoperimetric problems for Voronoi cells, the strong deateedral conjecture and the truncated octahe-
dral conjecture;

- The strong Kepler conjecture;

- Bounds on the density of sphere packings in higher dimassio

- Solidity and uniform stability.

Each section outlines the state of the art of relevant reeeslong with some of the "most wanted” re-
search problems. Generally speaking the material covezkhs to combinatorics, convexity and discrete
geometry however, often the methods indicated cover a mrmddier spectrum of mathematics including
computational geometry, hyperbolic geometry, the gegyradtBanach spaces, coding theory, convex anal-
ysis, geometric measure theory, (geometric) rigidityptogy, linear programming and non-linear optimiza-
tion.

Hadwiger numbers of convex bodies and kissing numbers of sjghes

Let K be a convex body (i.e. a compact convex set with nonemptsianjén d-dimensional Euclidean space
E?, d > 2. Then the Hadwiger numbéf (K) of K is the largest number of non-overlapping translatek of
that can all touciK. An elegant observation of Hadwiger [H] is the following.

63
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Theorem 7.0.1 For everyd-dimensional convex body,
H(K)<3%-1,
where equality holds if and only K is an affined-cube.

On the other hand, in another elegant paper Swinnerton-[3}groved the following lower bound for
Hadwiger numbers of convex bodies.

Theorem 7.0.2 For everyd-dimensional { > 2)convex bod,
d*>+d < HK).

Actually, finding a better lower bound for Hadwiger numbefrg-aimensional convex bodies is a highly
challenging open problem for all > 4. (It is not hard to see that the above theorem of Swinnertgeri
sharp for dimension® and3.) The best lower bound known in dimensiah% 4 is due to Talata [85], who
applying Dvoretzky’s theorem on spherical sections of i@lytsymmetric convex bodies succeeded to show
the following inequality.

Theorem 7.0.3 There exists an absolute constant 0 such that
2¢d < H(K)
holds for every positive integdrand for everyi-dimensional convex body.

Now, if we look at convex bodies different from a Euclideafl bmadimensions larger thag, then our
understanding of their Hadwiger numbers is very limited.niédy, we know the Hadwiger numbers of the
following convex bodies different from a ball. The result fetrahedra is due to Talata [86] and the rest was
proved by Larman and Zong [60].

Theorem 7.0.4 The Hadwiger numbers of tetrahedra, octahedra and rhombaedahedra are all equal to
18.

In order to gain some more insight on Hadwiger numbers it fanaato pose the following question.

Problem 7.0.5 For what integersk with 12 < k£ < 26 does there exist 8-dimensional convex body with
Hadwiger numbek? What is the Hadwiger number oféa-dimensional simplex (resp., crosspolytope) for
d>4?

The second main problem in this section is fondly known askieging number problem. The kissing
numberr, is the maximum number of nonoverlappidglimensional balls of equal size that can touch a
congruent one if£?. In three dimension this question was the subject of a fard@masission between Isaac
Newton and David Gregory in 1964. So, it is not surprising tha literature on the kissing number problem
is "huge”. Perhaps the best source of information on thidlerm is the book [35] of Conway and Sloane. In
what follows we give a short description of the present stafuhis problem.

T9 = 6 is trivial. However, determining the value of is not a trivial issue. Actually the first complete
and correct proof of3 = 12 was given by Schitte and van der Waerden [19] in 1953. Theespent
(two pages) often cited proof of Leech [35], which is impiesly short, contrary to the common belief does
contain some gaps. It can be completed though, see for egaf6pl]. Further more recent proofs can be
found in [29], [1] and in [72]. None of these are short proafeer and one may wonder whether there exists
a proof ofr3 = 12 in THE BOOK at all. (For more information on this see the veisual paper [32].) Thus,
we have the following theorem.

Theorem 7.0.6 , = 6 andts = 12.

The race for finding out the kissing numbers of EuclidearstiEltimension larger thahwas always and
is even today one of the most visible research projects diemaatics. Following the chronological ordering,
here are the major inputs. Coxeter [1] conjectured ana &y [27] proved the following theorem, where
Fyla) = jf—i is the Schlafli function witly' standing for the spherical volume of a regular sphefiéat 1)-
dimensional simplex of dihedral andgle: and withw,; denoting the surface volume of tHedimensional unit
ball.
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Theorem 7.0.7 14 < QFFdd*i(lﬁ()ﬁ), whereg = %arcsecd.

It was another breakthrough when Delsarte’s linear prograng method (for details see for example
[77]) was applied to the kissing number problem and so, whalpatiansky and Levenshtein [59] succeeded
to improve the upper bound of the previous theorem for ldrgefollows. The lower bound mentioned below
was found by Wyner [87] several years earlier.

Theorem 7.0.820-2075d(1+0(1)) < . < 90.401d(1+0(1))

As the gap between the lower and upper bounds is expondniiakia great surprise when Levenshtein
[35] and Odlyzko and Sloane [75] independently found thioWaihg exact values for;.

Theorem 7.0.9 73 = 240 and o4 = 196560.
In addition, Bannai and Sloane [3] were able to prove thelhg.

Theorem 7.0.10There is a unique way (up to isometry) of arrangix) (resp.,196560) nonoverlapping
unit spheres ir8-dimensional (resp.24-dimensional) Euclidean space such that they touch anathér
sphere.

The latest surprise came when Musin [70], [71] extendingsBx@é’s method found the kissing number
of 4-dimensional Euclidean balls. Thus, we have

Theorem 7.0.1174 = 24.
In connection with Musin’s result we believe in the followinonjecture.

Conjecture 7.0.12 There is a unique way (up to isometry) of arrangiynonoverlapping unit spheres in
4-dimensional Euclidean space such that they touch anothiésphere.

Using the spherical analogue of the technique developedlhK. Bezdek [22] gave a proof of the
following theorem that one can regard as the local versicghe@fbove conjecture.

Theorem 7.0.13Take a unit balB of E* touched by 24 other (nonoverlapping) unit bdis, B,, ..., Boy
with centersCy, Cs, ..., Ca4 such that the center€y, Cs, ..., Coy form the vertices of a regular 24-cell
{3,4,3} in E*. Then there exists an > 0 with the following property: if the nonoverlapping unit I=l
B/, B),..., B, with centerC], CY, ..., C}, are chosen such th&}, B}, ..., B}, are all tangent tdB in
E* and for eachi, 1 < i < 24 the Euclidean distance betweéh andC! is at most, thenC}, C, ..., Ch,
form the vertices of a regular 24-c€]B, 4, 3} in E*.

There is a great list of record kissing numbers in dimensfooms 32 to 128 in [74] and also, we refer
the interested reader to the paper [39] of Edel, Rains arneh8lor some amazingly elementary but efficient
constructions.

Touching numbers of convex bodies

The touching number(K) of a convex bodyK in d-dimensional Euclidean spa& is the largest possible
number of mutually touching translatesKflying in E¢. The elegant paper [37] of Danzer and Griinbaum
gives a proof of the following fundamental inequality. Ircfathis inequality was phrased by Petty [76] as
well as by P. S. Soltan [83] in another equivalent form sayivad the cardinality of an equilateral set in any
d-dimensional normed space is at mp&t

Theorem 7.0.14For an arbitrary convex bod¥ of E¢
t(K) < 24

with equality if and only ifK is an affined-cube.
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In connection with the above inequality K. Bezdek and Paé&h ¢bnjecture the following even stronger
result.

Conjecture 7.0.15 For any convex bodK in E¢, d > 3 the maximum number of pairwise tangent positively
homothetic copies & is not more thar2?.

This problem is still quite open. It seems that the only pah®id upper bound & — 1 in [15].
It is natural to ask for a non-trivial lower bound fofK). Brass [30] as an application of Dvoretzky’s
well-known theorem gave a partial answer for the existeriseich a lower bound.

Theorem 7.0.16 For eachk there exists al(k) such that for any convex bod¢ of E? with d > d(k)
k < t(K).
It is remarkable that the natural sounding conjecture afyH@6] stated next is still open for adl > 4.
Conjecture 7.0.17 For each convex bodiK of E¢, d > 4
d+1<t(K).

A generalization of the concept of touching numbers wasdiced by K. Bezdek, M. Naszodi and B.
Visy [19] as follows. Thenth touching number (or theith Petty number)(m, K) of a convex bodyK of
E< is the largest cardinality of (possibly overlapping) thatss ofK in E¢ such that among any. translates
always there are two touching ones. Note #atK) = ¢(K). The following theorem proved by K. Bezdek,
M. Naszodi and B. Visy [19] states some upper bounds (for, K).

Theorem 7.0.18Let#(K) be an arbitrary convex body . Then

. 20 4 m—1
t(m,K) < min {(m — 1)44, ( o )}
holds for allm > 2,d > 2. Also, we have the inequalities
t(3,K) <2-37% t(m,K) < (m - 1)[(m — 1)37 = (m — 2)]

for all m > 4,d > 2. Moreover, ifB9 (resp.,C?) denotes al-dimensional ball (resp4-dimensional affine
cube) ofE?, then

t(2,BY) =d +1, t(m,B?) < (m —1)3%, t(m,C?) = (m — 1)2¢
hold for allm > 2,d > 2.
We cannot resist on raising the following question (for mie&ils see [19]).
Problem 7.0.19 Prove or disprove that iK is an arbitrary convex body ift? with d > 2 andm > 2, then

(m—1)(d+1) < t(m,K) < (m —1)2<.

Newton numbers of convex bodies

According to L. Fejes Toth [44] the Newton numb€(K) of a convex bodK in E7 is defined as the largest
number of congruent copies & that can touctK without having interior points in common. (Note that
unlike in the case of Hadwiger numbers here it is not necgsdaall to use translated copies of the given
convex body. In fact, often it is better to use rotated or otflé ones.) For the special case wikéiis a ball
we refer the reader to Section 2 of this paper. Here we focub@rase wheiK is different from a ball.
Somewhat surprisingly, in this case only planar resultkamvn. Namely, Linhart [65] and Boroczky [26]
determined the Newton numbers of regular convex polygons.
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Theorem 7.0.201f N (n) denotes the Newton number of a regular convegon inE2, then
N(3)=12,N(4)=8andN(n) =6foralln > 5.

L. Fejes To6th [42] proved the following - in some cases gsiiterp - upper bound for the Newton numbers
of convex domains (i.e. compact convex sets with nonemppeyior) inE2.

Theorem 7.0.21 A convex domain with diametér and minimum widtil” cannot be touched by more than

[(4+2w)% +2+ %]

non-overlapping congruent copies of it.
This result was improved by Schopp [81] as follows.

Theorem 7.0.22The Newton number of any convex domain of constant widR? iis at most7 and the
Newton number of a Reuleaux triangle is exactly 7.

We close this section with a rather natural question, whidin¢ best of our knowledge has not been yet
studied.

Problem 7.0.23 Prove or disprove that the Newton number of-dimensional { > 3) Euclidean cube is
34 —1.

One-sided Hadwiger and kissing numbers

K. Bezdek and P. Brass [20] assigned to each convex Body E? a specific positive integer called the
one-sided Hadwiger numbérK) as follows: h(K) is the largest number of non-overlapping translates of
K that touchK and that all lie in a closed supporting half-spacd<fin [20], using the Brunn-Minkowski
inequality, K. Bezdek and P. Brass proved the following phapper bound for the one-sided Hadwiger
numbers of convex bodies.

Theorem 7.0.241f K is an arbitrary convex body ifi¢, then
h(K) <2371 1.
Moreover, equality is attained if and onlyl is a d-dimensional affine cube.

The notion of one-sided Hadwiger numbers was introducedutdysthe (discrete) geometry of the so-
calledk*-neighbour packings, which are packings of translates afengconvex body irE? with the prop-
erty that each packing element is touched by at Ieasthers from the packing, whefeis a given positive
integer. As this area of discrete geometry has a rather laegature we refer the interested reader to [20] for
a brief survey on the relevant results. Here, we emphaseéotlowing corollary of the previous theorem
proved also in [20].

Theorem 7.0.251f K is an arbitrary convex body ift?, then anyk-neighbour packing by translates Bf
with & > 2 -39~ must have a positive densityliif. Moreover, there is 42 - 37~! — 1)*-neighbour packing
by translates of al-dimensional affine cube with densityn E.

It is obvious that the one-sided Hadwiger number of any tarcdisk in E? is 4. However, the3-
dimensional analogue statement is harder to get. As it taubdghe one-sided Hadwiger number of the
3-dimensional Euclidean ball 8. One of the shortest proofs of this fact was found by A. Bezaled K.
Bezdek [10]. Since here we are studying Euclidean balls tived-sided Hadwiger numbers we simply call
one-sided kissing numbers.

Theorem 7.0.26 The one-sided kissing number of theimensional Euclidean ball i8.
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As we have mentioned before Musin [71] has just announcedaf pf the long-standing conjecture that
the kissing number of th¢-dimensional Euclidean ball &4. Based on this result K. Bezdek [22] gave a
proof of the following.

Theorem 7.0.27 The one-sided kissing number of thedimensional Euclidean ball is eithég or 19.
The proof of the above theorem supports the following cdnjec

Conjecture 7.0.28 The one-sided kissing number of theimensional Euclidean ball i$].

Contact graphs of finite packings and the combinatorial Kepér prob-
lem

Let K be an arbitrary convex body iA¢. Then the contact graph of an arbitrary finite packing by non-
overlapping translates d€ in E¢ is the (simple) graph whose vertices correspond to the pgaiements
and whose two vertices are connected by an edge if and ol ddrresponding two packing elements touch
each other. One of the most basic questions on contact giaphéind out the maximum number of edges
that a contact graph of translates of the given convex bo#y can have ifE¢. Harborth [55] proved the
following remarkable result on the contact graphs of coagtwircular disk packings iR2.

Theorem 7.0.29 The maximum number of touching pairs in a packing ebngruent circular disks ifit? is

precisely
|3n — v12n — 3].

In a very recent paper [31] Brass extended the above reghiéttunit circular disk packings” of normed
planes as follows.

Theorem 7.0.30 The maximum number of touching pairs in a packing tinslates of a convex domaif
in E? is |3n — /12n — 3], if K is not a parallelogram, and4n — v/28n — 12|, if K is a parallelogram.

The analogue question in the hyperbolic plane has beerestbgiBowen in [23]. We prefer to quote his
result in the following geometric way.

Theorem 7.0.31Consider circle packings in the hyperbolic plane, by fiyitelany congruent circles, which
maximize the number of touching pairs for the given numbeongruent circles. Then such a packing must
have all of its centers located on the vertices of a triangataof the hyperbolic plane by congruent equi-
lateral triangles, provided the diameté? of the circles is such that an equilateral triangle in the bgimolic
plane of side lengtl® has each of its angles equal %@ for someN > 6.

It is not hard to see that one can extend the above resSk &xactly in the way as the above phrasing
suggests. However, we get a more general approach if we doltbeing: Taken non-overlapping unit
diameter balls in a convex positionTi¥, that is assume that there exists-dimensional convex polyhedron
whose vertices are center points moreover, each center Ipglongs to the boundary of that convex poly-
hedron, wherer > 4 is a given integer. Obviously, the shortest distance ambegénter points is at least
one. Then count the unit distances showing up between pagsnter points but, count only those pairs
that generate a unit line segment on the boundary of the gisxdimensional convex polyhedron. Finally,
maximize this number for the givenand label this maximum by(n). The following theorem was found by
D. Bezdek [12] who also pointed out its interesting relatioprotein folding as well as to Durer’s unsolved
geometric problem on edge-unfolding of convex polyhedrmachills the convex polyhedra showing up in the
theorem below "higher order deltahedra” mainly becausg fbem an extension of "deltahedra” classified
earlier by Freudenthal and van der Waerden in [47].

Theorem 7.0.32¢(n) < 3n — 6, where equality is attained for infinitely manynamely, for those for which
there exists &-dimensional convex polyhedron whose each face is an edgdge union of some regular
triangles of side length one such that the total number o&gging regular triangles on the boundary of the
convex polyhedron is precisely: — 4 with a total number oBn — 6 sides of length one and with a total
number ofr vertices.
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Now, we are ready to phrase t@®mbinatorial Kepler Problem. As its name suggests this problem
is strongly related to the Kepler Conjecture on the denseisisphere packings ifi® (for more details see
Section 7 of this paper).

Problem 7.0.33 For a givenn find the largest numbeK (n) of touching pairs in a packing of congruent
balls inE3.

This problem is quite open. The first part of the followingdhem was proved by D. Bezdek [12] the
second part by K. Bezdek [22].

Theorem 7.0.34
() K(4)=6,K(5)=9,K(6)=12andK(7) = 15.
(i) K(n) < 6n—0.59n3 forall n > 4.

We close this section with two upper bounds for the numbeswthing pairs in an arbitrary finite packing
of translates of a convex body, proved by K. Bezdek in [18] odder to state these theorems in a short way

we need a bit of notation. L& be an arbitrary convex body i, d > 3. Then let§(K) denote the density

: d _ (Svoly_1(bdK))“
of a densest packing of translates of the convex H8dg E*, d > 3. Moreover, let IgK) = Vol KT

be the isoperimetric quotient of the convex bddywhere Sval_; (bdK) denotes théd — 1)-dimensional
surface volume of the boundaryKdof K and Vol;(K) denotes thé-dimensional volume oK. Moreover,
let B denote the closed-dimensional ball of radiug centered at the origin ift?. Finally, let K, =
%(K + (—K)) be the normalized (centrally symmetric) difference bodsigrsed toK with H(K) (resp.,
h(Ky)) standing for the Hadwiger number (resp., one-sided Haelwigmber) ofK.

Theorem 7.0.35The number of touching pairs in an arbitrary packingrof> 1 translates of the convex
bodyK in E?, d > 3 is at most

HKo) 1 JaB) \y e ) i
2 2d'(5(K0)(d;1> (|CI(KO)) (H(Ko) — h(Kg) — 1).

Theorem 7.0.36 The number of touching pairs in an arbitrary packingrof> 1 translates of the convex
bodyK in E?, d > 3 is at most

1

341 wf (@-1)
9 MTaga ™ o
wherew; = =22 — is the volume of @-dimensional ball of radiug in E¢.

I'(£+1)

Isoperimetric problems for Voronoi cells

Recall that a family of non-overlappirigdimensional balls of radil in Euclidean3-spaceE? is called a
unit ball packing inE3. The density of the packing is the proportion of space covésethese unit balls.
The sphere packing problem asks for the densest packingtdfaills in E2. The conjecture that the density
of any unit ball packing irE? is at most% = 0.74078 ... is often attributed to Kepler that he stated in
1611. The problem of proving the Kepler conjecture appessaat of Hilbert's 18th problem [56]. Using
an ingenious argument which works in any dimension, Rog&kdbtained the upper bouidr7963 . . . for

the density of unit ball packings iB3. This bound has been improved by Lindsey [64], and Muder [68],
[69]t00.773055 . ... Hsiang [57], [58] proposed an elaborate line of attackr(glthe ideas of L. Fejes Toth
suggested 40 years earlier), but his claim that he settlgdieKe conjecture seems exaggerated. However,
so far no one has found any serious gap in the approach of Flgg51], [52], [53], although no one has
been able to fully verify it either. This is not too surprigirgiven that the detailed argument is described in
several papers and relies on long computer aided calcntatibmore than 5000 subproblems. Hales shows
the following remarkable theorem.



70 Five-day Workshop Reports

Theorem 7.0.37 The densest packing of unit ballslif has density\/—%, which is attained by the "cannon-
ball packing”.

For several of the above mentioned papers Voronoi cells ivfoafl packings play a central role. Recall
that the Voronoi cell of a unit ball in a packing of unit baltsli? is the set of points that are not farther away
from the center of the given ball than from any other ball'stee As it is well-known, the Voronoi cells
of a unit ball packing irfE3 form a tiling of E3. One of the most attractive problems on Voronoi cells is the
Dodecahedral Conjecture first phrased by L. Fejes T6thGh [According to this the volume of any Voronoi
cell in a packing of unit balls ifi? is at least as large as the volume of a regular dodecahedtoinmadius
1. Very recently Hales and McLaughlin [54] announced a sotutb this problem:

Theorem 7.0.38 The volume of any Voronoi cell in a packing of unit ballih is at least as large as the
volume of a regular dodecahedron with inradilis

Now, we can make a step further and take a look of the followgingnger version of the Dodecahedral
Conjecture called th8trong Dodecahedral Conjecture It was first articulated in [16].

Conijecture 7.0.39 The surface area of any Voronoi cell in a packing with unitibal E3 is at least as large
as16.6508. . . the surface area of a regular dodecahedron of inradius

Itis easy to see that if true, then the above conjecture @aplie Dodecahedral Conjecture. The strongest
inequality known towards the Strong Dodecahedral Conjecisi due to K. Bezdek and E. Darbczy-Kiss
published in [21]. In order to phrase it properly we introdachit of terminology. A face cone of a Voronoi
cellin a packing with unit balls if£3 is the convex hull of the face chosen and the center of thebaiiisitting
in the given Voronoi cell. The surface area density of a ualt im a face cone is simply the spherical area
of the region of the unit sphere (centered at the apex of e dane) that belongs to the face cone divided
by the Euclidean area of the face. It should be clear frometdeginitions that if we have an upper bound for
the surface area density in face cones of Voronoi cells, tihemeciprocal of this upper bound timés (the
surface area of a unit ball) is a lower bound for the surfaea af Voronoi cells. Now, we are ready to state
the main theorem of [21].

Theorem 7.0.40The surface area density of a unit ball in any face cone of aMoircell in an arbitrary
packing of unit balls of? is at most

—9m + 30 arccos (\/Tg sin (%))
= 0.77836 ...,
5tan (Z)

and so the surface area of any Voronoi cell in a packing with balls in £ is at least

207 tan (%)

—97 + 30 arccos (‘/7§ sin (%))

=16.1445....

Moreover, the above upper bound’7836 . .. for the surface area density is best possible in the follgwin
sense. The surface area density in the face cone ohesiged face withh = 4,5 of a Voronoi cell in an
arbitrary packing of unit balls oE? is at most

3(2 — n)m + 6n - arccos (@ sin (1))

n tan (%)
and equality is achieved when the face is a regulagon inscribed in a circle of radiusm and
positioned such that it is tangent to the corresponding bait of the packing at its center. ’

The Kelvin problem asks for the surface minimizing partitaf E2 into cells of equal volume. According
to Lhuilier's memoir [63] of 1781, the problem has been dimsat as one of the most difficult in geometry.
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The solution proposed by Kelvin is a natural generalizatibthe hexagonal honeycomb iF. Take the
Voronoi cells of the dual lattice giving the densest sphaiekmng. This gives truncated octahedra, the Voronoi
cells of the body centered cubic lattice. A small deformatibthe faces produces a minimal surface, which
is Kelvin's proposed solution. Just recently Phelan andik&g@8] produced a remarkable counter-example
to the Kelvin conjecture. Their work indicates also that\Kiek original question is even harder than it
was expected. In fact, the following simplier and quite famgkntal question seems to be still open. One
can regard this as the isoperimetric inequality for palaiiedra and one can call the conjecture below the
Truncated Octahedral Conjecture. (Recall that a parallelohedron is3adimensional convex polyhedron
that tilesE? by translation.)

Conijecture 7.0.41 The surface area of any parallelohedron of voluina E3 is at least as large as the
surface area of the truncated octahedral Voronoi cell oflibely-centered cubic lattice of volurhén E3.

The strong Kepler conjecture

In this section we propose a way to extend Kepler’s conjedtfinite packings of congruent ballsdrspace
of constant curvature that is in Euclidezsspacek?, in sphericaB-spaceS? and in hyperboli@-spaceH?.
The idea goes back to the theorems of L. Fejes Toth [4EFin). Molnar [67] inS? and K. Bezdek [13], [14]
in H? which in short, can be phrased as follows:

Theorem 7.0.421f at least two congruent circular disks are packed in a ciezudisk in the plane of constant
curvature, then the packing density is always less tb%‘t

The hyperbolic case of this theorem proved by K. Bezdek ih (48e also [14]) seemed quite unexpected
because there are (infinite) packings of congruent ciralitks inH?2 in which the density of a circular disk
in its respective Voronoi cell is significantly larger th@%. Also, we note that the consta@% is best
possible in the above theorem. Last we have to mention theé she standard methods do not give a good
definition of density inH? (in fact all of them fail to work as it was observed by Borkg25]) and since
even today we know only a rather "fancy” way of defining dengit hyperbolic space (see the work of
Bowen and Radin [24]) it seems important to study finite pag&iin bounded containers of the hyperbolic
space where there is no complication with the proper dedimitif density. All this supports the idea of the
following conjecture that we call th&trong Kepler Conjecture:

Conjecture 7.0.43The density of at least two non-overlapping congruent balla ball of the 3-space
of constant curvature (having radius strictly less thnin the case of®) is always less than\/% =
0.74048 .. ...

The following theorem proved by K. Bezdek [22] supports thewe conjecture.

Theorem 7.0.44The density of at least two non-overlapping congruent halla ball of the 3-space of
constant curvature (having radius strictly less tharin the case ofs?) is always less than Rogers’ upper
bound for the density of packings of congruent ballE#rthat is less tham.77963 . . ..

Bounds on the density of sphere packings in higher dimensi@n

Recall that a family of non-overlappinty-dimensional balls of radii in thed—dimensional Euclidean space
E< is called a unit ball packing d&¢. The density of the packing is the proportion of space cavbyethese
unit balls. The sphere packing problem asks for the densestiing of unit balls inkE¢. Indubitably, of all
problems concerning packing it was the sphere packing enobVhich attracted the most attention in the
past decade. It has its roots in geometry, number theoryrdadmation theory and it is part of Hilbert’s 18th
problem. The reader is referred to [35] (especially thedtbitition, which has about 800 references covering
1988-1998) for further information, definitions and referes. In what follows we report on a few selected
developments some of which are fantastic recent news.
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The Voronoi cell of a unit ball in a packing of unit ballsif is the set of points that are not farther away
from the center of the given ball than from any other ball'stee As it is well-known the Voronoi cells of a
unit ball packing inE? form a tiling of E¢. One of the most attractive results on the sphere packirigemo
was proved by C. A. Rogers [79] in 1958. It was rediscovereBaranovskii [4] and extended to spherical
and hyperbolic spaces by Boroczky [27]. It can be phrasddlbbws. Take a regulat—dimensional simplex
of edge lengtt2 in E? and then draw @—dimensional unit ball around each vertex of the simplex. d.et
denote the ratio of the volume of the portion of the simplexered by balls to the volume of the simplex.
Then the volume of any Voronoi cell in a packing of unit balisi? is at Ieastﬁ—j, wherew, denotes the
volume of ad—dimensional unit ball. This has the following immediateatary.

Theorem 7.0.45The (upper) density of any unit ball packinglif is at most ;.

Daniel’'s asymptotic formula [80] yields that

04 = 4y (5+o(1)) (as d — o0).
€
Then 20 years later, in 1978 Kabatjanskii and Levensht&hifBproved this bound in the exponential order

of magnitude as follows. They proved the following theorem.
Theorem 7.0.46 The (upper) density of any unit ball packinglift is at most
2—(0.599+0(1))d (as d — OO)

In fact, Rogers’ bound is better than the Kabatjanskii-lreskgtein bound fod < d < 42 and above that
the Kabatjanskii-Levenshtein bound takes over ([35], p. 20

There has been some very important recent progress congeha@ existence of economical packings.
On the one hand, improving earlier results, Ball [2] provedtigh a very elegant completely new variational
argument the following statement. (See also [48] for a simiésult of W. Schmidt on centrally symmetric
convex bodies.)

Theorem 7.0.47 For eachd, there is a lattice packing of unit balls i? with density at least

d—1

where((d) = 77, 7+ is the Riemann zeta function.

On the other hand, for some small valuesipthere are explicit (lattice) packings which give densitie
(considerably) higher than the bound just stated. The réadeferred to [35] and [73] for a comprehensive
view of results of this type.

All these explicit constructions raise the well-known deaging question whether one can find a smaller
upper bound than Rogers’ bound for the density of unit balkpays, especially in low dimensions. The next
theorem due to K. Bezdek [17] does exactly this by improving&s’ upper bound for the density of unit
ball packings in Euclideasi—space for all > 8. Since this result extends also some of the results of Sectio
7 to higher dimensions we phrase it in details. For this wedreedit of notation. As usual, let I{n. .),
aff(...), con...), Voly(...), wq, SVolg_1(...), dist(...), || ... | ando refer to the linear hull, the affine
hull, the convex hull inE?, the d—dimensional Euclidean volume measure, dhedimensional volume of a
d—dimensional unit ball, théd — 1)—dimensional spherical volume measure, the distance famatiE?,
the standard Euclidean norm and to the origififn

Let confo, w1, ..., wq} be ad—dimensional simplex having the property that the lineaf liu{w; —
w;|i < j < d} is orthogonal to the vector; in E4,d > 8forall 1 <i < d — 1thatis let

confo,w1,...,wWg}

be ad—dimensional orthoscheme &f moreover, let

o
[will = y/ —— for all 1 <i<d.
141
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Itis clear thatin the right triangle w,_ow,_ 1w, with right angle at the vertex;_; we have the inequality

|lwag — wa_1] = \/ﬁ < \/ﬁ = ||wg—1 — wa—2|| and therefore’wy_1wy_swq < . Now, in

the plane affw,_o, w,_1, wq} of the trianglean w,_ow,_1w, let

I Wg_2WqgWq+1

denote the circular sector of central anglevgwy owq1 = § — Zwg1wq 2wy and of centew,
sitting over the circular arc with endpoints;, w1 and radiugw,; — wg_o|| = ||[war1 — wa—2|| such that
< wg_owgwgy1 andA wy_owy_ 1wy are adjacent along the line segment_ow, and are separated by
the line ofw,_swy. Then let

D(Wq—2,Wq_1,Wq,Wqt1) =A Wq_aWq_1WqU < Wq_aWqWg 41

be the convex domain generated by the triangle; _>w, 1w, with constant angle

Vs
LW AW 2Wai11 = T
Now, let
W =conv({o,wi,...,Wq_3} UD(Wg—2,Wa—1, Wd, Wa+1))

be thed—dimensional wedge (or cone) witd — 1)—dimensional base
Qw =conv({wy,...,wg_3}tUD(W4_2,Wgq_1,W4,Wgt1)) and apexo.

Finally, if B = {x € E?| dist(o,x) = ||x|| < 1} denotes the—dimensional unit ball centered at the origin
oof andS = {x € E?| dist(o,x) = ||x|| = 1} denotes théd — 1)—dimensional unit sphere centerecbat
then let

~ SVOld_l(W n S) . V0|d(W n B)

4= Volg—1(Qw)  Volg(W)
be the the surface density (resp., volume density) of thiesphiereS (resp., of the unit balB) in the wedge

W. For the sake of completeness we remark that as the reggutiimensional simplex of edge lengthcan
be dissected int@d + 1)! pieces each being congruent to coywy, ..., w,} therefore

Volg(confo, wy,...,wu} N B)
g =
d Vol (confo, wy,...,wg})

Now, we are ready to state the main result of [17]. Recallttmasurface density of any unit sphere in its
Voronoi cell in a unit sphere packing &f is defined as the ratio of the surface area of the unit spheheto
surface area of its Voronoi cell.

Theorem 7.0.48The surface area of any Voronoi cell in a packing of unit ballshe d—dimensional Eu-
clidean spacé?, d > 8 is at Ieastd(';:d, that is the surface density of any unit sphere in its Vorarediiin

a unit sphere packing d&?,d > 8 is at mostr,;. Thus, the volume of any Voronoi cell in a packing of unit
balls inE¢,d > 8 is at Ieast‘;—j and so, the (upper) density of any unit ball packindiih d > 8 is at most

8d < 04.

In fact, K. Bezdek [22] extended the above theorem to sphksipace $¢) as well as to hyperbolic
space H%) in the following local sense. Consider packings of congtusalls of small radii only. Then for

sufficiently small radiir of the given spac&? (resp.,H?) one can define the quantifi. (r) = Yola (W)

V0|d(W)
(resp.,opa(r) = %) in a way very similar to the Euclidean case. (Here we simpfyjtdhe obvious

details.) With this notation the following theorem holds.

Theorem 7.0.49Consider an arbitrary packing of spheres of radiug S¢ (resp.,H¢) with d > 8. Then
there exists am(d) > 0 such that the (volume) density of each ball (of the given ipgghn its respective
Voronoi cell is at mosts. (r) (resp.,oa (1)) provided that < r(d).
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Further improvements on the upper boundof K. Bezdek for the dimensions fromto 36 have been
obtained very recently by Cohn and Elkies [33]. They devetban analogue for sphere packing of the linear
programming bounds for error correcting codes, and usemptave new upper bounds for the density of
sphere packings, which are better than K. Bezdek’s uppendsity, for the dimensions 4 through 36. Their
method together with the best known sphere packings yieldalfowing remarkable theorem in dimensions
8 and 24.

Theorem 7.0.50 The density of the densest unit ball packingi(resp.,E2*) is at least0.2536 . .. (resp.,
0.00192...) and is at mos0.2537... (resp.,0.00196 . . .).

Cohn and Elkies [33] conjecture that their approach can bd tssolve the sphere packing problem in
E® (resp.E?).

Conjecture 7.0.51 TheFEg root lattice (resp., the Leech lattice) that produces theegponding lower bound
in the previous theorem in fact, represents the largestiptesgensity for unit sphere packingsi? (resp.,
E24).

If linear programming bounds can indeed be used to provenaity of these lattices, it would not come
as a complete surprise, because for example, the kissingpemyonoblem in these dimensions was solved
similarly (for more details see Section 2).

Last but not least we mention the following striking resdlGohn and Kumar [34] according to which
the Leech lattice is the densest lattice packingih. (The densest lattices have been known up to dimension
8.)

Theorem 7.0.52The Leech lattice is the unique densest latticE#f, up to scaling and isometries Bf*.

We close this section with a short summary on the recent pssgof L. Fejes Toth's [45] "sausage
conjecture” that is one of the main problems of the theory witdi sphere packings. According to this
conjecture if inE?, d > 5 we taken > 1 non-overlapping unit balls, then the volume of their conlrak is at
least as large as the volume of the convex hull of the "sauaagagement” of non-overlapping unit balls
under which we mean an arrangement whose centers lie on afliié such that the unit balls of any two
consecutive centers touch each other. By optimizing thénoust developed by Betke, Henk and Wills [7],
[8] finally, Betke and Henk [6] succeeded to prove the sausaggcture of L. Fejes Toth in any dimension
of at least 42. Thus, we have the following natural looking Ear not trivial theorem.

Theorem 7.0.53The sausage conjecture holdshA for all d > 42.

It remains a highly interesting challange to prove or digprihe sausage conjecture of L. Fejes Toth for
the dimensions between 5 and 41.

Conjecture 7.0.54 Let5 < d < 41 be given. Then the volume of the convex hult of 1 non-overlapping
unit balls inE¢ is at least as large as the volume of the convex hull of the $age arrangement” of.
non-overlapping unit balls which is an arrangement whoseess lie on a line of2¢ such that the unit balls
of any two consecutive centers touch each other.

Solidity and uniform stability

The notion of solidity, introduced by L. Fejes Toth [43] teescome difficulties of the proper definition of
density in the hyperbolic plane, has been proved very usefdistimulating. Roughly speaking a family of
convex sets generating a packing is said to be solid if nogrrogarrangement of any finite subset of the
packing elements can provide a packing. More concretelycke@acking in the plane of constant curvature
is called solid if no finite subset of the circles can be reageal such that the rearranged circles together
with the rest of the circles form a packing not congruent ®dahiginal. An (easy) example for solid circle
packings is the family of incircles of a regular tiling, 3} for anyp > 3. In fact, a closer look of this
example led L. Fejes Toth [46] to the following simple soungdbut difficult problem: he conjectured that
the incircles of a regular tilingp, 3} form a strongly solid packing for any > 5, i.e. by removing any circle
from the packing the remaining circles still form a solid kiag. This conjecture has been verified for 5

by Boroczky [28] and Danzer [D] and fgr> 8 by A. Bezdek [9]. Thus, we have the following theorem.
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Theorem 7.0.55The incircles of a regular tiling p, 3} form a strongly solid packing fgr = 5 and for any
p=>38.

The outstanding open question left is the following.

Conjecture 7.0.56 The incircles of a regular tiling p, 3} form a strongly solid packing fgy = 6 as well as
forp=1.

In connection with solidity and finite stability (of circleapkings) the notion of uniform stability (of
sphere packings) has been introduced by A. Bezdek, K. BeadéR. Connelly [11]. According to this a
sphere packing (in the space of constant curvature) is gdud tiniformly stable if there exists an> 0 such
that no finite subset of the balls of the packing can be rega@disuch that each ball is moved by a distance
less thare and the rearranged balls together with the rest of the badta i packing not congruent to the
original one. Now, suppose th@ is a packing of (not necessarily) congruent ballstih Let G be the
contact graph of?, where the centers of the balls serve as the verticés afd an edge is placed between
two vertices when the corresponding two balls are tangére.féllowing basic principle can be used to show
that many packings are uniformly stable.

Theorem 7.0.57 Suppose thaE? can be tiled face-to-face by congruent copies of finitelyyramvex poly-
topesP,, P, ..., P, such that the vertices and edges of that tiling form the weated edge system of the
contact graphG of the packingP of some balls ifE?. If eachP; is strictly locally volume expanding with
respect to, then the packing® is uniformly stable.

By taking a closer look of the Delaunay tilings of some latsphere packings one can derive the follow-
ing corollary (for more details see [11]).

Theorem 7.0.58The densest lattice sphere packingis As, D4, D5, Fg, E7, Es up to dimension 8 are all
uniformly stable.

Last we mention another corollary (for details see [11])iolilwas observed also by Barany and Dolbilin
[5] and which supports the above mentioned conjecture okjes-Toth.

Theorem 7.0.59 Consider the triangular packing of circular disks of equadlii in E? where each disk is
tangent to exactly six others. Remove one disk to obtaindbkipg?’. Then the packin@®’ is uniformly
stable.
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Background

Symplectic geometry was invented by Hamilton in the eanheteenth century, as a mathematical framework
for both classical mechanics and geometrical optics. Bhystates in both settings are described by points
in an appropriate phase space (the space of coordinates @ameémta). Hamilton’s equations associate to
any energy function (“Hamiltonian”) on the phase space aadyinal system. Hamilton realized that his
equations are invariant under a very large group of symegtecialled canonical transformations or, in modern
terminology, symplectomorphisms. A symplectic manif@dispace which is locally modeled by the phase
spaces considered by Hamilton. In mathematical terms, plgatic manifold is a manifold/ with a closed,
non-degenerate 2-form. A smooth functiond € C°° (M) defines a vector field&; on M by Hamilton’s
equations,

dH = —w(XH, )

New techniques have transformed symplectic geometry ideep and powerful subject of pure mathematics.
One concept of symplectic geometry that has proved paatiyulseful in many areas of mathematics is the
notion of amoment mapTo recall the original setting for this notion, I1&f be a symplectic manifold, and
G a Lie group acting o/ by symplectomorphisms. A moment map for this action is anvegiant map
®: M — g* with values in the dual of the Lie algebra, with the propehigttthe infinitesimal generators of
the action, corresponding to Lie algebra eleméntsg, are the Hamiltonian vector fields 4 ¢). The linear
momentum and angular momentum from classical mechanicbmapwed as moment maps, corresponding
to translational and rotational symmetries, respectively

In the past thirty years, tremendous progress has been mabtle study of moment maps and related
areas: symplectic quotients, geometric quantizatiom|ipation phenomena, and toric varieties. This has had
applications to the study of moduli spaces, represent#tieory, special metrics, and symplectic topology.

In recent years, moment maps have been generalized in m#esedt directions and have led to ad-
vances in geometries related to symplectic geometry. Tinetede Poisson geometry, Kahler geometry,
hyper-Kahler geometry, contact geometry, and Sasakiamgey. While some headway has been made in
understanding moment maps in these fields, there remain oy@ery questions. One of the goals of this
workshop was to explore phenomena that are well understosgimplectic geometry but are not as well
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understood in these new settings, and to seek potentiatapiphs of this new direction of research. For this
purpose we brought together experts from these fields, teosrgting a fruitful exchange of ideas, which
also enabled us to formulate and discuss interesting opdsigmms.

Objectives of the workshop

Let us review some of the achievements in and applicatiorsgjoivariant symplectic geometry in the past
few years. We will then indicate some of the open questioasulere our motivation for holding the work-
shop.

We first recall some terminology. Let a Lie groGpact on a symplectic manifold\/, w). As we already
recalled, anoment majs an equivariant ma@: M — g* to the dual of the Lie algebra such that the
action is generated by the Hamiltonian vector fields of theponents ofb. The symplectic quotienis
®~1(0)/G. Localizationformulas express global invariants df in terms of local data at the fixed point set
of an abelian subgroup @f. Wheng is a torus of half the dimension @ andM is compact(M,w, ®) is
atoric manifold

A contact structurés an odd dimensional counterpart of a symplectic struct@ienilarly, aSasakian
structureis an odd dimensional counterpart of a Kahler structuré a8iSasakian structuns an odd dimen-
sional counterpart of a hyper-Kahler structure. The gbti®@workshop was to obtain a better understanding
of moment maps and their applications in these other gedsetr

The development of equivariant symplectic geometry overléist two decades was greatly motivated
by attempts to understand the topology of moduli spacesatflestoundles over Riemann surfaces. The
symplectic and Morse theoretic approach to the problem wasepred by Atiyah and Bott in 1983, when
they produced a set of generators for the cohomology ringehtoduli spacé/ (n, d) of semi-stable rank
n, degreeal holomorphic vector bundles over a Riemann surfacepfandd co-prime.

Given a Hamiltonian group action of a Lie groGpon a compact symplectic manifold, with moment
map®: M — g* such that) is a regular value fo®, there is a natural map from the equivariant cohomology
HZ (M) to the cohomology of the reduced spaég;(®~'(0)/G), obtained as the restrictioH, (M) —
H(®71(0)) followed by the isomorphisn#,(®~1(0)) — H*(®'(0)/G). Kirwan refined the Morse-
theoretic methods of Atiyah and Bott to prove that this mapH (M) — H*(®~1(0)/G), is surjective.
This enables one to compute Betti numbers of symplecticieuis® —*(0)/G. The non-abelian localization
theorem of Jeffrey and Kirwan gives an explicit formula foe tkernel ofx. Jeffrey and Kirwan used their
version of the non-abelian localization formula, and a dpon of M (n, d) as a finite-dimensional quotient
of a so-called “extended moduli space”, to obtain a mathmalst rigorous proof of Witten’s formulas for
the intersection pairings in the cohnomologyMf(n, d).

In 1998, Alekseev, Malkin and Meinrenken introduced qudaimiltonian spaces and Lie group valued
moment maps. They expressed the moduli space of:Habnnections as a quasi-Hamiltonian quotient of
a productG? x --- x G2, and were thus able to recover Witten's formulas for intetie@ numbers in the
cohomology of moduli spaces. In the moduli space case, di&siiltonian spaces enable one to avoid the
use of extended moduli spaces; more generally, quasi-ltari@h spaces enlarge the collection of situations
to which similar techniques can be applied.

In 2002, Bott, Tolman and Weitsman proved surjectivity oft@dn’s maps : Hy (M) — H*(®71(0)/G)
in the case wheré( is the loop group of a compact Lie grodp M is a Banach manifold andl a proper
moment map. As a consequence one obtains that, while Kismaap is not surjective for quasi-Hamiltonian
spaces, its image together withitely manycohomology classes generates the cohomology ring of the quo
tient. This work is related to Tolman and Weitsman’s eanierk (1998) determining the kernel of the
Kirwan mapx and thereby the structure of the cohomology ring of the sgetj quotient/*(®~1(0)/G)
whend is a finite-dimensional Lie group.

In 2003, Xu introduced quasi-symplectic groupoids. Thiprapch enables him to unify into a single
framework various moment map theories, including ordiremnplectic moment maps and group valued
moment maps.

Moment maps and symplectic quotients can be defined in otitegaries, such as contact or hyper-
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Kahler. However, the topology of quotients in these catiegaemains elusive. As noted in a recent book by
Ginzburg, Guillemin, and Karshon, phenomena such as Kisuajectivity and localization are often due to
the underlying moment map and group action more than to thmgtry. However, we do not yet understand
these phenomena for contact or hyper-Kahler manifolds.ekkample, Kirwan surjectivity fails for contact
structures, and it is not yet clear why or how. Surjectiviiyconjectured for hyper-Kahler quotients, and
known to be true for many classes of examples, but a genexatém has not been proved. An interesting
example of a hyper-Kahler quotient is the moduli space ok taparabolic Higgs bundles. Hausel and Thad-
deus have produced generators and relations for the cobggnohg of this space. This work is analogous
to the work of Jeffrey and Kirwan on the moduli spadén, d). Another usage of hyper-Kahler quotients is
that they provide examples of Einstein manifolds.

In 1988 Delzant classified symplectic toric manifolds. Thagn out to be symplectic quotients ©f" .

In particular, they inherit a complex structure frai’, making them into smooth Kahler toric varieties.
The images of their moment maps are simple rational polgspésfying certain integrality conditions. The
polytope determines the toric manifold together with itsgjectic form and torus actions. This theorem
of Delzant, while simple in retrospect, inspired a lot ofeirgsting mathematics. For example, the removal
of the integrality condition on simple rational polytopesdls to orbifold singularities. Symplectic toric
orbifolds were classified in 1997 by Lerman and Tolman in geahsimple rational polytopes with positive
integers attached to facets. Delzant’s work inspired Bgaymd Molino to initiate the study ebntacttoric
manifolds. The classification of contact toric manifolds ieen recently completed by Lerman. Lerman
used this classification to prove conjectures of Toth andi##l on toric integrable geodesic flows. Most,
but not all, of the contact toric manifolds turn out to be &&sa These contact toric manifolds are classified
by rational polyhedral cones.

Yet another direction inspired by Delzant's work is that gphr-Kahler toric manifolds. These mani-
folds were first studied by Bielawski and Dancer, who defirreht to be hyper-Kahler quotients of a flat
guaternionic vector space. They obtained a formula for thiti Bumbers of these manifolds in terms of the
corresponding arrangements of hyperplanes. Bielawskislewed that these are all complete hyper-Kahler
manifolds with torus symmetries of maximal dimension. A¢ #ame time, Bielawski obtained a classifica-
tion of toric 3-Sasakian manifolds. In 2000, Konno computtesl full cohomology ring of a hyper-Kahler
toric manifold in terms of the hyperplane arrangement. latarl paper Konno computed the total Chern
classes of these manifolds.

An important use of toric varieties, in both complex and slgnfic geometry, is to provides a large
“hands-on” family of examples. In particular, they havemeased in searches for examples of special Kahler
metrics.

A formula for the K&hler metric on a toric manifold, in termtnatural linear functions on the polytope,
was obtained by Guillemin in 1994. Guillemin’s work, in tuinspired Abreu, who studied other metrics on
symplectic toric manifolds. For example, Abreu obtainedkaplicit description of Bochner-Kahler metrics
studied by Bryant. He also obtained a combinatorial fornflaigheir scalar curvature and used it to explicitly
construct Kahler metrics that are extremal in the senseatdlfl. One question that remains open is to obtain
explicit formulas for Kahler-Einstein metrics @iP? blown up at three generic points; such metrics are only
known to exist.

Recently a great deal of progress has been made by BoyeckGalid their collaborators in proving the
existence of Sasakian-Einstein metrics on a large classmafct manifolds. These metrics, however, are not
known explicitly. One expects that an analogue of Guilléstfiormula for Kahler metrics on symplectic toric
manifolds to hold for the Sasakian toric manifolds. Thesériceare unlikely to be Einstein (this follows
from very recent work of Guillemin and Burns). However, itght be possible to construct the Sasakian-
Einstein metrics explicitly in terms of polyhedral cones.

There have been a variety of other applications of momensrmthe study of special metrics. Futaki
and Tian used localization to compute an invariant whichvijgles an obstruction to the existence of con-
stant scalar curvature metrics in a fixed Kahler class. Roria variety, Mabuchi expressed this invariant
in terms of the corresponding polytope. Claude Lebrun anchi®l Singer used moment maps to explore
scalar-flat Kahler metrics on ruled surfaces. “Extremaétrics and “central” metrics are ones for which
certain elementary symmetric functions of the Ricci cuvatare moment maps for Killing fields. An out-
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standing conjecture is whether the existence of constafdrscurvature metrics, or Kahler-Einstein metrics,
is equivalent to certain notions of “stability”. Resultstiis direction have been obtained by Tian (1997) and
Tian-Chen (as announced very recently). Another part sf¢bhjecture was recently proved by Donaldson
for the special case of toric manifolds in complex dimensonn a different direction, one can exhibit the
scalar curvature as a moment map in an infinite dimensiottageThis description is due to Mabuchi and
was used by Donaldson. It is analogous to Atiyah and Botttaémtial work on the Yang Mills functional.

One of our motivating goals was to determine which invagadgveloped in symplectic geometry for
understanding symplectic quotients (for example theioooeblogy ring) carry over to the settings of hyper-
Kahler, contact, Sasakian, and 3-Sasakian geometrigmrtitular, we proposed to explore the question of
surjectivity in contact and hyper-Kahler geometry. Adatially, we aimed to study natural metrics on such
quotients and to use this to seek explicit descriptionsgecil metrics on Kahler and Sasakian manifolds.

At the workshop, besides an under-representation of thelimdeinsional structures (contact, Sasakian, 3-
Sasakian), the lectures and discussions addressed matyssspmoment maps in a wide variety of contexts:
Kahler geometry and special metrics, applications to $gotjz topology, approaches through Lie groupoids,
algebraic geometric, several aspects of hyper-Kahlemgégy, and more.

Activities of the workshop

The formal activities during the workshop included resbaatks, survey lectures on special topics, and two

problem sessions, aimed as forums for discussion. We legliat this format has been highly successful and

very stimulating. Below, we will summarize some of the newalepments and open questions presented at
the workshop.

Moment maps and symplectomorphism groups

Let (M, w) be a symplectic manifold, araiff (A1) its group of symplectomorphisms. The grdbiff,, (M)
contains an important subgropft ., (M) of Hamiltonian diffeomorphisms.e., the subgroup generated
by time-one flows of Hamiltonian vector fields. The topolodyr® groupDiff ..., (M) andDiff, (M) has
been the subject of intense research over the past few years.

Miguel Abreu (Instituto Superior Tecnico, Lisbon) (joint work with Granja and Kitchloo) reported
on recent progress on the topologyloiff,, (AM). The basic new input goes back to Donaldson, and uses
the moment map geometry for the action of a symplectomonphi®up on the space of compatible almost
complex structures. In conjunction with his earlier workyith McDuff, employing Gromov'’s technique of
pseudo-holomorphic curves, this approach turns out to tiEpkarly successful for a class of 4-dimensional
symplectic manifolds, including rational ruled surfaces.

Susan Tolman (University of lllinois at Urbana-Champaign)(joint work with McDuff) described ex-
citing new results on the fundamental group of symplectgrhism groups od-dimensional symplectic toric
varietiesM, i.e., spaces carrying an effective Hamiltonian action tfras of dimensior%dimM =2. A
well-known theorem of Delzant (see e.qg. [11]) states thelh spaces are completely determined (up to equiv-
ariant symplectomorphism) by the convex polytop&igiven as their moment map image. Moreover, one
can specify exactly which polytopes arise as moment pobgayf Delzant spaces. In their work, McDuff-
Tolman discovered a relationship between the topologyesymplectomorphism group of such spaces with
the shape of the moment polytope. This then leads to thewwitpproblem: Which Delzant polytopes ad-
mit a linear function so that the center of mass of the polgtdepends linearly on the facet position? The
solution to this problem allows them to prove that, for alt bufew exceptional cases, the inclusion of the
(compact) group of Kahler automorphism into the group ofiplectomorphism induces an isomorphism of
fundamental groups.

Victor Guillemin (M.L.T.) (joint work with Sternberg) described a very different astpaf symplecto-
morphism groups. He explained that for certain maps frontefidimensional manifolds into the group of
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symplectomorphisms, there is an intriguing notion of a moetmeap even if there is no Hamiltonian group
action! In his beautiful talk, he motivated how this type @ngralized moment map fits with Weinsteins
symplectic categorf27]. This is the “category” with object®bj symplectic manifolds\/, and morphisms
Mor(M;, M,) the canonical relations, meaning, Lagrangian submarsfofd/,” x M. (Here “category”

is put in quotes, since composition is not always definedr)o@ate applications of this theory arise in micro-
local analysis, in the study of families of Fourier integopkrators.

Moment maps and Poisson geometry

Poisson manifolds are manifold$ equipped with a Poisson bracKet-} on the algebra of smooth functions
on M. Symplectic manifolds are special cases of Poisson maisifethere the bracket is given as

{fi9}=Xr(9)

A Poisson structure determines a singular foliation (ingbese of Sussmann) whose leaves are symplectic
manifolds.

Rui Fernandes (Instituto Superior Tecnico, Lisbon)(joint work with Crainic). The Poisson bracket
descends to a canonical Lie bracket on the space of 1-forraspRoisson manifold. In this way, the cotan-
gent bundlel™ M acquires the structure oflae algebroid A global object ‘integrating’ this Lie algebroid is
asymplectic groupoid.e., a groupoid

S= M,

where S carries a symplectic structure such that both groupoid naa@doisson maps, and such that the
symplectic form is compatible with the groupoid multiplican. Not all Poisson manifolds admit such a
symplectic realizationThe precise obstructions were found a few years ago by RdasaCrainic [10]. In

his BIRS lecture, Fernandes explained how this theory estémthe presence of Poisson group actions. He
showed that ifM admits a symplectic realizatiofi, then the induced action afi is Hamiltonian with a
canonical moment map. (This moment map satisfies a cocynlditaan, and is a coboundary if and only if
the action on\/ admits a moment map.) Finally, Fernandez explained in wéeéctse 'symplectic realization’
commutes with reduction’.

Anton Alekseev (University of Geneva)joint work with Meinrenken [3]). APoisson Lie groups a
Lie group K with a Poisson structure for which the product map is Poissiris condition defines a Lie
bracket on the dual of the Lie algebra which integrates to the so-calleldial Poisson Lie grougd*. If K
carries the zero Poisson structure, then the dual Poissogrbup ist* with the Kirillov Poisson structure. A
construction of Lu-Weinstein [23] shows that any compaetdiioup/” admits a canonical Poisson Lie group
structure. Later, Ginzburg-Weinstein [14] proved thathis case, the dual Poisson Lie groli is Poisson
diffeomorphic tot*. However, no explicit form of such a diffeomorphism was kmovAlekseev explained
that for the groupg’ = U(n), there is a distinguished and very concrete Ginzburg-Weimsiffeomorphism

u(n)* — U(n)*.

The proof of this result (which verifies a conjecture of Fldsz-Ratiu [13]) is based on a study of Gelfand-
Zeitlin systems om(n)* andU (n)*, respectively. As a corollary, one obtains the followingehesting result:
There is a canonical diffeomorphism

v: Herm(n) — Herm™ (n)

from hermitian matrices to positive definite Hermitian nizgs, with the property that the eigenvalues of the
kth principal submatrix ofy(A) are the exponentials of those of thih principal submatrix ofd.

Groupoids and generalized moment maps

Markus Pflaum (Goethe Universitat, Germany) Differentiable groupoids can be interpreted as an interpo-
lation between the notion of a manifold and the notion of adr@up. In this survey talk, Markus Pflaum gave
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a general introduction to the theory of Lie groupoids (cR])1land explained two major applications of this
theory in symplectic geometry. The first application dedtb he integrability of Poisson manifolds by sym-
plectic groupoids (cf. Fernandes’ lecture). The secondieadn is Moerdijk’s approach [24] to orbifolds
via proper étale Lie groupoids, which is an important imi@et in the work by Pflaum—Posthuma—Tang on
the deformation quantization and index theory for orbifold

Henrigue Bursztyn (University of Toronto) presented a survey lecture on generalized moment maps (cf.
[9]). He explained how, quite generally, any Poisson mambeeh Poisson manifolds defines an infinitesi-
mal 'Lie algebroid’ action, and hence may be viewed as a moemmap. This includes ordinarg/-valued
moment maps, but also Lu’s [22] non-linear moment maps tpkadues in a dual Poisson Lie group*.

To include more exotic types of moment maps, one has to gorukpoisson structures to so-calledsted
Dirac structures In particular, any compact Lie group carries a naturalted<Dirac structure, and the as-
sociated moment map theory defines the g-hamiltonian spdedskseev-Malkin-Meinrenken [2]. Among
the advantages of this approach is that the somewhat mysserinimal degeneracy conditions’ become
very natural. Furthermore, the techniques work well alsmtm-compact Lie groups, as well as for complex
Lie groups.

Topology of symplectic quotients

Let (M,w) be a symplectic manifold, equipped with a Hamiltonian acitd a Lie groupk’, with moment
map ®. A standard result of Marsden-Weinstein asserts that usdi¢égble assumptions, treymplectic
guotient

M)|G=®"0)/G

inherits a symplectic structure from the 2-form dh It is a fundamental problem in symplectic geometry to
understand the geometry and topologyéf/ GG in terms of the equivariant geometry of the original spate

Greg Landweber (University of Oregon)(joint work with Harada [18]). In this survey lecture, Lanew
ber gave a general overview of equivaridiittheory (the generalized cohomology theory given as the
Grothendieck ring of equivariant vector bundles) in thetemhof Hamiltonian group actions. He explained
the K-theory analog of the Atiyah-Bott Lemma, which says that x¢heory analogue of the equivariant
Euler class is not a zero divisor. As a result, one obtaihSteoretic analogue of the Kirwan surjectivity
theorem. As Landweber remarks, the torsioriirtheory is better behaved than that in cohomology with
integer coefficients. Essentiallis-theory eliminates just enough torsion for Atiyah and Bo#t‘fguments to
work.

Liviu Mare (University of Regina) (joint with Harada, Holm and Jeffrey [17]). Classical resubf
Atiyah [6], Guillemin-Sternberg [15] and Kirwan [19] sayatfor any compact torus, and any Hamiltonian
T-space with proper moment map, the image of the moment mapads\aex polyhedron, and the fibers of
the moment map are connected. Atiyah-Pressley [8] provéditas convexity result for the maximal torus
T in the standard extension of the based loop gr@adpfor a compact, simply connected Lie group. The
main result presented in this lecture says that also in e, he fibers of the moment map are connected.

Nick Proudfoot (UT Austin) ([25]) Suppose= is a reductive algebraic group, acting on a variéty
Then the cotangent bundlg*@ has an algebraic symplectic form, and the lif@@eaction is Hamiltonian
with an algebraic moment map. In his talk, Proudfoot disedghke relation between the symplectic quotient
of T*(Q, with various GIT (geometric invariant theory) quotienf<a

Kahler geometry and special metrics

A Kahler manifold is a manifold with compatible complex asyimplectic reduction. The presence of a com-
plex structure leads to stronger versions of some of thdtsssmoment map geometry.
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Reyer Sjamaar (Cornell University) (joint work with V. Guillemin [16]). For Hamiltonian torusca
tions onKéahler manifolds Atiyah [6] had proved an important refinement of the contyetieorem: Not
only is the image of the moment map a convex polytope, butdhtfee moment map image of any orbit
closure is convex. (Note that orbit closures need not be #fmsmdomanifolds.) Brion generalized the result
to actions of a complex reductive group. The results preskintthis lecture generalize this result even fur-
ther, to actions of a maximal solvable subgroup. Two intérgsexamples of Borel-invariant subvarieties of
a Hamiltonian KahleG-manifold are: (1) Generalized Schubert varieties (inticetl by Biatnicky-Birula,
and (2) the co-called facial varieties. That is, for eactefatthe moment polytope there is a certain variety
whose moment map image is the given face. (In general, the@i-invariant subvariety with this property.)

Vestislav Apostolov (UQAM) (joint work with Calderbank, Gauduchon, and Tonnesenefnian [5]). In
recent work, Apostolov and his coauthors introduced thsnatf Hamiltonian 2-forms on Ehler manifolds
These are closed differential forms of bi-degféel), defined as solutions of a certain linear differential
equation on the Kahler manifold. Hamiltonian 2-forms erifor example, in the theory of Bochner-flat
or conformally Einstein Kahler manifolds. Apostolov'sctare was concerned with the local and global
classification of Hamiltonian 2-forms. As applications, digained new examples of so-calledhotoric
Kéahler-Einstein manifolds

Hyper-K ahler geometry

Hiroshi Konno (University of Tokyo) gave a survey lecture on the geometry and topolgy of hymarét”
quotients. Examples for such quotients include: toric miEhler manifolds, hyper-Kahler polygon spaces,
the moduli space of torsion free sheavegBnand Nakajima quiver varieties.

Tamas Hausel (UT Austin)explained techniques for the computation of cohomologygsoof hyper-
Kahler manifolds, such as moduli space of instantons equiarieties, representation varieties, and moduli of
Higgs bundles. The techniques are: (i) global analysis terdene the space di?-harmonic forms (this ap-
proach is motivated by Sen’s conjecture); (ii) circle-emquiant cohomology techniques (motivated by ideas
of Nekrasov-Shatashvili-Moore) and (iii) calculation @fta functions by arithmetic harmonic analysis (mo-
tivated by mirror symmetry).

Graeme Wilkin (Brown University) (joint work with Daskalopoulos and Wentworth). In their 298
paper, Atiyah and Bott [7] used Morse theory of the Yang-Milinctional to study the topology of the
moduli space of semistable vector bundles over a RiemarfacsurWilkin described a similar technique for
the moduli space of rank 2 semi-stable Higgs bundles. A cmawgdn in this example is that the moduli
spaces are singular, and hence the method has to refinectttheakingularities into account. A main result
of this approach is a proof of Kirwan hyper-Kahler surjeityi for some rank-2 Higgs bundles.

Moment maps and path integrals

Jonathan Weitsman (Santa Cruz) Quantum field theory is a source for many exciting predictio mathe-
matics, mostly based however on non-rigorous 'functiomigdral teachniques’. A prototype is Witten’s for-
mulas [28] for intersection pairings, based on path integaktulations for the Yang-Mills functional (norm
square of the moment map). In his talk, Weitsman indicatatlithsome case, these path integral arguments
can in fact be made rigorous. The main techique is a new aarigin of measures on Banach manifolds
associated to supersymmetric quantum field theories. Aspbes, he discussed the Wess-Zumino-Novikov-
Witten model for maps of Riemann surfaces into compact Laeigs, as well as 3-dimensional gauge theory.

Open problems

In addition to the traditional lectures, we ran two problesasions during our week at Banff. These sessions
were meant to foster discussion and to identify open probletevant to the workshop. Each session had a
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moderator who solicited the open problems from the audieanddranscribed them onto the board. We used
a format very similar to the problem sessions run at the waogs at the American Institute of Mathematics
[4]. We present here the record of the problems discussé@se tsessions.

Compactification of cotangent bundles

Problem 8.0.1 (N. Kitchloo) Let X be a compact manifold. Does the symplectic maniféitlX, w) have a

“natural” compactification (Y, @) so thatw|r- x = w?

Several commented that this question is a bit misleadingedi* X has infinite volume. We may modify
it to ask about the disc bundle i X .

Nick Proudfoot pointed out that this is equivalent to askirigether or nofX is a Lagrangian submanifold
of some compact symplectic manifold.

Eugene Lerman noted that this is true f§r= S3, and is true more generally X is a Riemannian
manifold with a periodic geodesic flow: then we may “clit* X with respect to the energy functional. For
example, we may do this wheki = S3 or whenX is a Zoll surface. Of course, if not all periods are the
same, one may end up with an orbifold.

If X is a complex manifold, there is a natudl action on the fibres; however, this action is not symplec-
tic.

Allen Knutson commented about the case whérs a real algebraic variety. TheXi is the real locus of
X (C), a complex algebraic variety. L&t be a desingularization of the closure®fC) in projective space.
Note that the singularities are all far frol. ThenX still sits inside as a Lagrangian submanifold.

Eugene Lerman pointed out that we may takéo be Thom space ¢f* X or the one-point compacti-
fication. If we view this as a symplectic stratified spa&eis a Lagrangian submanifold. This may not be
“natural”.

Markus Pflaum mentioned that a similar question was addiesg21].

Circle actions and the Hard Lefschetz Property

Let (M, w) be a2n-dimensional compact symplectic manifold. Consider th@ ma

L:H' (M) — HT*(M)

¢ — [w]Uc.
We say that\/ satisfies thédard Lefschetz property
L H % (M) — H"TF(M)

is an isomorphism for eadh< k < n.

Participants note: All compact Kahler manifolds satisfgrtl Lefschetz. Specifically, i/ is a projec-
tive variety, thenw is the restriction of the Fubini-Study form on projectiveasp, so the Kahler class is
the Poincaré dual of a hyperplane section. IS the intersection with this hyperplane section, and Hard
Lefschetz holds.

Problem 8.0.2 (Y. Karshon) Suppose thatM/, w) admits a Hamiltoniars! action with isolated fixed points.
Does(M,w) satisfy the Hard Lefschetz property?

This problem has been around for at least 13-14 years; Yaebisre of its origin.

Reyer Sjamaar comments that his student Yi Lin has workedrefaged question. Symplectic quotients
often inherit nice properties from the original manifolfitie original manifold is Kahler, so is its symlectic
quotient. Yi Lin has shown that symplectic quotiedtsnot inherit the Hard Lefschetz property.

Nick Proudfoot asked why having an action should say angthimout Hard Lefschetz. Yael Karshon
replied that having a Hamiltonian action with isolated fixgdnts is a very strong assumption.

Reyer Sjamaar pointed out that, by a result of Susan Tolmdrdanathan Weitsman, if th&' action is
in addition semi-free, thei *(M) is isomorphic as a ring té/* ((P')*). Under the isomorphisniy] maps
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to the class that is the product of Fubini-Study 2-forms ake$ the first Chern class to the first Chern class.
Thus the Hard Lefschetz property holds for these examples.

Nitu Kitchloo asked if it makes any difference.ifis integral. Then we may classify by a map taC P°.
This gives a principles! bundleP over M, and Hard Lefschetz is equivalenttt* (P) being a “very small”
cohomology ring. This follows from the Leray-Serre speltesuence for the cohomology of the total space.

Sue Tolman points out that an easier version of this probteas ifollows.

Problem 8.0.3 (S. Tolman)Are the Betti numbers gf/ unimodal? That is, do they satisfy

B < B3 < < Bray

and
B < By < -+ < Brair?

Zo-graded (“super”) symplectic manifolds and reduction

Let M be aZ,-graded symplectic manifold (for a reference, see [20])atli&, M is locally a manifold, and
over each open sét, we have a trivial bundl& = V' x U. The “functions” onlU areC>*(U) @ A*(V'). The
“odd” variables live in “flat” directions corresponding 10 (“ectoplasm has no topology!”). This is one way
to define a super manifold. Extend this to global structuredighing. Asymplectic formin this setting is
anti-symmetric on the even (standard) directions and sytnicran the odd ') directions.

Consider the case where the space of odd variable seems NOTa#te M/ = pt. Then we have only an
odd vector spack and the “symplectic form” is a Euclidean metric (inner proguForG C SO(V) acting,
we can define a moment map. It seems that the “symplecticentdtvill not necessarily be &,-graded
symplectic manifold in the above sense.

Now consider the “quantization,” which is the space of fimmts on the manifold. This is the spinor
representatio§ (V") of the Clifford algebra of V. Now restrict to the G-invarigpart to “reduce” the “quan-
tization.”

Problem 8.0.4 (S. Wu) What is the classical analogue of “reduction” so that quaation commutes with
reduction? How may we generalize the concept of graded ggtipinanifolds to include such examples?

Problem 8.0.5 (S. Wu) Give examples of mixed odd/even cases.

A partial answer to this second question was given by Greglwaier: coadjoint orbits of Lie super-
groups fall into this situation.

Symplectic reduction and GIT quotients

Let M be a Kahler manifold and a connected complex non-reductive affine algebraic grotipgion M.
Let K be the maximal compact, but note tltat4 Kc. K acts onM by isometries.

For example(G could be the group af x n invertible upper triangular matrices, and then we havine
compact torugU(1))".

Problem 8.0.6 (A. Knutson) Is there a notion ofs -equivariant moment map
®:M—G/K

so that the symplectic quotient &f by K is homeomorphic to the GIT quotient df by G, when the GIT
guotient makes sense?

Jonathan Weitsman commented that a reference might be Mgaeg's thesis, which contains a gener-
alization of [2] to moment maps with values in symmetric ggdiowever, this may be restricted to the case
whenG is reductive.

Allen Knutson continued that Problem 8.0.6 is perhaps nmistésting wheids is unipotent, and in this
case, K = 1. So in this case, can we view the GIT quotientldfby G as a real symplectic submanifold of
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M? Topologically, the stable set is(&bundle, which topologically has a continuous section.his tase,
topologically, the GIT quotient is a submanifold. Here thE @uotient is a quotienfi/* — M*/G, and
sinced is contractible, this fibration has a continuous section.

Reyer Sjamaar pointed out that(fis the maximal unipotent of a reductive gro@pNhich also acts on
M, then this GIT quotiend///G exists, and there is a nice choice of such a seqtibn— A */G. Namely,
take the inverse imagg ! (C), whereC is a Weyl chamber fofZ, and¢ is a moment map for a compact real
form of G.

In a later discussion, Allen Knutson and Gideon Maschlentba natural answer at least to the question,
“Is there a moment map?” The issue of existence of a quotieedsfurther exploration.

Ricci curvature and proper moment maps

Let M be a complete Kahler manifold equipped with a Hamiltongomietric action of compact Lie group
with compact fixed point set and moment map bounded in soreetiin. Generally the moment map is not
proper.

Problem 8.0.7 (R. Bielawski) If we assume that Ricci curvature is non-negative (or even) zthen is the
moment map proper?

ExAMPLE: (Nick Proudfoot) The circles! acting onC? = C(1) ®C(_y) is a counterexample to the problem
without the assumption that the moment map is bounded in sir@etion.

EXAMPLE: The circleS' acting onC? = Cqy @ Cg) is a counterexample to the problem without the
assumption that the fixed point set is compact.

ExamMpPLE: (Roger Bielawski) The statement fails without the Ricaivature hypothesis:

Figure 8.1:S*-invariant complete Kahler metric ab with bounded moment map.

Symplectically, this is a disc. Since the volume of the maldifs finite, the moment is map bounded and so
not proper as a map f®. This can be done while making the metric complete.

Some partial results: the answer is yes (even without theatuire assumption), if the injectivity radius
of M has a positive lower bound. The answer is also yes for cidierss such that the fixed point sktis
connected and the cohomology class of the Kahler formicgstito /' is a multiple of the first Chern class
of F'.

The motivation for this problem is the following. Given akeaaalytic compact Kahler manifoldl/, there
exists a unique hyper-Kahler metric on a neighborhood@htlanifold) in its cotangent bundi&* M (due
to Feix and independently to Kaledin). This extends themgivetric, and the standaéd = S*-action (on the
fibres) is isometric and Hamiltonian. The holomorphic syeatic form on7™* M comes from the standard
symplectic form onM/. The fixed point set of this action &/, the moment map is bounded below, and the
Ricci curvature is zero. In general, we know very little aboampleteness of these metrics.

If the moment map is proper, then M must have NEF tangent leundlp to the Campana-Peternell
conjecture in algebraic geometry, this implies thatifis projective, thenV/ fibers over its Albanese variety
with rational homogeneous fibers.

Proving the above statement would provide a necessarytimmébr completeness of the metric @i M .
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Topology of the symplectomorphism group

Supposé M, w) is a compact symplectic manifold, and that the Chern clas®/ ) € H?(M;Z) is a negative
(or non-positive) multiple ofw] € H?(M;R).

According to Sue Tolman, this implies that there are no Hamian S actions on M. The idea of the
proofis to look at the maximum and minimum of tRevalued moment map. Thg' equivariant cohomology
of a point consists of weights, so it makes sesnse to dedtwdioe as positive and negative. The restriction of
the equivariant first Chern class to the maximum fixed point set must be negative, and at thennoimi the
restriction is positive. This restriction ef is the sum of the isotropy weights.

Problem 8.0.8 (M. Abreu) Whenc; is a non-positive multiple of the class of the symplectionfois the
group of Hamiltonian diffeomorphism&,am (M), contractible?

Problem 8.0.9 (M. Abreu) Whene; is a negative multiple of the class of the symplectic forrthesdentity
component of the group of symplectic diffeomorphis¥yspo (M), contractible?

The motivation here is that, under these hypotheses anddirgdo the above argument of Sue Tolman,
Ham(M) has no compact subgroups. One would believe that any topolof am (M) is related to some
compact subgroup. The tord$”, with curvaturec; = 0, motivates the two different statements for the
problem.

Note that for surfaces, we have the following cases:

e WhenX = S?, ¢; > 0 andHam(M) is not contractible, in fact it is homotopy equivalentd®(3);
e WhenX = T2, ¢; = 0 andHam(X) is contractible; and

e WhenX = 3, has genug > 1, thenc; < 0 andSymp(X) is contractible.

Thus, for surfaces, the statements hold.
A related problem is the following.

Problem 8.0.10 (M. Abreu) Is the group of compactly supported symplectomorphisiédtontractible?

Smale answered this question in the affirmativerfot 1, and Gromov proved the result far= 2.

Sasaki-Einstein metrics

Recently the physicists, Gauntlett, Martelli, Sparks, @faddram have constructed explicit Sasakian-Einstein
metrics onS? x S3. These even include irregular Sasakian-Einstein metriosr@the flow of the Reeb vector
field has non-closed orbits. They are the first examples df metrics and actually give counterexamples to
a conjecture of Cheeger and Tian. The metrics are relatexts Kahler-Einstein metrics found in the late
1980’s by Page and Pope, and generalize to higher dimensiovess then shown by Martelli and Sparks that
these Sasakian-Einstein metrics are related to toric cbgeometry. It turns out that for a certain choice of
contact form, the characteristic foliation is regular amelibase space is a Hirzebruch surface, and for another
choice of contact 1-form one gets the Sasakian-Einsteiricaet

Problem 8.0.11 (C. Boyer)ls it possible to develop a general theory of these strustire

Boyer believes that such Sasakian-Einstein metrics shedisd on thek-fold connected sums o2 x S3,
but currently there is little hope of getting explicit mesgi One must prove existence theorems. This is the
hard part as there are some real subtleties. First the regamgact structure over Hirzebruch surfaces does
not give positive Ricci curvature, because generally Hiraeh surfaces are not Fano. For quasi-regular
contact structures, this can be overcome using certairchrdimisors to shift the orbifold canonical divisor
to be Fano. Boyer does not yet understand how this works inrtegular case though. Given this, the
techniques that we have been using to prove the existencasak&n-Einstein metrics do not work here.
The singularities of the paiwariety, orbifold anticanoncal divisor) are not Kawamata log terminal.

Apostolov mentioned a recent paper [26] where Wang and Zbwuepthat Kahler-Einstein metrics exist
on toric Fano manifolds if and only if the Futaki invariantwshes. Thus, the program is to generalize the
Futaki type invariants to the Sasakian setting. Hopefutly oan describe these Sasakian Futaki invariants as
functions of the weight vector one gets by writing an arbitf@eeb vector as a linear combination of a basis
for the Lie algebra of the torus.
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crosoft Research), Gordon Slade (University of BritishuDalbia)

Background

Equilibrium statistical mechanics is the mathematicatfeavork created by Gibbs for predicting macroscopic
properties of matter from a microscopic description. Witthis framework thermodynamic functions of
state such akemperatureandentropyare defined in such a way as to satisfy the laws of thermodyasarim
principle the formalism determines the model specific retetalled the equation of state. The first example
of such a prediction is the famous ideal gas |&v= (n/V)RT relating pressuré® to the number of
atoms/volume and temperatufe This is the equation of state for an assembly of non-intergparticles.
This equation of state is notable for having no singulasitie the physical domaifd® > 0 the pressure is
a smooth function of temperature. However interactingesystwill not in general relate thermodynamic
variables in a smooth way and therefore the equation of B&singularities which reflect phase transitions.
For example the density of water changes discontinuoustyfasction of temperature at the boiling point.
In practice the determination of the complete equationatksis not realistic for systems with interactions,
but the nature of the singularities, the exponents of poasrdivergences at these singularities, are more
accessible. Thus these singularities have been the focesedrch.

The basic setup for equilibrium statistics is a probabiipace() whose pointsv € 2 are possible
configurations of the physical system and a probability memasalled thé&ibbsmeasure which has the form

1 .
Ee‘ﬁH(‘”) x Uniform Measure

whereg is proportional to the inverse temperature dids the energy of the system in configuration Z
normalises the Gibbs measure so that it is a probability orea¥’ is called the partition function (of and
parameters itil).

In the context of polymer physics we are interested in thentlbelynamic properties of large molecules
calledpolymersformed by atoms or smaller molecules arranged in a chainharabpologies such as trees
(branched polymejsor rings. The subunits from which the polymer is formed aecl monomers

The goal of the physical chemist is to predict the propenifethe polymer starting with knowledge of
the forces acting between the monomers. The desired prepartiude the average size of the polymer
as a function of the number of monomers in the polymer, whemtimber is large. Size is measured by
diameter or, in the case of chains, end-to-end distance. siieg can exhibit discontinuities when parameters
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such as temperature are varied. In other words a long chdiecoie such as DNA can suddenly change its
conformation and therefore its size. These discontimuéie calledheta phase transitions

The medium in which the polymer is immersed is called shévent Instead of starting with detailed
information on the solvent molecules and the forces thabatween them and the monomer it is common
to leave out any explicit description of the solvent and siggpthat the forces experienced by the monomers
have been adjusted to take into account the effect of thesblin physics this is expressed by the words “the
interactions are equivalent to a simplified model witteffiective interactioh The idea is that a complicated
model may have a large scale structure that is the same agpkesimodel and we may hope to classify all
models into equivalence classes labeled by these simpleéelsid=or example, consider a polymer modeled
as a simple random walk: there is a first monomeKgat= 0 and then the next one in the chain occupies
a positionX; randomly chosen nea¥X, according to some probability densjtyand then the one after that
X5 is chosen independently according to the same density btiteckon X, ..., i.e. we have a Markov
chain Xy, X1, ... of random variables whose law satisfieéX,;,; = z|X; = y) = p(x — y). The density
p(xz — y) is likely to be very complicated, being determined by micaysic chemistry. However the theorem
of Donsker [16] tells us that if we scale the random varialslesis to see only the large scale structure by
looking at the chain from far away,

. _ 1
Y; :TIEI;OT "Xy, v= >
then the form o is not important. All that will matter is the matrix of secombments ofp. This is called
taking thescaling limit No matter how we choogethe scaling limit will be a continuous random pattit)
called Brownian motion. The probability law of Brownian riast is completely determined by the matrix of
second moments. All different choicespoivith the same second moments give rise to the same scaliitg lim
One can take this a step further and show that there is aidinedependent scaling such that the scaling limit
is isotropic, i.e., standard Brownian motion. In this model see a good example of the notion afrdical
exponentnamelyv. The existence of the scaling limit for= 1/2 implies that the typical random walk with
n monomers will have an end-to-end distancef/?).

The Donsker theorem is an ultimate version of the Centraltiitmeorem, but the theory of scaling limits
starts where the central limit theorem ends. For examplalafitg a polymer by simple random walk is
rather optimistic: we know that different monomers canraaiLpy the same position so we ought at least to
consider that, and adopt as a better modsélbavoiding walkMore generally we should consider attractive
and repulsive interactions. The simple random walk modtdésanalogue of the ideal gas mentioned in the
first paragraph. Once we introduce interactions the existeri a scaling limit for some is still largely
Terra Incognita. We think the scaling limits exist becauseoan prove they do in a small number of cases
and because this belief now permeates theoretical physlicsst all theoretical physicists work on models
which are vast simplifications of reality. They do so becahsg think their models classify the large scale
structures of reality. The long term health of their entegmwill be improved if we succeed in adding to
the list of cases where this can be proved to be true. As wighhand problem, the struggle is spinning
off new developments in mathematics and has formed a nicenconity of researchers with very different
backgrounds.

Self-avoiding walks the archetypical problem that embodies a combinatosja¢et of polymer physics.

In this model we generally start with a simple cubic lattiég hoping that the scaling limit will make the
lattice invisible. The points iZ. are called sites and they represent the possible positfcmsnomer. A

long chain molecule consisting @f monomers is represented as a sequenee (wy, . .. ,w,). We define

the energyH (w) of the polymerw to be infinite ifw has a self-intersection and zero otherwise. This reduces
the role of3 in the Gibbs measure to casés= 0, in which case the Gibbs measure is the standard measure
on simple random walk and > 0, in which case the Gibbs measure is the uniform measure wutteet of

Q) consisting of self-avoiding walks (SAW). These are the sagasv = (wo, . . . ,w,) consisting ofdistinct
nearest neighbour sites. Thus the temperature appearsriviah way in this model. The fundamental
guestion for this model is what is the right scaling: doesehexistr such that the scaling limit exists and
what is that limit? How does the end-to-end distance of aetfiding walk grow as a function of?

Percolationis the archetypical model for a phase transition. We agairt sfith the simple cubic lattice
Z%. An unordered paifz, y} of nearest neighbour sites is called an edge. Each edge ceitheeopen
or closed Think of open as meaning that fluid can pass frerno y and closed as meaning that it cannot.
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A configurationw of percolation is a possible choice of open/ closed for eeglye. We make this choice
independently for each edge; edfe y} is open with probabilityp and closed with probability — p. In
this model the connection to Gibbs measures is not appaun¢thére is a connection called th@rtuin —
Kasteleyn representation which will not be discussed herglays the role of temperature as follows: the
sites of the lattice fall into clusters connected by openesdgOne can ask whether there is an infinitely
large cluster. Fod > 1 there is a critical probability..(d) such that forp > p. there is an infinitely large
cluster whereas fgr < p. all clusters are finite. Thus the probability that the oriligs in an infinite cluster
is zero for an intervap € [0,p.) and non-zero fop € (p.,1].! The outstanding open questions concern
the existence and values of critical exponents. An exanifpdecnitical exponent is the expected size of the
cluster containing the origin as a functigm— p..)? for p > p.. In d = 3 dimensions the existence ofand
[ has not been proved.

One may wonder what this model has to do with polymers. At tiised it was a separate subject but
now both models are slowly becoming united in a larger fraorévof random geometry and there is a
commonality of concepts and techniques.

Scaling limits in two dimensions

The 1984 paper by Belavin et al. [8] theory started two desadgrogress by theoretical physicists in two
dimensional statistical mechanics based on conformaltfieldry (CFT) and more recently also string theory
and quantum gravity. In addition there are exact but noardgs solutions to lattice models based on the
Bethe Ansatz and Yang Baxter equations. We conflate thegecssioinder the initials CFT.

The book [15] provides a good review: the range of statisticachanical models for which critical
exponents can be calculated (in advance of knowing if thést!g3s remarkable. Mathematicians have yet
to find their Euclid for CFT and so they have to regard theseutations as conjectures. There are partial
axiomatic programs, for example [18].

The methods of conformal field theory give information onretations but less directly on random geom-
etry. The family of stochastic processes SLEudied in the work of Lawler Schramm and Werner over the
last five years describes the geometric objects withinssizal mechanical models. For example, as reviewed
in the lecture by Lawler and in [34], the distribution on siempandom curves prescribed by SLE(8/3) is the
only possible scaling limit for SAW if the scaling limit exgsand is conformally invariant. SLHs effective
for calculations and some scaling exponents suach lz@ve been verified to be equal to the values provided
by Nienhuis [39] by CFT (actually by first mapping to Solid ooli models). Thus there is still a very hard
open question to show that the discrete process approachesamally invariant limit. Another fundamen-
tal question is to give the "correct” parametrization of geh which would correspond to the limit of the
natural discrete parametrization. This was discussedsatrtbeting by Lawler and in detail by Kennedy who
has examined it by Monte Carlo simulations. Here is a briefraary of Kennedy’s lecture.

“SLEg,3 is believed to describe the scaling limit of the two-dimensil self-avoiding walk. However,
these two processes have different natural parametenzatiSLE is parameterized by the capacity of the
curve, and the length of the SAW leads to a natural paranzetéyn in the scaling limit. One can reparam-
eterize the SAW using its capacity. Monte Carlo simulatiaese presented which indicate that with this
parameterization the SAW process agrees with the SLE psodesnore interesting question is to find the
parameterization of the SLE that would make it agree witt8A®/ with its natural parameterization. Lawler
gave several properties such a parameterization shoutd-Hagal dependence on the curve, additivity and
an appropriate transformation property under conformadswehich reflects the Hausdorff dimension of the
curves. A possible candidate is what probabilists call fith Variation” wherep is taken to be /v. Monte
Carlo simulations presented showed that while this paranzetion makes the SLE agree with the SAW
for one random variable, for another random variable them@ughly 6% discrepancy. Understanding the
source of this difference is an important open problem fourke simulations. Several lines of attack have
been developed as a result of conversations with othercjpatits at the conference.”

For percolation the geometrical object is the boundary oeecqlation cluster for the critical model.
Recalling that the critical clusters in percolation arewndo be finite in dimension two one needs a method

1In dimensiond = 2 and in very large dimensions it is known that there is no itdicluster ap..
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to constrain them to be as large as the scaling limit stas the scaling limif. — o is taken. This can be
achieved by by using boundary conditions that force a paticol boundary to pass from one side a region
of scaleL to the other. The scaling limit of the resulting boundaryveuhas been identified with SKE
Remarkably, existence and conformality in the scalingtliwas established by Smirnov, not for the whole
model, but for expectations of a specific crossing probgj#is].

In this conference Camia gave a report on his work with Newimanhich the full scaling limit and
conformality of percolation has been established. Theialpoint is that this work considers the set of all
interfaces as opposed to one forced by boundary conditidnis.is fundamental progress because one wants
to make contact with the methods of CFT which are based ororarfgélds and one wants to identify the
interfaces with contours of the random field. Here is a brisfisiary of the talk by Camia.

“In my talk, | discussed some aspects of the convergenceitidadrpercolation interfaces to their con-
tinuum scaling limits, following a recent joint paper witth&les M. Newman [14]. More specifically, |
looked at the “percolation exploration path,” conjectubyddded Schramm to converge to SLE(6) and used
by Stanislav Smirnov and Wendelin Werner to rigorously obterious critical exponents for percolation,
and at the set of all percolation interfaces. Percolatico ifar the only model for which one can go beyond a
single interface and prove the scaling limit of the set ofrakbrfaces. This gives rise to a “full” scaling limit
in terms of fractal, continuous loops in the plane. Similajeats should arise when taking the full scaling
limit of other models, like Ising and Potts models, and stdag described by conformal loop ensembles
(CLE) as described by Scott Sheffield and Wendelin Wernehnéir talks. Such relations, for models other
than percolation, are still conjectural. In the case of pkation, the full scaling limit was first constructed in
a joint paper with C.M. Newman [13].

The field is rapidly moving forward, and various talks at theating showed that the understanding of
the continuum counterpart of various discrete models ishi@g its maturity. There is hope that this will lead
in the future to proofs that the beautiful continuum objetescribed by Sheffield and Wendelin are indeed
the continuum scaling limits of discrete models, extendimgresults known for percolation to Ising, Potts
and O(N) models.”

The importance of making complete contact with CFT is ilattd by “Duplantier duality”. Using CFT
Duplantier noticed that, in the scaling limit, for a spin nebdr percolation, there must be a relation between
the SLE that describes the boundary of a cluster and the SatEelscribes the outer boundary of a cluster,
namely Duplantier dualityx — 16/x. The continuing inspiration coming from these lines of thbuis
evident in this summary of his lecture.

“l presented a unified heuristic point of view on the Stoctcdsbewner Evolution (SLE). It consisted in
relating critical exponents for conformally invariant damm paths in the plane to similar ones on a random
surface with fluctuating metric. The key ingredient was thecalled Knizhnik, Polyakov, and Zamolod-
chikov (KPZ) relation between these exponents. The stattisi® relation is to be considered as true in
theoretical physics, but conjectural from the point of viefarigorous mathematics. The machinery it pro-
vides, however, is strikingly efficient. Any exponent fromEScan be predicted this way. This was illustrated
in several instances:

The dualityx — 16/~ which is believed to map hulls of SLEs to their external baaniek is reflected by
a similar duality built in the two analytical determinat®af the inverse KPZ map.

The pressure effect on an SLE path coming from a drift termtrefngthp in the Brownian source of
the Loewner equation of that path (t8€ F(«, p)), can be analyzed through the KPZ relation in terms of an
equivalent number of multiple SLEs, or of a certain equimtieimber of Brownian paths.

The “shadow exponents” describing the probability that s@rnownian paths screen some others from
the exterior can also be calculated systematically in teritisese Quantum Gravity equivalences.

The multifractal harmonic and rotational spectra of the SiLEEves have been obtained from that ap-
proach.

A challenge is now to establish the proper rigorous form @ filndamental tool coming from conformal
field theory.”

And here is a summary of Cardy’s lecture which also undeslthe need for a complete understanding of
CFT.
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“There has been a very fruitful interdisciplinary connentiormed between the study of critical behaviour
by theoretical physicists and the approach to random $pgatiaesses of probabilists. In recent years this
has been brought to the fore by the spectacular progress thematicians using ideas such as SLE, which
have reinterpreted and put on a more systematic basis thereasults of the physicists in conformal field
theory, inspired by ideas which were born in string theorgwiNhis subject is reaching a point where there
is a mutual flow back and forth between the SLE ideas and CFTtalkygave a very simple example of
this interdisciplinary thinking, concentrating on a snrakult which, however, both illuminates what should
be the correct extension of SLE to many random curves, andogighe physics side relates to potentially
measurable phenomena in the quantum Hall effect.”

Conformal Field Theory is the study of correlation funcgdor a random field on a Riemann surface.
The simplest example is called the (massless) Gaussiarofielide complex plan€. This may also be the
fundamental example since a method called the Coulomb gassentation is used to write correlations of
other CFT’s in terms of the Gaussian field. One immediatedgaliers that the Gaussian free fiélds not
actually a random field, but instead is a generalized randorction. This means that for each test function
/ on the plane there is a random variablg’) which would be given bys(f) = [ ¢(z) f(x) dz except that
¢(z) does not exist because there is too much oscillation atrarpismall scales. This would seem to be a
major obstacle to making a connection between SLE and tledfislel based on the idea mentioned above:
that scaling limits of interfaces should be contours of aaonal field. Thus we were excited by the lectures
of Sheffield and Werner in which contours of the free field waaned and related to variants of SLEHere
is summary of the lecture given by Werner who gave a talk basgdint work with Scott Sheffield.

“Motivated by identifying and understanding better the gible conformally invariant scaling limits of
various 2-dimensional models such as O(N) models or thg lsiodel, we define a natural property that these
continuous limits should satisfy:

We are considering random collections of disjoint simple-mested loops in a domaib. A sample is
therefore a collection of loopgy;,j € J). We assume conformal invariance so that one can define for any
simply connected domain such a ld®, (in a conformally invariant way).

Suppose now thad’ ¢ D. Then, one can define two sets of loops: Those that st&y ifior which we
say thatj € J) and those that exiD’ (for which j € I). One defined = D’ \ U,¢;7v;. Roughly speaking
the condition is that conditionally ob, the law of(y;,7 € J)is Ps.

If this is true for allD’, then we say thaty;) is a conformal loop ensemble.

We study various properties of these loop-ensembles. ticpkar, we show that

1) The outer boundaries of loop-soup clusters (relateda®tlownian loop-soup introduced in joint work
with Greg Lawler) are examples of such loop-ensembles. &bgamples are parametrized by the intensity
of the loop-soup. This works for alle < ¢y wherecy is a critical intensity.

2) In fact these are the only conformal loop-ensembles.

3) The level-lines of the Gaussian Free Field studied by &ohr and Sheffield are other examples of
such conformal loop-ensembles and they coincide with:ghease in 1).

4) One can construct all these conformal loop-ensembleSiiarelated processes, the SkEf — 6)
processes and the relation betweesndc is ¢ = (3x — 8)(6 — k)/2x Wherex € (8/3,4]".

High Dimensions

For dimensions above two nothing is known about the scalmdd of self-avoiding walk and percolation
until one gets to theritical dimension which is four in the case of self-avoiding walk and six in ttese

of percolation. Above the critical dimension there is a noeticalled theLace Expansionvhich one can
read about in the lecture notes of Slade [44]. The range dtilmess of this tool has expanded very greatly
from the original application [12] to a variant of self-adoig walk. In this conference Sakai reported on
a first time application to the Ising model. The significanééhis application is that it provides a way to
prove “universality” which is the conjecture that driveschuwof theoretical physics: that the scaling limit is
independent of details of the local interactions: refehediscussion at the beginning of Donsker’s theorem.
Sakai’s success should encourage us to look for ways toektemother spin models. Here is a summary of
the lecture by Sakai.
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“In this talk, | describe a lace expansion for the Ising modglich can be applied to prove Gaussian in-
frared asymptotics for the critical two-point function 1sing ferromagnets above four dimensions, assuming
that the dimensiod or the range of the spin-spin coupling is sufficiently larg®,[43]. As a consequence,
the other observables also exhibit the mean-field behawiaf £ 4 [1, 3, 4, 5]. The main point is that the
proof of these results does not require the reflection pisifil 7].

For reflection-positive models, it is known that the twosgdiunction obeys a Gaussian infrared bound
for d > 2. Although the nearest-neighbor model satisfies the reflegiositivity, other finite-range models
(e.g., the next-nearest-neighbor model) do not. Sincd tetails of the models should not affect the critical
behavior (i.e., universality), all these finite-range msaeust exhibit the same mean-field behaviordor 4,
no matter whether the reflection positivity holds or does mberefore, our approach using the lace expansion
is more robust.

The lace expansion has been used for stochastic-geonhetidckels, such as self-avoiding walk (e.g.,
[12, 21]), lattice trees and lattice animals (e.g., [20§rgolation (e.g., [19]), oriented percolation (e.g., [38]
and the contact process (e.g., [41]), to prove a Gaussiear@®f bound or asymptotics of the critical two-point
function above the upper-critical dimension. The lace espmn gives rise to a recursion equation similar to
the one for the random-walk Green'’s function, and this isfthendation of the Gaussian behavior for the
two-point function. The lace expansion for the Ising moded just been proved for the first time [42].”

Applications of the Lace expansion to percolation are atsthé news. The important development is
the analysis of a cluster constrained to be very large. Tha id that in critical percolation no cluster is
infinite but the slightest increase in the density of occdgiends will cause the critical clusters to link up
into an infinite cluster. In some sense one can thereforehgeifinite cluster before it has appeared. Here
is a summary of the lecture of van de Hofstad based on joinkwith Frank den Hollander, Antal Jarai and
Gordon Slade.

“The incipientinfinite cluster (1IC) describes the infingkister which is on the verge of arising in critical
percolation models. Kesten [31] first constructed the iiecipinfinite cluster for two-dimensional percola-
tion. Kesten's IIC describes the infinite cluster which istba verge of appearing at the critical value, and is
constructed by conditioning the origin to be connected fimity by an appropriate limiting procedure. This
construction of the 1IC is different in spirit as the one segi@d by Aizenman in [2], which is closely related
to the scaling limit and the behaviour of all critical clustén a large cube simultaneously, and is also studied
in [22, 23] in the high-dimensional case.

We discuss Kesten'’s results in two dimensions, as well agxtension by Jarai [27, 28] for the two-
dimensional case and give some of its properties, such dsrtsnsion and its backbone dimension, which
follow from the connection to SL§(see [31, 33]).

We also present the constructions of Kesten’s IIC for pertomh above the upper critical dimension. We
will give 2 different constructions for the IIC for sufficidyp spread-out percolation above six dimensions,
and 3 different constructions for the sufficiently spread-ariented percolation IIC above 4+1 dimensions.
We will also discuss properties of the IIC, such as its dinenand, in the oriented case, its scaling limit.
The high-dimensional results are taken from the papers2@425].

One reason to study Kesten’s IIC is that it is the natural @dnfior a random walk on a critical clus-
ter. Random walk on a super-critical cluster is expectedtwerge to Brownian motion, which is recently
proved by Berger and Biskup (see the talk by Marek Biskup)st&e [32] studied the random walk on the
two-dimensional IIC, and proved that it is subdiffusive. &lgo proved that a random walk ofsteps on a
branching process cluster scales like®, which suggests that a random walk on a critical branching ra
dom walk cluster conditioned to survive forever, has disphaent of order'/6. Since in high-dimensions,
Kesten’s IIC has similar scaling properties as criticalnaot@ing random walk cluster conditioned to survive
forever, this suggests that a random walk on the IIC hasatispheni:'/¢ aftern-steps. The latter problem
is still open.”

There are at least three further developments one shoulel foop (1) The Lace expansion applies to
models whose interactions are repulsive. A self-avoidiagkwith a small nearest-neighbour attraction is
not amenable to the Lace expansion. The best attempt so[#8]is(2) The critical dimension models are
not accessible to the Lace expansion. The Renormalisation3s likely to be the key to progress on these
models. You can see a start in this direction at [10, 11]. (8rlsastic models such dsue Self-Avoiding
Walk are almost Terra Incognita in dimensions greater than ongodd starting point is to develop more
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understanding of random walk in random environments. Heeesummary of the lecture by Biskup on this
topic.

“Random walk in random environmentis a subject of consioleramterest in probability community. One
particular setting concerns simple random walk on suptzatpercolation cluster. In 2003, Sidoravicius and
Sznitman proved that, in dimensions four and higher, sudk 8@ales to Brownian motion under the usual
diffusive scaling of space and time. Their proof uses hgahi¢ path-transience of simple random walk in
high dimensions and, as such, it does not seem to be gemdlalio include the "hard” dimensioms= 2
and3. In my talk, | have described the recent result — obtaineatlypivith Noam Berger — that establishes
the invariance principle for such walks in any dimension 1. The principal idea of our proof is to consider
the embedding of the percolation cluster ifité that makes the random walk &t martingale”.

Random walk in random environment gives an opening into thdysof walks which have attractive
self interaction because integrating over the environmenstructs a self interaction. A particularly nice
example is provided by the self-reinforced walk discussetié lecture by Rolles. Here is a summary of her
lecture. In her third paragraph she is referring to the faat this model is equivalent to a random walk over
an environment which has been integrated out.

“Linearly edge-reinforced random walk was introduced bwydainis in 1986. Diaconis asked whether
edge-reinforced random walk @ is recurrent or transient. As usually, the random walk itecalecurrent
if almost all paths visit all vertices infinitely often. Fdlt dimensionsd > 2, this question is still open.

Recently, progress has been made in studying the edgeregdfrandom walk on laddefs<{1, 2, ..., d}
and, more generally, on graphs of the fafm T" with a finite tre€l”: For large constant initial weights, recur-
rence was proved by Merkl and Rolles in [36] and [40]. A moreaded analysis was obtained in [37]. There,
it is shown that the edge-reinforced random walk on infirdgiggdlers has the same distribution as a random
walk in a random environment given by spatially decayingian edge weights. Convergence theorems and
estimates for the position of the random walker at largesiare given.

A crucial tool in the analysis is a representation of the edgeforced random walk on finite graphs as
a mixture of reversible Markov chains; see e.g. [29]. Transperator techniques are used to analyze the
random environment.”

Other models

Fortunately we are not constrained to work on the archefyplems, which are not always making good
progress. The archetypal problems arose by distillinglehges from other subjects to their simplest level.
New archetypes and fresh ideas will arise from problems sscthe localisation problems discussed by
Whittington and den Hollander. Here is a summary of theksal

“A random copolymer is a copolymer in which the sequence ohomoers is determined by a random
process and is then quenched. Suppose we have two immibgilitis, A and B, and suppose that one type
of monomer prefers to be in the A phase and the other prefdrs o the B phase. For instance, think of the
two monomer types as being hydrophobic and hydrophillictiiedwo liquids as oil and water. Depending
on the chosen parameters (e.g., temperature or relateaation strength) the polymer can localize at the
interface so as to optimize the numbers of monomers in thefepred phases, or delocalise into one of the
bulk phases to optimize the entropy of the system. One hasieechs to how the configurational properties of
the polymer are modeled (e.g., as directed or undirectéageiding walks, with possibly other appropriate
restrictions). Similarly there is some choice about thaitkeodf the interaction Hamiltonian.

The aim is to establish the existence of a phase transititmeisystem and to study the properties of the
phase transition curve. This can be done either at the trdymamic level or at the level of path properties.
Most work has focused on localization at a single infiniteifitgrface but there has been recent interest and
progress in multi-interface and random interface problents, as models of polymers in an emulsion.

An early paper on the directed walk model is Bolthausen amdHtidlander, Localization transition for
a polymer near an interface, [9], and some results on theaseltling walk model can be found in Madras
and Whittington, Localization of a random copolymer at aeiface, [35]. For a recent review see Soteros
and Whittington, Statistical mechanics of random copolsn@6]. There are important recent results on the



102 Five-day Workshop Reports

single interface problem by G. Giacomin, and work in progrs random interfaces by den Hollander and
Whittington.”

Jarai introduced us to self-organised criticality and #lations it has with models we already study such
as the uniform spanning tree. Here is a summary of his lecture

“In the last 15 years, a lot of attention was devoted in thespdsyliterature to so called self-organized
critical (SOC) systems. In these systems critical scalipjgears with a somewhat different flavour than in
the well-known examples of percolation and the Ising modimely, criticality is generated by a highly
non-local dynamics that is a result of a separation of scedéiser than a parameter passing through a critical
point. The main challenge in the area is to develop rigoroethnus to study SOC. For some SOC models
there is a close connection with a corresponding classiti¢dad model, which opens up the possibility
to study SOC via these connections. For example Chayes,eStemd Newman have shown the intimate
relationship between invasion percolation and criticatpkation. Dhar and Majumdar have established a
mapping between the Abelian sandpile model and the unifpanmsing tree, which is the — 0 limit of the
Potts model. In a rigorous approach to SOC, one of the firdilpnas is to establish the existence of infinite
volume limits, which can be difficult due to the non-localdrdction present. In this regard, recent progress
has been made for the Abelian sandpile model based on theciomwith spanning trees in dimensions
d > 4. Future challenges include extending these to lower dimasslt is expected that in d = 2 conformal
invariance plays a role, and therefore a description usitigiS to be explored”.

¢, From the world of Biology we have a lecture on Vesicles byBukn Rensburg.

“Vesicles in the biological world, such as blood cells, anewn to posses a number of different phases.
For example, red blood cells, which are normally shaped am@ented disk (also called "discocytes”)
become sickled shaped in individuals with cickle cell areemin addition, red blood cells could be burred,
pinched, pointed, indented, berry-shaped, etc., in eitbemal or pathological conditions depending on on
factors such as dehydration and membrane properties.|&gsippear to have a very rich phase diagram, and
some of these phases can be examined by building mathehmatidals of a vesicle.

Perhaps the simplest approach to a vesicle would be a twaee tlimensional discrete vesicle in the
square or cubical lattices. These lattice vesicles includdels such as square, partition and convex polygon
vesicles in two dimensions, and cubical, rectangular aadeppartition models of vesicles in three dimen-
sions. Curvature and osmotic pressure terms van be buildhietmodels by defining partition and generating
functions with activities conjugate to volume, area or pater. From a mathematical point of view these
models offer considerable challenges in combinatoricsiargtatistical mechanics, and tricritical scaling
appears to be the appropriate physical frame for a matheahdgscription.

In my talk | will present some results on models of three digi@mal cubical and rectangular vesicles
in a perimeter-area-volume ensemble. These models havdtrtical point and the values of scaling
exponents around this point is determined by the asympéamiidysis of the generating functions in both
cases. For example, in the volume-area ensemble, the vewssxponent has value2/3 in both these
models, and this transition is an inflation-deflation tréosibetween vesicles which are cubical or square
shaped”.

Finally there was an introduction to one of the outstandirgbfems of condensed matter physics: to
prove that adding a small density of randomly placed impgito a conductor does not make it an insulator,
at least in dimensions three or more. The first first fundaaiésgue is whether a Schroedinger operator with
a random potential has absolutely continuous spectrume ldea summary of the lecture by Aizenman on
joint work with Robert Sims and Simone Warzel.

“Spectral and dynamical properties of linear operator$ wittensive disorder are of interest for con-
densed matter physics, as well as the broad subject of mathesmof graphs and related structures.

An outstanding challenge in the field is to shed light on thisterce of extended states in the presence
of disorder. Such states play a basic role in conductiongrts of an “electron gas” and in the spreading
of vibrations in randomized systems. The converse of caimmfuis Anderson localization which was proven
to occur at high disorder, and is particularly pronouncddindimensions [47], in particular at d=1 where it
precludes extended states even at weak levels of the disorde
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The models discussed start from a well familiar Laplaciarthe incidence matrix on a regular graph,
which is then modified by incorporating the effect of disardepresented by random terms with a homoge-
neous distribution and a control parameter. Specific exasmule provided by:

i the discrete Schrdinger operator with a random potergiad,

i the Laplacian acting on functions supported along thessdyg a graph, whose edge length are stretched
by random factors.

Other models are not hard to formulate; the obstacles eemain their analysis are similar. The challenge
is to prove that if the dimension is high enough, and the disonot too strong, then the spectral measures
associate with the action of the random operators on logaitions have an absolutely continuous (ac)
component. Such delocalised states associated with atrigpesre expected to occur in dimensiehs 2.

The issues under study resemble a quantum version of pgoeglan that it concerns conduction, or the
spread of correlations, connectivity, etc., occurringtlgh a local mechanism but measured at a distance. A
common experience is that moderate dimensions,dike 3, are out of reach of mathematics. For present
case the spectral analysis has been most effective in diomedis= 1, where no extended states exist at any
strength of the disorder, and at the opposite extreme oféleegraphs, which in a sense represent the case of
infinite dimension. In fact, the latter situation is the ofdy which existence of delocalised states has been
established; a proof due to A. Klein [30]. The talk presers@@w method for establishing the persistence of
ac spectra on tree graphs [6, 7].

The main result is the continuity of the Lebesgue measuresét spectrum as the disorder is turned on.
The proof makes an essential use of the study of the flucnsmtibthe relevant Green functions, which are
bounded through a non-linear recursion relation whichelwsey on a tree. Useful input is obtained from
the analytical theory of the Lyapunov exponent. The neveddh for the continuity of the ac spectrum has
been applied also to the case of radial quasi-periodic patenThese allow to draw an instructive contrast
between the effects of radially correlated disorder veosigswhich is weakly correlated among different tree
branches.”
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Introduction

Computations for molecular systems work with a set of valiespresenting the microscopic state of the
systems, e.g., atomic positions, atomic velocities, v@wifthe simulation box. Most such computations can
be classified into one of two categories:

1. Sampling. Given the relative probability for differergtlues ofl’, calculate the expectation of some
observableDO(I"). An example is the probability of two biomolecules beingr{oovalently) bound
versus unbound.

2. Dynamics. Given the relative probability for initial vedsI"(0) and equations of motion fad /d¢)T'(¢),
calculate the expectation 6f(I'(¢)). An example is the position autocorrelation function. Thea
tions of motion may be deterministic or stochastic.

The probability for different values df is often specified by the ensemble the system is, see Sedion 1
It is important to note sampling computations commonly emmynamics but the dynamics is typically
unphysical.

We begin in Section 10 with a consideration of the models veeimsnolecular dynamics, and whether
we can justify their use over other, more physically regjshodels.

A major topic, discussed in Section 10, concerns the effafotiscretization errors in numerical trajec-
tories for deterministic molecular dynamics (MD). Due te thighly chaotic nature of the dynamics, the
numerical trajectory completely departs from the anafyfticajectory very early in the simulation. Yet nu-
merical experiments show that averages calculated frorh suoneous trajectories are close the correct
ones.

Section 10 considers problem 1, sampling, above. Thereoaighly two approaches: dynamical sam-
pling, which using uses continuous time deterministic ockastic dynamics, and Markov Chain Monte
Carlo (MCMC) sampling, which uses a Markov Chain to expldatesspace. In this section we consider
primarily the former class, which includes deterministidcemded Hamiltonian approaches and stochastic
Langevin dynamics. We also consider Hybrid Monte Carlo méshwhich combines aspects of dynamical
sampling with MCMC techniques.

Section 10 considers other topics in sampling. In particukaious Monte Carlo Markov Chain (MCMC)
methods are considered along with methods for speedingaiiprétie of convergence.

108
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Often we do not want to just sample configurations or statesefystem, but actual trajectories of the
system. An example of this is when we specify an initial camfégion and a final configuration and we wish
to be able to sample from the set of all trajectories that rfmvben them. Section 6 discusses this kind of
situation, which is known as sampling from path space.

For many systems microscopic models are simply to resteicti terms of the time and length scales that
are attainable with current computations. Section 7 dsesisoarse graining: replacing microscopic models
with mesoscopic ones that preserve the same effective lmelaf the system.

Models and Justifications

The main focus of the meeting was classical molecular dyesymihether determinsitic or stochastic. Since
we believe that fundamentally molecular systems are quaiated deterministic, using classical models—
particularly stochastic ones— requires some justification

Classical vs. Quantum

At the most fundamental level the dynamics of atoms and nuédsanust follow the rules ajuantumme-
chanics and the dynamics prescribed by Schrodinger’s isedberg’s equations of motion. The presentation
of J. Straub described the results of a careful study of thieecntar dynamics of vibrational energy transfer
within a protein. The predictions of classical models fa tholecular dynamics, based on both direct molec-
ular dynamics as well as the theory of “small vibrations” ormal modes of motion, were compared with
those of quantum mechanical perturbation theory. It wasdhtitat for the case of vibrational energy transfer
in a protein, classical dynamics can lead to poor resultghtime scales and pathways of energy transfer.
More attention must be paid to this issue if the ultimate ofje is to develop accurate numerical methods
for realistic simulations of the molecular dynamics of bmletular systems.

Stochastic vs. Deterministic

The use of stochastic equations of motion for (real) dynamiso requires an explanation: Let us start
from the assumption that the desired molecular system caesaibed by classical mechanics entirely and
correctly. This implies the existence of a microscopicestaand an associated Liouville operaidmwhich
completely characterize the molecular system and the timkition of distributionsp(T', ) in phase space
in particular, i.e.,

Py = Lp.
Almost all numerical simulations will work with a reducedpresentation over a smaller phase spgce
T. Crucial is the assumption that the time evolution over sachduced space is still Markovian and the
existence of a (perhaps approximative) Liouville opera&tds generally taken as granted. See work by Mori
and Zwanzig and, more recently, by Stuart and co-workersifmrous results. Note that we have to, in
general, assume thal corresponds to some form of stochastic ODE with the noiseqa® representing
forces from the missing degrees of freedom. The feelingan tbgard is that Langevin/Brownian dynamics
is not appropriate and that a more general form of the stdichasd dissipative coupling terms is required
(see dissipative particle dynamics (DPD)). Also, in preetihe missing degrees of freedom are in contact
with the system only on the boundaries. Although simulaiare sometimes implemented this way, it is
far more common to use periodic boundary conditions andahignteresting question how to handle this.
Constant energy simulations make sense really only for cutds in gas phase.

The Accuracy of Long Time Numerical Trajectories
—Why MD Works?

The primary focus on the mathematical aspects of molecylzauhics was placed on the long-time accuracy
of integrating Newton’s or Hamilton'slassicalequations of motion. Many of the paradigms in that field
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of research were derived from the early work on celestiallraaics, where the assumption of classical
dynamics is most certainly a good one.

In the case of classical MD, this question is posed for thficdif case of deterministic dynamics, specif-
ically Hamiltonian dynamics. The equations for Hamiltondynamics are

d q 0o I
EI‘—JVH(F), F—[p}, J—[_I O}’

for example,H (q,p) = %pTM_lp + U(q) whereM is a diagonal matrix of masses afdq) is potential
energy. Numerical evidence indicates that both (i) timeayes for steady-state sampling and (ii) ensemble
averages for time correlation functions are approximatelil from numerical trajectories. The challenge is
to explain why this is so.

One view

In the opening talk R. Skeel sketched an explanation for tleeess of Hamiltonian molecular dynamics
for calculating time correlation functions in terms of thederlying Liouville equations for the probability
density. Calculating numerical trajectories is basic#tly method of characteristics for approximating the
probability density at any point in time. For accuracy it @ mecessary to have long accurate trajectories,
e.g., if two trajectories were exchanged this would not ¢gjegthe density. Because each time step generates a
temporal discretization error, long-time accuracy is gas®nly if these errors are damped. This would seem
to require that the Hamiltonian system have the mixing priypélowever, this is not easy to demonstrate:
Suppose that the initial density is not very close to théataty density but that after a long timé reaches

a densityp(q, p, t) which is very close. Now considetq, —p, ¢). In any traditional norm this is equally close
to the stationary density. However, if we started from hexedid dynamics, the density would ultimately be
equal to the original initial density. So no matter how clageare to the stationary density, it could evolve to
be far away. So a convergence proof based on mixing seenwittifiecause an argument based on showing
contractivity in some metric would have to use a metric thstinguishes between(q, p, t) andp(q, —p, t).
Perhaps, an argument that distinguishes between stablenatable manifolds would work. Alternatively,
the following is plausible: a solutiop(q, p, t), for smooth initial values(q, p,0), spends almost all of its
time very near te(q, p):

o1
lim —
t—oo

/ lo(-7) — p()lldr = 0
0

—for some suitably weak norm. This means that nearly allahéonditions produce mixing dynamics with
the “expected” rate of convergence.

The preceding discussion is oversimplified and needs to lemded because ergodicity, and mixing, are
not generic properties for Hamiltonian systems. It is onlymost of phase space that the almost-always
mixing property can hold.

Another view

In the closing discussion another explanation for the ss&oéMD was given by S. Reich. To explain what
makes MD work, we need to look at the spectral propertieS.oMixing would correspond to an operator
L with a spectruny (£) andoess (L) := o(L) — 0 with R(oess(L)) < v < 0. The constant characterizes
the decay of correlation. Biomolecular systems would pbbpaot be called mixing in the above sense as
~ would be very close to zero (at least relative to simulatiores) ando.ss(£) contains both mixing (the
essential spectrum) and metastable states (isolatedvaiges).

In MD the time evolution of a density could be approximated by a sum of individual trajectoried an
weighted Dirac delta functions, i.e.,

Poum (T, 1) = Z i 6(T —T4(t)).

An interesting question is the convergencegf,., to p under an appropriate norm (e.g., Wasserstein norm).
It is optimistic to think that this interpretation of MD wadibring “weaker” requirements with respect to
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trajectory accuracy. Rather it would be expected that orelsi¢o require the convergence of numerical
trajectories to shadow trajectories of a modified systenafeast majority of such trajectories. This is also
supported by the fact that hyperbolic systems are mixingambst all trajectories of hyperbolic systems
can be shadowed.

One talk that supported this view was W. Hayes'. He presehedtate-of-the-art on practical shadowing
of real trajectories of Hamiltonian systems. The work arages in the area of celestial mechanics, where
there has been great success in showing that computedarégscare close to nearby analytic trajectories.
(In arelated talk, W. Newman showed how long celestial meidsarajectories can be computed to machine
precision. Can this be done for MD too?) Some, but not a lotopfehwas expressed for the application of
Hayes’ work to MD, though results are preliminary.

Yet another view

There is another view, presented by A. Stuart, that doesempiire that numerical trajectories are shadowed
over long time intervals by true trajectories. Begin witle tibservation that we are typically not interested
in the statistical behaviour of the entire system, but onbna or two degree-of-freedom subsystem. The
remainder of the system acts as a heat bath for this compo@éeh the trajectories of the one component
are well approximated in distribution by those of a stoclegstocess, such as the solution to a stochastic
differential equation. The remainder of the system actssasiece of random noise and damping. A rigorous
results of this sort is given in [25]. Now, for numericallyraputed trajectories to give the right statistics, it
is only necessary that they too are close in distributioméottajectories of this stochastic process. This has
been shown to be true for special systems through numeriparienents in [37] and [38], though as of yet
there are no general theorems.

Dynamical Sampling

The problem of sampling is to generate stdfésn = 1,2,... from a prescribed distribution. Assuming
ergodicity, one can compute them from the solution of an ODBKtochastic differential equation (SDE).
Configurations generated this way are (i) tainted by theain@onditions, (ii) correlated, making it more
difficult to estimate variance, and (iii) biased due to the afa finite step size. Markov chain Monte Carlo
methods, which we consider in Section 10, do not suffer thiedbthese drawbacks.

For a given Hamiltonian system there are a few differentithistions on the state space that we might
want to sample from. These different distributions aredgfly referred to as ensembles and correspond to
different boundary conditions. The two that we discuss ia thport are the NVE ensemble and the NVT
ensemble. In each case it is important to note that the pilitipadensity can only be expressed in closed
form up to a multiplicative constant, known as the partitianction. This constant is unknown for most
interesting systems.

The NVE or microcanonical ensemble describes an isolatsteisyand corresponds to a fixed number of
particles, fixed volume, and fixed energy for the system.dfitked energy i€Z, the density of the distribution
is given by

6(H(q,p) — E)
J6(H(u,v) — E)dudv’

So zero weight is given to all states whéiéq, p) # E. This density is invariant under Hamiltonian dynam-
ics. Assuming that the Hamiltonian dynamics is ergodic @nethergy level set, exact Hamiltonian dynamics
sample from the NVE distribution. Hence, when the diffef@rgquations of a Hamiltonian system are nu-
merically integrated (that is, we do MD), we are attemptimgampute NVE ensemble averages. Of course,
many things could go wrong with this computation, and theitetypically be a bias. MD is the only widely
used procedure for sampling from the NVE ensemble.

Two talks specifically addressed errors in microcanonimaukation. In his talk, P. Tupper described
some work attempting to justify the assumption of ergogiititmicrocanonical dynamics and MD. The talk
by S. Bond surveyed some results from backward error asadysil showed how (under certain assump-
tions) these results can be applied to compute estimatdseadrtor in averages from molecular dynamics
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simulations. Results from several test problems were egglimcluding examples from constant temperature
molecular dynamics, which corresponds to the next ensewdblgonsider.
The NVT or canonical ensemble corresponds to a fixed numhmartitles, fixed volume, and fixed tem-
perature. The density associated with this ensemble isoptiopal toexp(—/5H (¢, p)) where = 1/kT, k
is Boltzmann’s constant, affdis temperature. This ensemble is believed to be good repesm of the dis-
tribution of the Hamiltonian system if it is in thermal cootavith a much larger system of temperatiteA
nice feature of this ensemble is that positipand momenturp are independent for separable Hamiltonians.
There are many different ways to sample from this distrdoutncluding

1. deterministic thermostats,

2. Langevin thermostats,

3. MCMC, (see Section 10) and

4. hybrid Monte Carlo (Monte Carlo using MD for proposals).

In the case of dynamical sampling, ergodicity is an impdrigsue, and for both types of methods the rate of
convergence is also very important. We consider methodsah®4 in subsequent subsections.

An important point to note about all these methods is thakarViD applied to unadorned Hamilton’s
equations, the dynamics is n@al. In each case something has been added to the dynamics #shdb
correspond directly to any component of the real physicstesy we are attempting to model. This is done
so that states generated by the trajectories sample thaicahdistribution. However, it is no longer clear
what the trajectories generated can be used for other therFbr example, is there any physical validity to
a velocity autocorrelation function computed with Langestynamics? The answer may be no.

Dynamical thermostats

Nos Dynamics. Leimkuhler, Barth and Sweet are developing extended Hanidh formulations for
thermostating molecular dynamics. It was the observatidineophysicist Nosé [33] that we can augment the
energy functionH (¢, p), by incorporating a single additional phase variabletogether with its canonical
momentumgyr, in the following way:

2
HN = H(q,p/s) + ;T_u +U(q) + gkT Ins.

A simple integration argument convinces us that,

‘ N
//5 [HNo*(q, sp, s,7) — E] dsdm = constant x exp (_WH((LP)) ;
g

moreover,
//f(q,ﬁ/s)é [HN*(q,p, s, m) — E] dsdmdp

= constant x /f(q,p) exp (—Q%H(q,p)) dp,

so if we choosg = NN, we are able to reduce the microcanonical density functoff s to the canonical
one forH.

Time transformation. Accurate sampling of thé&/V'T" ensemble for certain types of systems calls for
large fluctuations of the thermostating variabléncluding potentially very small values. When this hapgen
the equations of motion from Nosé’s Hamiltonian are posdgled and standard numerical methods become
unstable. For this reason, a time transformationit’ = s is used in the derivation of the Nosé-Hoover
equations. However, the way this is traditionally done agst the symplectic structure. The basis of the
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Nose-Poincaré method of [6] is rathePaincat transformationmodifying the original Nosé Hamiltonian
to:

HNP(q,ﬁ,S,W) = 3 [HNOSC_E]
2
= s H((Jaﬁ/S)-i-;T—M—i—U(q)—i—nglns—E .

It is a better alternative starting point for the developtgmumerical methods than Nosé-Hoover. Now the

construction of numerical methods is slightly complicatgdhe modification of the Hamiltonian—we cannot

directly use the Verlet integrator here, for example—betérare several ways to sol#E'" which work well.
Nost-Poincae Chains. An improvement on the Nosé approach is based on what areedeNoge-

Poinca® chains In Nosé-Hoover chains, one thermostats the thermogtatinable, introducing an addi-

tional variable and controlling it via an additional tematerre equation. This process can be repeated. For

example we can use a Hamiltonian like this:

jog 2 2

HNPOD = g | H (g, 2y + 05 4+ L 4 gkTnsg + kT sy + f(s1) — E| .

So 2ust 2

In this formula the time-rescaling has been included. If fimection f is bounded below with bounded
exponential integral, then the integration argument gbesugh. A canonical sampling argument exists in
this case. We can make these chains as complicated as weyligeténding them with more variables.
The design of the regularizing function and choice of thémmasses is important for good results. For the
right choice of parameters, Nosé-Poincare chains hawnably good ergodicity properties: if we use 3
or 4 augmenting variables and choose carefully the therragbeg:, 2, . . . ,, then we can get an accurate
recovery of canonical sampling from these chains. The need tareful choice of thermostat masses is a
flaw, though, and the NPC methods tend to be unstable.

RMT Chains. Better methods are possible based on a more complicataddtiten between the bath
and the physical variables, term&&cursive Multiple ThermostatingRMT). The theory of this model is
considered in detail in a recent article of Leimkuhler ance8ty and practical selection of coefficients is
discussed in the work of Barth,Leimkuhler and Sweet preskat the meeting. In nonlinear models the
RMT formulation is found to be more sensitive to the detailthe underlying system. Heuristics have been
presented for selection of thermostat masses. Some pneliynéncouraging data were presented on the use
of these methods for study of an alanine dipeptide modegdas an implementation of RMT in CHARMM,
the popular molecular dynamics code.

In separate work, Leimkuhler and Jia have proposed a gefrarabwork of thermostating dynamics
for multiscale problems. Using these ideas, we can flexibisoduce canonical sampling over particular
components while preserving physically relevant mullsssdructural characteristics of the application and
maintaining these characteristics in the design of efftaimerical algorithms. Certain classes of problems
with fast and slow variable separation were examined inild®&areover, a method was proposed for follow-
ing the slow evolution in an nonequilibrium setting, wherdyathe fast degrees of freedom are assumed to
be in equilibrium. The sampling properties of these new fdations were tested in numerical experiments
using an enhanced reversible averaging scheme and a Nasé&Fé chain. For some choices of model setup,
a fully Hamiltonian formulation is impractical.

In more recent work of Gill, Jia, Leimkuhler and Cocks, thisltiscale partial thermostating method
was applied with modified RMT thermostat for a simplified vensof the quasicontinuum molecular dynam-
ics (QCMD) model of materials science. Effectively the camattion of this coarse-graining strategy with
advanced thermostats provides a powerful adaptive bowiedadition for a localized, detailed atomistic cal-
culation. This type of method is useful for studies of nadeintation, and for defect nucleation (e.g., cracks).
This work was also discussed at the meeting.

The summary of the state of the art in dynamical thermossdtsait they have interesting properties and
can work in practical situations. Their ergodic properéiesverifiable in at least some numerical studies, and
they provide a flexible adaptive framework for molecular giation while benefiting from the well known
reliability of the classical MD simulation framework. Moweork is needed to probe their robustness, to
understand their ergodic properties, and to evaluate #i#édiency vis a vis stochastic dynamics methods.
Some of these questions were raised in discussions at thanmee
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Langevin Thermostating

The Langevin equation in the case of sampling is

d? d d
M@q =-VU(q) - MVEQ + 2/€BTMV&W(15) 1)

wherey is a damping constant ai#i (¢) is a vector of independent standard Wiener processes.

Like for deterministic thermostating, the Langevin eqoas have the canonical ensemble as an invariant
distribution. Unlike for deterministic dynamics, theregnlenty of situations where Langevin dynamics are
proven to be ergodic [29]. (One situation where Langevinasyits has not been proven to be ergodic is that
of Dissipative Particle Dynamics (DPD). T. Shardlow exp&d the problems here and gave an overview of
his proof of ergodicity for 1d DPD. More on DPD in section oracge graining.)

Itis, of course, necessary to have an integration schemeafagevin dynamics. M. Tretyakov described
his work with Milstein on quasi-symplectic integrators. €8e integrators contract volume with the same
rate as the original SDEs, and become symplectic methodgitirhit of zero noise{ — 0). However,
these methods applied to non-globally Lipschitz Langevunations are not themselves ergodic; they will
eventually diverge to infinity with probability one. Trea@v discussed how this turns out to not be a problem
in practice.

An issue that might be worth considering is the relationgt@fween the Langevin based methods, with
the coupling to a “physical” heat bath through the Cald&ieggett-Zwanzig Hamiltonian form, and the Nosé
based methods, with the extended Lagrangian.

One special limiting case of Langevin dynamics is Brownignainics, obtained from (1) by letting
M — 0 while M+~ is a constant. This gives:

d d
951= —-VU(q) + 2kgTM EW(t)

Brownian dynamics samples the from canonical distribuf@mrthe configuration variable. One issue on
which there was some disagreement was under which conglitisabetter to just use Brownian rather than
Langevin dynamics to sample configurations. A related goess what is the best parameterto use in
Langevin dynamics for the fastest sampling.

Comparison of Thermostats. Both deterministic thermostats (such as Nosé) and Landstachastic)
thermostats can be used successfully to sample configusdtiom the canonical distribution. Both analytic
dynamics have the canonical measure as an invariant. Landgmamics are provably ergodic in some
cases. This not true of dynamical thermostated dynamidst may not be important in practice. In both
cases numerical methods applied to them will lead to a bies (tecreases with reduced step length) and
potentially instability over long simulations. A natural@gtion is which— if any— is better for practical
problems. In particular, which allows more efficient samglof the canonical ensemble? One issue is that
generating a complete set of random numbers per time-stgpomaostly in some circumstances. Some
pointers for measuring ergodicity and convergence arengivg?], in particular, they describe an empirical
“ergodic measure,” which can be used to compare algoritimdg@optimize them. Another possibility is to
compare the two methods when used as proposals in HybrideM@amo (see next subsection). More work is
needed to carefully and systematically compare the effeotiss of the best algorithms for both deterministic
and stochastic dynamics.

Hybrid Monte Carlo

Hybrid Monte Carlo (HMC) is an MCMC method that uses MD to gexte proposals. We saw many interest-
ing developments in this area. J. Izaguirre presented sasriean using the shadow Hamiltonian to reduce
the number of rejections. The idea is that in typical HMC yse the amount of energy drift experienced to
decide whether or not to accept of MC move. However, it is Hardifferentiate between energy drift and
a short-term fluctuation just by looking at the energy. Hogreit has been shown, e.g, [9], how to compute
the shadow Hamiltonian value on the fly, and this can be usddtermine whether drift is really occurring.
Izaguirre and his collaborators have incorporated this HIVIC.

HMC in this form, like other Monte Carlo methods, only sampleer configuration space. It seems
unlikely that there is any way to interpret long trajecterds real’ dynamics in even some weakened spectral
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sense (see 10). S. Reich and co-worker addressed thisnssikéng the approach of Izaguirre even further by
reconsidering the means of generating new proposals in Hiyiically, a proposal is made by discarding all
momentum information and re-sampling it from the canonilistribution. Akhamtskaya & Reich suggested
(i) to implement HMC over phase space, (ii) to increase tloepiance rate by using a shadow Hamiltonian
(see Izaguirre & Hampton), and (iii) to only partially reasgle momenta. It seems feasible that the associated
Markov chain has spectral properties that are similar tordte-time Langevin dynamics and/or DPD in the
limit of weak thermal coupling. A main theoretical obstadethe necessary momentum reversal after a
rejected MD step. However, using a sufficiently high-ordeadow Hamiltonian, rejections should almost
become negligible. This is clearly an area for further resea

As with all MC methods, there is still the issue in HMC of howdptimize parameters to maximize
performance. Many authors optimize on the rejection ratdat¢hould be optimized (minimized) is the
integrated autocorrelation function, which gives the aacie of estimators. Rejection rate affects this, but it
is not the whole story.

Other Strategies for Efficient Configurational Sampling

An abundance of effective techniques have been recentpyoges. There is a need to put these methods in
an abstract framework and do a theoretical comparison aieffty.

Many of these techniques are importance sampling schenmggorfance sampling uses points drawn
with biased probability density;,(¢) to estimate expectations with respect to the distributidth density
p(q) using a weighted average, with weights proportionght®)/p(q). However, for high-dimensional
problems it is difficult to find an easily-sampled(q) that is close enough ta(q), and for which the density
functionpy, (¢) can easily be computed. Commonly the density is known onlp@pmultiplicative constant,
in which case one samples frgm(q) using an MCMC method and uses

(O(g)o(a)/av(D))v
{o(@)/on(@))n

whereo, o1, denote unnormalized densities. In practice, with finite giémg, this can be approximated by
>-,0(@)a(q™)/ou(@™)/ (3, a(q™)/on(q"™)) (which is a biased estimate).

(O(9)) =

Fast growth methods

These are importance sampling methods that use the Jarzgestity [22]. The Hamiltonian is parameter-
ized and changed it as a function of time while doing Markoxdgtnamics, which must satisfy a “balance
condition.” Typically the normalizing constant of the iaitdistribution for the Markovian dynamics is not
known and it is sampled using dynamics or an MCMC method.

The talk by R. Neal proposes the use of temperature as a peeioreenabling a sampling not hindered
by potential energy barriers. Also, it permits the initzaliion of the trajectories using configurations drawn
exactly from a given distribution (as opposed to an apprexéequilibration), so the method becomes one
of perfect sampling (no bias due to initial configurations).

Theoretical studies such as [34] indicate that fast growgthimds as they are currently formulated offer
no advantage over equilibrium sampling, e.g., umbrellapdeg.

Hamiltonian importance sampling

The problem of finding an easily-samplegl¢) that is close enough t@(¢), and for which the density;, (¢)
can easily be computed can be overcome usipg(g) that is defined in terms of Hamiltonian dynamics.
For a molecular system, we sample particle positions umifpiover some (wrapped-around) region, and
also sample momenta for these particles from their digicbhuat a high temperature. We then simulate
Hamiltonian dynamics for this system, while periodicallyltiplying the momenta by some factor slightly
less than one, which eventually cools the system to whateweperaturey’, we are interested in. This
procedure defines a distribution (¢), which can be used to estimate expectations with respegio the
canonical distribution at temperatufe Crucially, for each sampleg, we can computey(q), and hence



116 Five-day Workshop Reports

the appropriate weight to attach to this point in the averddes density of the initial point sampled from
the high-temperature distribution is easily calculatédces Hamiltonian dynamics conserves phase space
volume, the density of a point found after simulating Haarilan dynamics for some time is the same as that
of the original point; and finally, multiplying a momentunriable by a factor less than one simply increases
the probability density of the resulting point by the sameda

Replica exchange

In the discussion on the last day, R. Neal compared paraligbering with the use of the Jarzynski equality.
He said that Jarzynski’'s method tends to require a finer sgadidistributions than parallel tempering. But
on the other hand, information in parallel tempering pratag between distributions via a random walk,
which tends to tak@? steps to move a distance of These two effects more-or-less cancel out, so that there
is no clear advantage of one method over the other (at ledstsmespect—their properties differ in other
ways that may be relevant in some problems). This points &search direction of trying to modify one of
these methods to obtain the advantageous property podssstee other method.

Adaptive biased-force method

Eric Darve presented novel techniques to calculate thenfiat®f mean force along a reaction coordinate,
the so-called Adaptive Biasing Force (ABF) and an extengioMonte-Carlo simulations (MC-ABF). The
goal of ABF is to improve the sampling of phase space wherutaiog the free energy along a reaction
coordinate (r) or potential of mean force:

A= —kpTIn{6(&(r) — &)

In typical molecular systems, the molecules remain trajpémiv energy basins for extensive periods of time
escaping only rarely. See Figure 10.1.
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Figure 10.1: Typical free energy profile showing two basifettraction and a free energy barrier at transition
states. Inthe method of Umbrella Sampling, a biasing pi@detused to improve the sampling of the system.
The simulation is often performed inside of windows to img@¢he efficiency.

ABF improves the efficiency of this type of calculation by §ppg an external biasing force which leads
to a uniform sampling along the reaction coordinate. Theibg@aforce is obtained by applying the following
equation for the derivative of the free energy:

dA  /d d¢ L 1/ 0¢\?
= (a(ma)), =2 (o)

The applied force is taken approximately equaldal/d¢)VE. It is continuously updated using samples
gathered during the simulation.

Darve presented results on dichloro-ethane, fluoro-methéth a water-hexane interface and results on
the insertion of a helix inside a membrane: see Figure 10.2.
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Figure 10.2: Helix inside a mimetic membrane. This systemnséd to understand the self-assembly of helices
in cell membranes to form ion channels.
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(a) Deca-L-alanine in its folded configuration (b) Free energy profile for Deca—L—alanine calculated using
the adaptive biasing force. The inset shows the number of
samples as a function gf

Figure 10.3: Deca-L-alanine
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Christophe Chipot presented simulation results on theldimg of deca-alanine using ABF. See Fig-
ure 10.3.

In addition to Molecular Dynamics, Darve presented a neverilgm based on ABF for Metropolis
Monte-Carlo simulations, called MC-ABF. This algorithimbiased on applying a bias to the transition prob-
abilities. MC-ABF was applied to calculate the density aftes for the Ising model. The Ising model is a
square system af? spins (up or down) whose energy is given = — Zm o;0; where the indicesand
j correspond to neighboring spins. In MC-ABF, the densitytefesg(FE) is estimated using a recurrence
formula:

It (Ei—1)
I~ (E;)
wherell™ (E;_1) is the probability to transition from energy; ; to £; and 1~ (E;) the probability to

transition fromk; to E;_1. The modified acceptance rule is then given by:

9(E;) = g(Ei-1) 2

gABF (Ez)
B (E,)’ 1)

whereg4B" is the current estimate af( ) computed using Equation 2. This biasing leads to a uniform
sampling in energy space. In particular states at high ancelergiesZL? and—2L?) are visited as often
as intermediate states with energy close to zero. This igitdes difference in population at those energies
of aboutexp(180) ~ 10%°.

Results were presented for the calculation of the densisyaiés as well as internal energy, specific heat,
Helmholtz free energy and Entropy. See Figure 10.4.
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(a) Density of states for Ising model and (b) Internal energy for Ising model as a (c) Specific heat
comparison with analytical solution function of temperature
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Figure 10.4: Ising model of sizk6 x 16.

Transformation of Configuration Space Variables

One of the computational grand challenge problems is toldpyaethodology capable of sampling confor-
mational equilibria in systems with rough energy landssagfenet, many important problems, most notably
protein folding and protein aggregation, could be signiftbaimpacted. In his talk, Tuckerman present a new
approach in which molecular dynamics is combined with a heagable transformation designed to warp
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configuration space in such a way that barriers are reducg@thractive basins stretched. The essence of
the method is as follows: Consider a one-dimensional piatieri{) with a barrier. The canonical partition

function is ,
Q= / dp dx exp {—ﬂ [2p_m + V(x)} }

If the barrier inV () is high, then if we try to evaluate this partition functioringsmolecular dynamics or
Monte Carlo, the presence of the barrier will make crossirents between the two wells on either side of
the barrier rare and, hence, hinder the sampling. Howewasider a nonlinear variable transformation in the
above partition function:

R

zo

whereV..t(x) is an arbitrary reference potential. When substitutedtinégpartition function, one obtains

2
= [ apau e {5 | L+ (v(alu) - Vistotw)| }
One can then use Monte Carlo or thermostated molecular dgsavith a Hamiltonian of the form? /2m +

V(x) —Viet(x). Itis, therefore, very likely that the techniques beingeleped by Leimkuhler and coworkers
will be applicable with this method. Note that this transfation yields exactly the same partition function
and therefore, preserves all of the thermodynamic andibquiin properties of the system. From the form of
the transformed partition function, the optimal choicetwf teference potential becomes clear: One should
chooseV,.¢(z) to be equal to the true potential in the barrier region and pettside the this region. Note
that this is not equivalent to umbrella sampling or guidirajgmtial methods, as the variablenaturally
moves on the difference potentiélz) — Vet (z) so that no re-weighting of the phase space is needed. By
applying transformations of this type on the full set of bamke dihedral angles in polymers and proteins,
Tuckerman was able to show that very large gains in the dfigief sampling configuration space could be
obtained for large polymer chains and small model proteifie method is further enhanced by including
adaptive transformations that remove barriers that ansettie fly” in a simulation by neighboring solvent
atoms or short-range non-bonded type interactions. Cilyr@fuckerman and coworkers are implementing
the method in their PINYMD code, a code that contains a full “bio-builder” that willav all-atom models

of proteins to be treated, thereby allowing the method taebtet on realistic problems.

Multicanonical simulations

Numerical experiments have demonstrated that combinjrigceeexchange with multicanonical Monte Carlo
leads to much more effective sampling [30].

Sampling from Path Space

Many reactions in (bio)molecular systems occur on timdescautside the range of current direct molecular
dynamics simulations. In simulations of slow molecularctems, much of the simulation time is in effect
"wasted” waiting for a large enough fluctuation to carry tiistem from the reactant state to the product state.
Following Dellago, Chandler and co-workers [8], one canaad attempt to create only transition paths, i.e.,
those trajectory segments that connect reactant and prstaities and exclude the waiting time in the reactant
well. However, even if one has “harvested” many such readtiajectories, it is not always immediately
clear where the “bottleneck” of the reaction is (the trdanritstate), and which measure best describes the
progress of the reaction (the reaction coordinate). Baglasion for conditional probabilities can be used to
extract transition states and reaction coordinates froenaemble of transition paths (obtained, e.g., by path
sampling) and an equilibrium ensemble (obtained, e.g. migrella sampling) [21]:

p(z[TP)p(TP)

p(TPlz) = )

®3)
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wherep(x|TP) is the probability density of the phase-space variablg.,(z) is the equilibrium density,
andp(TP) is the fraction of time spent in transition paths, averagegt tong equilibrium trajectories. The
conditional probability of being on a transition paih(;TP|z), can be expressed in terms of splitting (or
commitment) probabilities, and assumes a maximum at tmsitren state. The Bayesian relation can be
used to locate transition states, optimize reaction coatds, and calculate rate coefficients directly from
path sampling [21, 4]. Moreover, it leads to a simple traosipath sampling algorithm in which trajectories
are created by shooting from phase points near a presumiglihdisurface between reactant and product
states [21, 4].

Another approach to path-sampling was presented by A. Stuhis talk. He considered the problem in
a more general framework: molecular dynamics is just onsiplesapplication; another is nonlinear filtering
in signal processesing. He described an abstract MCMC mddtirasampling in such problems, based on
generalizing the Metropolis-adjusted Langevin algorisitminfinite dimensions. This leads naturally to the
study of stochastic reaction-diffusion equations whichthieir invariant measure, sample from the required
distribution [16].

Coarse graining

Classical MD simulations are typically the method of chd@estudying biophysical and soft matter systems
at the molecular level. Characteristically, they are ladito system sizes of approximately* atoms and to
times of around 100 ns. Thus, to study systems such as polymiés, the computationally accessible time
and length scales are simply far too short for the system &bleto reach equilibrium as dynamic processes
during equilibration occur under hydrodynamic conditions

A plethora of coarse graining and multiscale modeling meéshlsave been developed to overcome the
above difficulties. The approaches range from positionespaarse-graining to free energy methods and field
theory. Polymer research has been probably the leadingrietdltiscale modeling in both practical and the-
oretical aspects. For example, the projection operatonddtism has been used by Akkermans and Briels [1]
to investigate the fluctuating forces in coarse graining,amd the so-called GENERIC approach[14, 15, 35],
which has very different nature but is also based on opegatmjection formalism, provides an analyti-
cally rigorous method for coarse-graining. GENERIC (Gah&guation for Non-Equilibrium Reversible-
Irreversible Coupling) is based on the idea is that there gereral form for the time-evolution of non-
equilibrium systems and that it can be given in a general form

dx 0F(x 6S(x

i L(z) 5i ) + JV[(x)—(;(x ),

wherex characterizes the state of the systdify) is an antisymmetric matrix andl/ () is a symmetric
and positive definite matrix. They are connected to the sttemi the first law of thermodynamics, respec-
tively. E(x) andS(x) are functionals for the total energy and entropy, respelstivlt is important to to
notice that although GENERIC is rigorous it is not uniqueeféhis no unique way to coarse grain and that
constitutes one of the main conceptual difficulties. Ottnmonly used analytical approaches rely on the
Ornstein—Zernike equation [17] and the hypernetted chiaisuce [5, 26]. A good review of some of the
recent developments is given in Ref. [23].

Dissipative Particle Dynamics (DPD)

As a conceptually simple approach, Dissipative Particleadyics (DPD) [10, 20, 24] has recently become
popular in soft matter simulations. In DPD the pairwise liattion potentials are “soft” in contrast to the
Lennard—Jones -type potentials. “Softness” means thdDBi2 potential has a finite value at zero particle
separation, i.e., the Fermi exclusion principle is not acted for. It is not obvious that the above approxi-
mation is reasonable but Forrest and Suter [13] showed thexplicitly averaging over fluctuations in over
long times that approximation becomes justifiable.

Another motivation behind DPD is that it conserves hydraayits, i.e., all the interactions are pairwise
conservative. In DPD the force exerted on partidby particlej is

Fij = Fj + Flf + Ff, (4)
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where FP | Flt andﬁg are the dissipative, random and conservative forces, césply. The different

componlénts Zzflre given as
EP = —qwP(ry)(5; - €;) € and (5)
El = owli(ry)&;éy,

wherer;; = 7 — 7, rij = |75, €; = 755/, andvy; = U; — v; for particles with positions’; and

velocities;. The¢;; are symmetric Gaussian random variables with zero meanmihdariance. They are
independent for differergairs of particles and different times.

The coupling of the the dissipative and random fordéy@,,andli’f, comes from the fact that the thermal
heat generated by the random force must be balanced logadligbipation. The precise relationship between
these two forces is determined by the fluctuation-dissipatieorem [10] and is given as

wP(rij) = [w(ri)]* and o® = 2vkpT", (6)

whereT™ is the canonical temperature of the system.
The most common choice for the weight function's andw® is the soft-repulsive form

1—ryj/re forry <re
R Y — (%] c (%] (3]
w(rij) = { 0 forri; > re, )

wherer. is the cut-off distance and”(r;;) is given by the fluctuation-dissipation relation above. sTisi
also the form that the conservative force takes in the stardBD formulation.

In addition, DPD can be used as a momentum conserving théaitndat, and issues related to integra-
tion of the DPD equations of motion are discussed in Ref32339].

Systematic derivation of DPD

The standard DPD is purely phenomenological. Recentlkkige et al. [11, 12] were able to formally link
DPD to molecular level properties by using a Voronoi tesdielh based technique. The advantage of their
method is that it can be used to resolve different lengthescsimultaneously. The method is formally akin
to the well-known renormalization group procedure exteglgiused in the theory of critical phenomena.

Effective interactions from the pair correlations

Inverting the radial distribution functiongr) in order to obtain pair potentials offers another startiogp
That approach can be used to obtain the pair potentials fér §dfAulations in a more realistic and systematic
way. Using pair correlations is based on the so-called Hesoaetheorem [18] which stipulates that under
fixed conditions two pair potentials which give rise to thensg(r) cannot differ by more than a constant.
This constant is determined by the condition

Vir— o0)—0, (8)

wherer is the interparticle distance arid is the pair potential. The Henderson theorem analogouseto th
Hohenberg—Kohn theorem [19], i.e., all ground state prigeare determined by the electron density. What
makes the application of the Henderson theorem appealitiaighe radial distribution function obtained
from a simulation includes effects from the many-body iatdions. Furthermore, this way it is possible
to define new interaction sites and to compute the radiatibligion function between them, and thus to
systematically obtain new coarse-grained models at eiffidevels of description.

The Inverse Monte Carlo (IMC) procedure of Lyubartsev anddsmnen [28] is practical implementation
of Henderson’sidea. In IMC, one inverts the radial disttido functions — experimental or from microscopic
simulations — to obtain effective potentials for a coarsgirged model with a fewer number of degrees of
freedom. This approach has been recently used to studyosations and lipids[27, 31]

It is important to notice that the effective potential ind&s corrections from many-body interactions to
the well-defined potential of mean force (PMF) [17], whicldéfined as

veml(r) = —kgTIng(r), 9)
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wherer is the interparticle distance andr) the pair correlation function. In other words, the effeetiv
potential isnotthe same as the potential of mean force in Eq. (9). Inclusidgheomany-body corrections is
the reason why an iterative IMC scheme is needed. The kerIC procedure guarantees self-consistency,
i.e., the effective potentials lead to the same pair cdiicgldoehavior as the underlying MD simulations.

Coarse graining — the future

The above providesjust a scratch on the surface. Thereatrefaother interesting and promising approaches.
In general, multiscale modeling is a very rapidly develgpfield and progress is partly driven by the fact

that despite the increase in CPU power, it is algorithm anthatedevelopment that is crucial for treating

complex problems such as protein folding, polymers, outailmembranes.
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Chapter 11

Geometric and Asymptotic Methods In
Group Theory (05w5011)

June 11-16, 2005

Organizer(s): Rostislav Grigorchuk (Texas A&M University), Alexandersbhnskiy (Van-
derbilt University), Akbar Rhemtulla (University of Alb), Mark Sapir (Vanderbilt Uni-
versity), Dani Wise (McGill University)

The goal of the conference was to bring together speciafisggometric, probabilistic and asymptotic
methods in group theory. Special attention was paid to thefmng topics:

1. Amenability and randomness in groups

e Random walks and generic properties of groups

Poisson boundaries of groups

Amenable actions of groups

Minimal volume entropy problem for graphs
2. Actions on rooted trees, growth and self-similarity

e Growth and diameters of Schreir graphs of groups genergtédite automata
e R. Thompson group
e Subgroup growth of groups

3. Groups, boundaries and geometries

e Cubulation of groups and right angled Artin groups

Quasi-isometric rigidity of groups

Asymptotic cones of groups

Algebraic geometry over groups and Tarski problems

4. Lattices in Lie groups

e Bounded generation property
e Propertyr
e Expanders

126
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Many informal discussions lead to creating new ideas oftaliation between specialists in different areas
of group theory. In particular, it may be possible to makeugoof intermediate growth and torsion groups
act on cubings using the end structure of their Schreir grapéveral properties of 1-relator groups which
are believed to be generic may be connected to importaneptiiep of random walks on lattices, etc.

Here is the list of participants of the conference and thérabis of their talks.

. Miklos Abert (University of Chicago)

On chains of subgroups in residually finite groups

ABSTRACT. We analyze descending chains of finite index subgroups la@adrresponding permutation
representations for residually finite groups. As a resultstivew that we can obtain an arbitrary countable
set of residually finite groups as the intersection set ofrgugmacy class of a suitable chain. Although the
representations do not approximate the group in generashew that in certain cases, e.g. for higher rank
real lattices, a weaker form of approximation holds.

. Roger Alperin (San Jose State University)

Subgroup Separability in Linear Groups

ABSTRACT. We'll survey some examples and non-examples for sepésgabil subgroups in f.g. linear
groups.

. Jason Behrstock (Columbia University)

Relative hyperbolicity and the mapping class group

ABSTRACT. We will describe some recent work on the asymptotic gegmaitithe mapping class group.
In particular, we will give a geometric proof that the magpiriass group is not hyperbolic relative to any
finite collection of finitely generated subgroups. We wi@tontrast this with a new description of a way in
which the mapping class group is non-positively curvedidairthis talk are joint work with C. Drutu and
L. Mosher.

. levgen Bondarenko (Texas A&M University)

Growth of Schreier graphs associated to groups generatdzbboyded automata

ABSTRACT. We describe an algorithm for calculating the growth of déens of Schreier graphs and the
orbital contracting coefficient associated with actiongr@iups generated by bounded automata on levels and
on the boundary of the tree. As a corollary we get estimatethfo polynomial growth of Schreier graphs
associated with action on the boundary. This is joint worthwl. Nekrashevych.

. Jim Cannon (Brigham Young University)

Dead-end elements in Thompson'’s group

ABSTRACT. We report on work by student Ben Woodruff (BYU PhD, 2005) wises Blake Fordham’s
results to sharpen the Cleary-Taback description of deadetements in Thompson’s group and to give a
characterization of the same, notes the existence of negfilags of dead-end elements, and notes that each
has a "tail” (varying lengths) of elements pointing back &md the identity consisting of elements that are
almost dead-end elements. Such structures create obvftiogltles in the most obvious proposed methods
to prove the nonamenability of Thompson'’s group. It remadfi€ourse, to study the asymptotic density of
such elements.
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. Yair Glasner (University Of lllinois at Chicago)

Finitely generated vs’ Normal subgroups in 3-manifold greu

ABSTRACT. Let G be the fundamental group of a 3 dimensional manifoléiréfe volume. We define an
invariant topology on G, by taking the normal subgroups drairtcosets as a basis for the topology. This
is a refinement of the profinite topology. We prove that everigdly generated subgroup of G is closed in
this topology. As a corollary we deduce that a maximal subgrof infinite index in G cannot be finitely
generated. The main tool used in the proof is the Marden canje that was recently established by lan
Agol, and by Calegari-Gabai.

This is a joint work with Pete Storm and Juan Souto.

. Frédeéric Haglund (University of Paris-Sud)

Commensurability and separability for uniform latticessiome polygonal

complexes

ABSTRACT. We consider a (word hyperbolic) Coxeter group whose DMagtssong complex is two-
dimensional. We show (in almost every case) that a unifottitcéaof this complex is commensurable with
the initial Coxeter group if all of its quasi-convex subgpsiare separable. The previous “if” is an “if and
only if” for example when the Coxeter group is right-angléd. an application there is a single commensu-
rability class of uniform lattices as soon as the link of ateein the Davis-Moussong complex is a bipartite
graph - for example in Bourdon buildings.

. Chris Hruska (Chicago)

Cubulating relatively hyperbolic groups

ABSTRACT. We give criteria for proving that a group acts properly distinuously on a locally finite CAT(0)
cube complex. The criteria are inspired by ideas from therthef relative hyperbolicity but are not limited
to relatively hyperbolic groups.

We also give criteria for determining when a relatively hsgdic group acts on a finite dimensional cube
complex and when such an action is cocompact, generalizingaaem of Sageev from the word hyperbolic
setting. More generally, we describe a “cusped cofinitelicitire relative to the action of the parabolic
subgroups. This structure is analogous to the cusped steuof a finite volume manifold with pinched
negative curvature. This is joint work with Dani Wise.

. Tim Hsu (San Jose State University)

Cubulating graphs of free groups with cyclic edge groups

ABSTRACT. We prove that ifG is a finitely generated group that has a decomposition asghgrafree
groups with cyclic edge groups, alddis “generic” (essentially, contains no Baumslag-Solitasgroups),
thend is the fundamental group of a compact CAT(0) cube complexals discuss generalizations of this
result. This is joint work with D. Wise.

Vadim Kaimanovich (Bremen)

Amenability of self-similar groups and random walks witteimal degrees of freedom
ABSTRACT. The talk is devoted to a discussion of the relationship betwrandom walks with internal de-
grees of freedom and natural matrix presentations of gelfas groups which allows one to prove amenabil-
ity of such groups by establishing triviality of the Poisdmsundary for appropriate random walks on such
groups.
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Martin Kassabov (Cornell University)

Symmetric groups and Expanders

ABSTRACT. A finite graphs with large spectral gap are called expand&rese graphs have many nice
properties and have many applications. It is easy to seatratdom graph is an expander but constructing
an explicit examples is very difficult. All known explicit ostructions are based on the group theory — if an
infinite group G has property T (or its variants) then the @ggraphs of its finite quotients form an expander
family.

This leads to the following question: For which infinite fdies of groups7;, it is possible to find generating
setsS; which makes the Cayley graphs expanders?

The answer of the question is known only in few case. It seb@asitG,; are far enough from being abelian
then the answer is YES. However if one takes ‘standard’ geimgy sets the resulting Cayley graphs are not
expanders (in many cases).

| will describe a recent construction which answers the almpestion in the case of the family of all sym-
metric/alternating groups. It is possible to constructiekmenerating sets,, of Alt,, such that the Cayley
graphsC'(Alt,,, S,) are expanders, and the expanding constant can be estimated.

Unlike the usually constructions of expanders, the proasdoot use an infinite group with property T
(although such group exists) but uses the representaomytiof the symmetric groups directly.

Olga Kharlampovich (McGill)

Equations in groups with free regular length function.

ABSTRACT. | will discuss the Elimination process for solving equasdn groups with free regular length
function (in particular, in a free group).

Avinoam Mann (Einstein Institute of Mathematics, Hebrew Universityjulalem)

Positively finitely generated groups and théifunctions

ABSTRACT. A profinite group is positively finitely generateBEG) if, for some k, the set of k-tuples gener-
ating it has a positive Haar measure. We denote this meaguré®, k). E.g. finitely generated pronilpotent
groups ard’FG, while free profinite groups of rank at least two are not.

Let m, (G) be the number of maximal subgroups@bf indexn. A theorem of Mann-Shalev characterizes
PFG groups by the property that, (G) grows polynomially, i.em,,(G) < n®, for some constant. It fol-
lows that f.g. prosoluble groups aP&G, and more generally, any f.g. profinite group that does noegge
the variety of all profinite groups BFG (Borovik-Pyber-Shalev). This includes the profinite coatjns of
arithmetic groups with the congruence subgroup propes#.

In many cases we can interpolate the value® @, k) to an analytic function defined in a right half-plane
of the complex plane. The reciprocal of this function is techthe probabilistic-function of G. It exists,
e.g., when is prosoluble, or when it is an arithmetic group with tB8P.

Dave Witte Morris  (University of Lethbridge)

Bounded generation of special linear groups

ABSTRACT. We present the main ideas of a nice proof (due to D.Cartéfel&r, and E.Paige) that every
matrix in SL(3,Z) is a product of a bounded number of elementary matrices. Whentain ingredients
are the Compactness Theorem of first-order logic and calonkof Mennicke symbols. (These symbols
were developed in the 1960s in order to prove the Congruemogr8up Property.) Similar methods apply to
SL(2, A) if A = Z[v/2] (or any other ring of integers with infinitely many units).
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Roman Muchnik (Chicago)

Amenability of free Grigorchuk group

ABSTRACT. | will describe how the methods developed by V. Kaimanowen be used to prove that the
Free Grigorchuk group is amenable. The main tool used by Whaovich is to obtain a Random walk with
0 entropy. | will also describe some modifications to simypdibmputations.

Graham Niblo (Southampton)

An eccentric characterisation of hyperbolicity

ABSTRACT. We give a new characterisation of hyperbolicity for geaclesetric spaces in terms of the
geometry of balls. It is related to Papasoglu’s "thin bigotisaracterisation of hyperbolic graphs. This is
joint work with Indira Chatterji

Stephen Pride (Invariant Ideals for Groups)

University of Glasgow

ABSTRACT. Given a group of type’'P,,, David Cruickshank and | defined a table of idealg, j) (0 <

1 < n, jany integey in the abelianized group ring. This table is an invarianthaf group. The first column
E(1,—) is the chain of classical Alexander ideals. | will give thdidigon of these tables, describe some of
their properties, give examples of calculations, and redsee open questions.

Michah Sageev (Utah & Technion)

Quasi-isometries and right angled Artin groups.

ABSTRACT. We discuss some results regarding the quasi-isometiditsigand classification of right angled
Artin groups. This is joint work with Bestvina and Kleiner.

Dmytro Savchuk (Texas A&M University)

Schreier graphs related to the Thompson’s group

ABSTRACT. We will explicitly describe the Schreier graphs of the Thason groupF' with respect to the
stabilizer of} and generators, andz; and of its unitary representation i ([0, 1]) induced by standard
action on the intervdD, 1].

The main result is that these two graphs coincides modulie fauibsets.

Dan Segal (All Souls College, Oxford)

Subgroups of finite index in profinite groups

ABSTRACT. We answer a 30-year old question of Serre by proving #élflagubgroups of finite index in a
finitely generated profinite group are operhis is deduced from the main theorethuw is a d-locally finite
word andG is a d-generator finite group then every element of the verbal suimuw(G) is a product of
f(w,d) w-values. (w is calledd -locally finiteif F,;/w(F}) is finite, whereF; is the free group of rank
d, and f (w, d) denotes a nhumber that depends onlyupandd.) The proof is complicated and depends on
CSFG. (joint work with Nikolay Nikolov)
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Dan Segal (All Souls College, Oxford)
Groups with polynomial index growth

ABSTRACT. A groupG hasPIG if there existsy such thatlG /G| < n® for every finite quotien& of G and

every natural numbet. This holds for example i€z is an arithmetic group with the congruence subgroup
property, or ifG is ‘boundedly generated’ (a product of finitely many cycliogps), in particular i is a
soluble group of finite rank. But there also exist uncountafény finitely generated residually finite groups
with PIG that are neither linear nor virtually soluble. Wesener a question posed by me 20 years ago with
the Theorem:Let GG be a finitely generated soluble residually finite group. TliehasPIG if and only if

G has finite rank Along the way we prove thavery infinite residually finite boundedly generated group
has an infinite linear imageThe proofs use some representation theory of finite solytdeps and a lot of
‘quasi-commutative algebra’: the study of abelian gromgsiwith operators. (joint work with Laci Pyber)

Vladimir Shpilrain  (The City College of New York)

Translation equivalence in free groups

ABSTRACT. Motivated by the work on hyperbolic equivalence of homgtafasses of closed curves on
surfaces, we investigate a similar phenomenon for freeggotlamely, we study the situation where two
elementsy, h in a free groupF' have the property that for every free isometric actiorFobn anRR-tree X
the translation lengths @fandh on X are equal or have bounded ratio. This is joint work with |.Kgigh,
G.Levitt, P.Schupp.

Tatiana Smirnova-Nagnibeda (University of Geneva)

Minimizing entropy over the Outer space

ABSTRACT. We solve the minimal volume entropy problem in the classwfersal covers of finite connected
metric graphs.

Benjamin Steinberg (Carleton University)

The spectra of lamplighters and related groups via automata

ABSTRACT. The speaker and Silva showed that any wreath produét, with GG a finite Abelian group, can
be realized as the group generated by a special kind of atwoncalled a Cayley machine. In this talk we
calculate the KNS spectral measure associated to the gifcaCayley machine, and in particular to such
generalized lamplighters. KNS spectral measures weredatred by Grigorchuk and Zuk for groups acting
spherically transitively on rooted trees.

We also show that the KNS spectral measure associated totamata group coincides with the spectral
measure of the simple random walk on the automata group ibahdif the action of the group is free in a
Baire category sense sense. This is the case for wreathgirgchups of the above form, and so we have
given an automata-theoretic calculation of their spectrahsures. A different approach has been used by
Dicks and Schick to calculate these spectral measures.

This is joint work with M. Kambites and P. Silva.
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Zoran Sunik (Texas A&M University)
Free-by-free right-angled Artin groups
ABSTRACT. A group H is poly-free if it has a subnormal series

1=Hy<H,<---<H,=H

in which all factors are free. Equivalently, H is a finitelgriated semidirect product of free groups. The
shortest length of a subnormal series with free factorslisdéhe poly-free length of H.

Our main results are as follows.

All right-angled Artin groups are poly-free. The poly-fieagth of a right-angled Artin grougI” is bounded
between the clique number and the chromatic number of thghdrahat defines the grougl’. An explicit
realization of a subnormal (in fact normal) series with fietors and of length equal to the chromatic number
of I' is provided.

A complete characterization of graphs that define righteahdrtin groups of poly-free length 2 is given.
Such graphs must have an independent set of verficesich that every cycle it contains at least two
vertices fromD.

Finally, considerations involving the Euler charactéciatlow us to conclude that a right-angled Artin group
AT has poly-free length 2 with both factors of finite rank, i4I; is a semidirect product of two free groups
of finite rank if and only if the defining graph is a tree or a complete bipartite graph.

This work is motivated by a question of Bestvina asking iffallin groups are virtually poly-free.

Balint Virag (Toronto)

Torsion generators and slow random drives in Britain

ABSTRACT. A b-spinner graph is a sum of directed cycles of length at hosin example is a simplified
road map of Britain consisting of roundabouts and short wag-streets. Another example is any directed
Cayley graph of the Grigorchuk group.

We give up-to-constant optimal upper bounds on the rate cdpes of random walks on spinner graphs in
terms of their growth.

For torsion groups of intermediate growth, there is no segewferators for which the corresponding random
walk escapes at a positive speed. (This statement is falseyanfinite nilpotent group.)

This is joint work with David Revelle.

Andrzej Zuk (CNRS, Paris VI)
Automata groups
ABSTRACT. We present recent results concerning groups generatediteydutomata.
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Combinatorial Game Theory Workshop
(05w5048)

June 18-23, 2005

Organizer(s): E. Berlekamp (Berkeley), M. Mueller (University of Albe)i&R. J. Nowakowski
(Dalhousie University), D. Wolfe (Gustavus Adolphus Cg#¢

A main aim of the workshop was to bring together the two camythematicians working in combina-
torial game theory and computer scientists interestedgiorsihmic and Avrtificial intelligence.

The Workshop attracted a mix of people from both commun(idgrom mathematics, 16 from computer
science and 2 undergraduates) as well as a mixture of newstatalished researchers. The oldest was Richard
Guy, turning 90 in 2006 and the youngest was in 3rd year UsityerThere were attendees from Europe,
Asia as well as North America.

The Workshop succeeded in its primary goal and more. Newloothtions were struck. There was quick
dissemination and evaluation of major new results and neultiewere developed during the Workshop. Part
of the success was due to the staff and facilities at BIRS.

The facilities at BIRS were appreciated by all the partinigga The main room allowed lectures to mix
computer presentations with overheads and chalkboardlagitins. (No prizes for guessing which com-
munity used which technology.) The coffee lounges and basaky rooms allowed discussions to continue
on, in comfort, until late in the night. Our thanks go to alétktaff who made the stay such a wonderful
experience and to the BIRS organization for hosting the aluok.

The elder statesmen of the community, Berlekamp, Conwagrtkel and Guy, all took active roles in
the proceedings. The first three gave survey talks on vatimpiss and all were involved in discussions
throughout the days and the evenings. The younger (ediel)igeneration were represented by the likes of
Demaine, Grossman, Muller and Siegel.

As befits a workshop on combinatorial games, games weretiedeplayed and analyzed. Philosophers
Football (Phutball) was much in evidence. There was a Kortanmament played over three evenings.
Much effort went into attempting an analysis of Sticky Tosef Hanoi, a game invented at the Workshop by
Conway, spearheaded by Conway and the youngest attendeeritk. There were many representatives of
the Go community quite a few of whom had never met each other.

Collaboration is very important in this community. For exae) David Wolfe presented a progress report
on work of G. A. Mesdal on a class of partizan splitting ganaeswering questions first raised over 30 years
ago. Mesdal is a joint effort of eleven co-authors from Ndktherica and New Zealand. Eight of the eleven
attended the workshop and the number of co-authors hadtagermlve by the time the Workshop ended.

In the end, between the talks and the discussions, thereimas/goo much to absorb in such a short
time. The talks, surveys and several consequent papertated 0 appear as (tentatively title@ames of
No Chance 3n the MSRI book series.
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All the presentations were at a high standard and all hadlylidiscussions during and after the time
allotted. Some highlights were: Conway'’s talk on lexicqd&srlekamp’s overviewoday’s View of Combi-
natorial Game Theoryand Fraenkel'$Vhat hides beyond the curtain separating Nim from non-Nimeg
Demaine’s talk on Dyson Telescopes and Moving Coin Puzdkes showed the complexity in some very
new and some very old puzzles.

However the highlights were the reports by:

1. Plambeck on a breakthrough in the analysis of impartisfamgames;
2. Siegel on extending the analysis of loopy games;

3. Friedman and Landsberg on applying renormalization téghes from physics to combinatorial games—
this paper was both controversial and thought provoking bezdl to the most discussions, including
ones on the nature of truth and of proof;

4. Nakamura on the use of ‘cooling by 2’ to determine the winméraces to capture’ in Go. One of
the goals of the Workshop was to bring together researchiens mathematics and computer science.
This was one of the talks that helped bridge the gap and emgedanuch discussion. The 30 minutes
allotted to the talk was too short, and most participantysthan extra hour (into the dinner-time) so
as to hear the details.

All of these were very new, very important results, produaely months before the Workshop.

1: Misere Games:On page 146 o0On Numbers and Gamgim Chapter 12, “How to Lose When You
Must,” John Conway writes:

Note that in a sense, [nése] restive games arambivalent Nim-heapavhich choose their
size (o or g) according to their company. There are many other gamestwésibibit behaviour
of this type, and it would be very interesting to have somegegitheory for them.

Questions about the analysis of misére impartial octalegawere raised in [3, 6] and no good general
analytical techniques have been developed apart from firttiie genus sequence [3]. (See [1, 22], see also
[8, 20]). In his presentation, Plambeck provided such a getieeory, cast in the language of commutative
semigroups.

The misere analysis of a combinatorial game often provdeetéar more difficult than its normal play
version. In fact it is an open question (Plambeck) if theensisére impartial game whose analysis is simpler
than the normal play version and there is no know way of atraymisére partizan games ([15], Problem 9).

To take a typical example, the normal play of Dawsons Chessseklved as early as 1956 by Guy and
Smith [16], but even today, a complete misere analysis babeen found. Guy tells the story [15]:

“[Dawsons chess] is played on3ax n board with white pawns on the first rank and black pawns on the
third. It was posed as a losing game (last-player-losing, called misere) so that capturing was obligatory.
Fortunately, (because we still don‘t know how to play Mes&awsons Chess) | assumed, as a number of
writers of that time and since have done, that the miserlysisaequired only a trivial adjustment of the
normal (last-player-winning) analysis. This arises bseaBouton, in his original analysis of Nim [5], had
observed that only such a trivial adjustment was necessamyver both normal and misére play...”

But even for impartial games, in which the same options aadable to both players, regardless of whose
turn it is to move, Grundy & Smith [14] showed that the gensitlation in misere play soon gets very com-
plicated, and Conway [6], (p. 140) confirmed that the sitratian only be simplified to the microscopically
small extent noticed by Grundy & Smith.

In Chapter 13 of [3], the genus theory of impartial misegudictive sums is extended significantly from
its original presentation in chapter 7 (How to Lose When Youskf of Conways On Numbers and Games
[6]. But excluding the tame games that play like Nim in méplay, theres a remarkable paucity of example
games that the genus theory completely resolves. For eearti@ section Misere Kayles ([3], pg 411)
promises, “Although several tame games arise in Kayles G¥epter 4), wild games abounding and well
need all our [genus-theoretic] resources to tackle it.oiMdver, it turns out Kayles wasn't tackled at all. It
was left to the amateur William L. Sibert to settle misereyl€a using completely different methods. One
finds a description of his solution at end of the updated Ghal& in [4], and also in [22].
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When normal play is in effect, every game with nimié&r (G) = k can be thought of as the nim help
No information about best play of the game is lost by assunfiagG is in fact precisely the nim heap of size
k. Moreover, in normal play, the nimber of a sum is just the 4sinm of the nimbers of the summands. In
this sense every normal play impartial game position is iraglisguised version of Nim (see [3], Chapter
4, for a full discussion).

Genera.When misére play is in effect, nimbers can still be definechbany inequivalent games are as-
signed the same nimber, and the outcome of a sum is not detdrby nimber of the summands. These un-
fortunate facts lead directly to the apparent great conifylek many misére analyses. Nevertheless progress
can be made. The key definition, taken directly from [6], navha bottom of page 141: In the analysis of
many games, we need even more information than is providedttwr of these value€™ andG ], and so
we shall define a more complicated symbol that we calldfevalue or genus. This is the symbol

g9-909192 - - -

whereg = G*(G), go = G™(G), g1 = G (G +2), 92 = G (G + 2 +2), ..., where, in general, is the
G~ -value of the sum ofs with n other games all equal to [the nim-heap of size] 2.

At first sight, the genus symbol looks to be an potentiallynitdly long symbol in its exponent. In prac-
tice, it can be shown that thgs always fall into an eventual period two pattern. By conientthe symbol
is written down with a finite exponent with the understandimat its final two values repeat indefinitely.

Evidently the exponent of a genus symbol of a game G is clasgddiyed to the outcome of sums of G
with all multiples of misére nim heaps of size two.

The genus computations are intended to illustrate the oaxitj@s of a misére analysis when the only
tools available to be applied are those described in Chatef Winning Ways.

Plambeck’s breakthrough was to introducqueotient semigrougtructure on the set of all positions of
an impartial game with fixed rules. The basic constructiotméssame for both normal and misere play. In
normal play, it leads to the familiar Sprague-Grundy thednymiséere play, when applied to the set of all
sums of positions played according to a particular gaméésrut leads to a quotient of a free commutative
semigroup by the game’s indistinguishability congrueriiaying a role similar to the one thaitn sequences
do for normal play, mappings from single-heap positions aggame’s misere quotient semigroup succinctly
and necessarily encode all relevant information aboutett isere play. Plambeck showed examples of
wild misere games that involve an infinity of ever-more cdisgied canonical forms amongst their position
sums that may nevertheless possess a relatively simplefiaite misére quotient. SuppoEas a taking and
breaking game whose rules have been fixed in advanceh;lst a distinct, purely formal symbol for each
i > 1. We will call the setH = {hy, ha, h3, ...} theheap alphabetA particular symbokh; will sometimes
be called eheap of size. The notationH,, stands for the subséf,, = {h;,...,h,} C H for eachn > 1.
Let Fr be the free commutative semigroup on the heap alphEbéthe semigroup$ andFy, include
an identityA, which is just the empty word. There’s a natural correspondédetween the elements Bf;
and the set of all position sums of a taking and breaking gemin this correspondence, a finite sum of
heaps of various sizes is written multiplicatively usingresponding elements of the heap alphatiefThis
multiplicative notation for sums makes it convenient toetédke convention that the empty positidn—= 1.

It corresponds to thendgame-a position with no options. Fix the rules and associgilsy convention
(normal or misere) of a particular taking and breaking gdmeetu, v € Fg be game positions ifi. We'll
say thatu is indistinguishable fromv over Fy;, and write the relatiom p v, if for every elementw € Fy,
uww andvw are either bothP-positions, or are botiV-positions.

Lemma 1 The relatiorp is a congruence of .

Suppose the rules and play convention of a taking and brgajdmel” are fixed, and lep be the indis-
tinguishability congruence a7, the free commutative semigroup of all positiong'inTheindistinguisha-
bility quotientQ = Q(T") is the commutative semigroup

Q= Fu/p.

Notice that the indistinguishability quotient can be taketh respect to either play convention (normal or
misere). The details of the indistinguishability congrae then determine the structure of the indistinguisha-
bility quotient. Since the word “indistinguishability” iguite a mouthful Q is called thequotient semigroup

of I'. WhenT is a normal play game, its quotient semigro@p= Q(T") is more than just a semigroup
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re-interpretation of the Sprague-Grundy theory says thase are always groups, each isomorphic to a direct
product of a (possibly infinite) set ék's (cyclic groups of order two)lf « is a position inFg with normal
play nim-heap equivalentt, the members of a particular congruence class= F/p will be precisely

all positions that have normal-play nim-heap equivaléntThe identity ofQ is the congruence class of all
positions with nim-heap equivalert. The “group multiplication” corresponds to nim additiororfmisere
play, the quotient structure issemigroup Surprisingly, it's often a finite object, even for a gametthas

an infinite number of different canonical forms occurringagst its sums. The elements of a particular
congruence class all have the same outcome. Each class daouggt of as carrying a big stamp labelled
“P” (previous player wins in best play for all positions indfclass) or “N” (next player wins). In normal
play, there’s only one equivalence class labelled “P"—¢ha® the positions with nim heap equivaleft

In misere play, for all but the trivial games with one pamiti<0, or two positions{*0, x1}, there is always
more than one “P” class—one corresponding to the positigmnd at least one more, corresponding to the
position*2 + x2.

At the time of the presentation, Plambeck had 20 games eaathadge octal description was short but
whose analysis had defied his attempts. Plambeck offergihgaamounts of money for their solutions.
During the Workshop, Aaron Siegel solved four of them andanjunction with Plambeck, has solved all of
the games and produced a computer program that helps withsegtations of the quotient semi-groups.

2: Loopy Games. Aaron Siegel reported on two parts of the work contained sRBhD thesis, this
particular presentation concerned loopy games. The imadittheory of combinatorial games assumes that
no position may be repeated. This restriction guarantessattbitrary sums of games will terminate; the
result is a clean, recursive, and computationally efficikabry. However, there are many interesting games
that allow repetition, including Fox and Geese, Hare andridsy Backsliding Toads and Frogs, Phutball
and Checkers. Go is a peculiar example: the ko rule forbidst mpeated positions, but local repetition is
extremely important when the board must be decomposedéotefitractable analysis.

Every game that permits repeated positions faces the plagtb nonterminating play. This is typically
resolved by declaring infinite plays drawn (as in Checkeis$ @hess), but alternative resolutions are not
uncommon. For example, Hare and Hounds declares infinites pléns for the Hare, and some dialects
of Go rules forbid them altogether. The disjunctive theamyits most general form, assumes that in sums
within finite play, the game is drawn unless the same play@swin every component in which play is
nonterminating. This is vacuously true for games where itefiplay is drawn to begin with, and it applies
equally well to games such as Hare and Hounds. Go, with igugnko rule, does not fit so cleanly into the
theory.

The general disjunctive theory was first considered by Rdbdi7], who in the mid-1970s focused on
games where it is a disadvantage to move, including a vaoiaHackenbush. Shortly thereafter, Conway,
together with his students Clive Bach and Simon Norton, giized and codified the theory and coined the
term loopy game. Their results, including the fundamemalocepts of stoppers and sides, appeared first in
a 1978 paper [6] and were reprinted in Winning Ways. At roydghe same time, Shaki [21] and Fraenkel
and Tassa [13] studied approximations and reductions dzparloopy games under a slightly different set
of assumptions. Despite this flurry of initial activity, tieewere few advances in the two decades following
the first publication of Winning Ways. Moews generalizatafrsidling was a rare exception: Published in
his 1993 thesis [18, 19],it constituted the first real adeaindhe disjunctive theory since the late 1970s.

Various authors have studied loopy games in other conte@eneralizations of the Sprague-Grundy
theory to impartial loopy games were introduced by SmitH 8ill decade before Li invented the partizan
theory. They were studied in the 1970s by Fraenkel and P&}ldid Conway[3], and much more recently
by Fraenkel and Rahat [12]. James Flanigan, in his 1979stla@si two subsequent papers [9, 10], analyzed
conjunctive and selective sums of partizan loopy games.

Meanwhile, the greatest advance of the 1990s came from aelgmlifferent quarter, the study of kos in
Go. The interplay between local cycles and the global stiteeqposition gives rise to a rich and fascinating
temperature theory, which appears to differ from Conwaggudctive theory in striking ways. The theory
was first realized by Berlekamp, following his analysis afjdree Go positions with his student David Wolfe
(see [2]. Many others have since investigated the theorypsfikcluding Fraser, Miller, Nakamura, Spight
and Takizawa. (See [25, 24, 27, 28], for some examples.)

Siegel showed how to calculate canonical forms of loopy gaamel gave some of their characteristics.
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One of his remarkable achievements is the software pack&feuite (for the “computationally efficient
theory” of finite disjunctive sums) and then and its extengim be able to calculate the canonical form of
loopy games.

Siegel, Ottaway and Nowakowski showed how rich the canéfocas of small games can be when they
considered 1-dimensional Phutball played on boards ofttengs, 9, 10, and 11.

3: Cooling and Go. The applications of combinatorial game theory to the gan@mhave, so far, been
focused on endgames and eyespace valuesapluring raceis a particular kind of life and death problem
in which both of the two adjacent opposing groups are fightingapture the opponent’s group each other.
Skills in winning races are very important factor to the sg#h of Go as well as openings and endgames
techniques. In order to win the complicated capturing rahniques of counting liberties, taking away
the opponent’s liberties and extending own liberties initoid to wide and deep reading are necessary.
Nakamura, "On Counting Liberties in Capturing Races of Gbbwed that the ‘counting’ required can be
regarded as combinatorial game with a score. Within thiméwaork, he showed how to analyze capturing
races that have no shared liberty or have just simple shévediés using combinatorial game values of
external liberties and an evaluation formula to find out thecome of the capturing races. Essentially, the
evaluation formula is by cooling. All applications of cawdi so far have been chilling (cooling by 1) but in
this case, one must cool by 2!

4: Renormalization techniques.

Friedman & Landsberg presented a new approach to combialegames that unveiled connections be-
tween such games and nonlinear phenomena commonly seemiia:recaling behaviors, complex dynamics
and chaos, growth and aggregation processes. Using theafa@@m@mp (as well as variants of the game of
Nim) as prototypes, they showed that the game possesseslariyiing geometric structure that grows (rem-
iniscent of crystal growth), and showed how this growth cammbalyzed using a renormalization procedure.
This approach not only obtains answers to some open qusstimut the game of Chomp, but opens a new
line of attack for understanding (at least some) combimatgames more generally through their underlying
connection to nonlinear science.

Analysis of these two-player games has generally reliechupfew beautiful analytical results or on
numerical algorithms that combine heuristics with looleath approaches(— 5 pruning). Using Chomp as
a prototype, this new geometrical approach unveils unaerpgearallels between combinatorial games and
key ideas from physics and dynamical systems, most notaligms of scaling, renormalization, universality,
and chaotic attractors. Their central finding is that undeg the game is a probabilistic geometric structure
that encodes essential information about the game, anthibadtructure exhibits a type of scale invariance:
Loosely speaking, the geometry of small winning positiond Erge winning positions are the same after
rescaling. (This general finding also holds for at least sother combinatorial games, as was explicitly
demonstrated with a variant of Nim.) This geometric insigbt only provides (probabilistic) answers to
some open questions about Chomp, but suggests a naturalyathward a new class of algorithms for more
general combinatorial games, and hints at deeper linksdsatwuch games and nonlinear science.

Chomp is an ideal candidate for the study, since in certapeaets it appears to be among the simplest
in the class of hard games. Its history is marked by somefgigni theoretical advances but it has yet to
succumb to a complete analysis in the 30 years since itsdnttan by Gale and Schuh. The rules of Chomp
are easily explained. Play begins with an N x M array of coimt®n each turn a player selects a counter and
removes it along with all counters to the north and east #flay alternates between the two players until one
player takes the last counter, thereby losing the game. r{kiguing feature of Chomp, as shown by Gale, is
that although it is very easy to prove that the player who radivet can always win, under optimal play, what
this opening move should be has been an open question. Thedaodbgy provides a probabilistic answer to
this question.)

For simplicity, consider the case of three-row (M=3) Chorasubject of recent study by Zeilberger
[29] and Sun [26]. Generalizations to four-row and higheo@p are analogous. To start, note that the
configuration of the counters at any stage of the game candmided (using Zeilbergers coordinates) by
the position p=[x,y,z], where x specifies the number of calgrof height three, y specifies the number of
columns of height two, and z the number with height one. Easiitipn p may be classified as either a winner,
if a player starting from that position can always force a,vanas a loser otherwise. The set of all losers
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contains the information for solving the game. One may coiargly group the losing positions according to
their x values by defining a loser sheet Lx to be an infinite dimensional matrix whose (y,z)th component
is a 1 if position [x,y,z] is a loser, and a 0 otherwise. (Asatbby Zeilberger, one can express Lx in terms of
all preceding loser sheets Lx-1, Lx-2, , L0.) Studies by Eiger [29, 30] and others have detected several
numerical patterns along with a few analytical featuresualtioe losing positions, and their interesting but
non-obvious properties have even led to a conjecture thatrPhmay be chaotic in a yet-to-be-made-precise
sense. However, many of the numerical observations to datetemained largely unexplained, and disjoint
from one another.

To provide broader insight into the general structure ofghme, the authors departed from the usual
analytic/algebraic/algorithmic approaches. Insteadviing how the analysis of the game can be recast and
transformed into a type of renormalization problem commaelen in physics (and later apply this method-
ology to other combinatorial games besides Chomp). Amalykthe resulting renormalization problem not
only explains earlier numerical observations, but prosiaenified, global description of the overall structure
of the game. This approach will be distinguished by its dedlig geometric flavor, and by the incorporation
of probabilistic elements into the analysis, despite tlo¢ tiaat the combinatorial games we consider are all
games of no chance which lack any inherent probabilisticamments to them whatsoever.

To proceed, consider the so-called instant-winner shéefisied as follows: A position p=[x,y,z] is called
an instant winner if from that position a player can legallyva to a losing position with a smaller x- value.
We therefore define an instant-winner sheet Wx to be the iafibwo- dimensional matrix consisting of all
instant winners with the specified x-value, i.e., the (Wzymponent of matrix Wx is a 1 if position [x,y,z]
is an instant winner, and a 0 otherwise. These instant-wistmeets will prove crucial for understanding the
geometric structure of the game.

Their first insight comes from numerical simulations. Theymerically construct the instant winner
sheets Wx for various x values using a recursive algorithathEsheet exhibits a nontrivial internal structure
characterized by several distinct regions: a solid (fille@ngular region at the lower left, a series of hori-
zontal bands extending to the right (towards infinity), and dther triangular regions of different densities.
Most importantly, however, we observe that the set of irtstéinner sheets Wx possess a remarkable scal-
ing property: their overall geometric shape is identicataa scaling factor! In particular, as x increases,
all boundary-line slopes, densities, and shapes of thewsiiegions are preserved from one sheet to the
next (although the actual point- by-point locations of thetant winners within each sheet are different).
Hence, upon rescaling, the overall geometric structurbese sheets is identical (in a probabilistic sense).
The growth (with increasing x) of the instant-winner shegtgrikingly similar to certain crystal-growth and
aggregation processes found in physics in each case, tlewsis grow through the accumulation of new
points along current boundaries, and exhibit geometriariance during this process. The loser sheets Lx
can be numerically constructed in a similar manner; thearabteristic geometry is revealed. It is found
to consist of three (diffuse) lines: a lower line of slope midalensity of points L, an upper line of slope
mU and density U, and a flat line extending to infinity. The upaed lower lines originate from a point
whose height (i.e., z-value) is ax. The flat line (with deneite) is only present with probability in randomly
selected loser sheets. Like the instant-winner sheet$oslee sheets also exhibit this remarkable geometric
scaling property: as x increases, the geometric structuke grows in size, but its overall shape remains
unchanged (the only caveat being that, as previously nttedlat line seen in is sometimes absent in some
of the loser sheets).

The second key finding is that there exists a well-definedlytioal recursion operator that relates one
instant winner sheet to its immediate predecessor. Namedycan write Wx+1 = R Wx, where R denotes the
recursion operator. (The operator R can be decomposed a@+#M), where L is a left-shift operator, | is
the identity operator, D is a diagonal element-adding dperand M is a sheet-valued version of the standard
mex operator which is often used for combinatorial gamekgylpoint out that once a given instant-winner
sheet Wx has been constructed, the corresponding losearlshean be found via Lx = M Wx.

The task is to determine an invariant geometric structureigti shat if we act with the recursion operator
followed by an appropriately-defined rescaling operatow&,get W back again: W = SR W (i.e., find a
fixed point of the renormalization-group operator SR.) Tddas be done, but before doing so, even though
the recursion operator R is exact and the game itself haduablyono stochastic aspects to it, it is necessary
to adopt a probabilistic framework in order to solve thisums@on relation. Namely, the renormalization
procedure will show that the slopes of all boundary lines @edsities of all regions in the Wxs (and Lxs)
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are preserved not that there exists a point-by-point etprica. In essence, bypassing consideration of
the random-looking scatter of points surrounding the vegilines and regions of Wx and Lx by effectively
averaging over these fluctuations.

The key to implementing the renormalization analysis istisesve that the losers in Lx are constrained
to lie along certain boundary lines of the Wx plot, and arespicuously absent from the various interior
regions of Wx (for all x). In other words, the interior reg®of each Wx remain forbidden to the losers.
Hence the geometry of Wxs must be very tightly constrain@dsfto preserve these symmetries.
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Rigidity, Dynamics, and Group Actions
(05w5029)

July 9-14, 2005

Organizer(s): David Fisher (Lehman College - CUNY), Elon Lindenstraussn@&ton
University), Dave Witte Morris (University of LethbridgeRalf Spatzier (University of
Michigan)

Rigidity theory has its roots in classical theorems of Sejb®@/eil, Mostow, Margulis and Furstenberg.
It extends into diverse areas such as complex and diffedegg¢iometry, group theory and representation
theory, ergodic theory, dynamics and group actions. Oufezence “Rigidity, Dynamics and Group Actions”
concentrated on the rapid recent progress in these areasstiitly of “large” groups (such as lattices in
semisimple groups or higher rank abelian groups) and tliorzss was the focal point of the conference,
with particular attention given to the following four cldgeelated topics:

e local and global rigidity of actions,
¢ low-dimensional actions of large groups,
e orbit-equivalence rigidity, and

e invariant measures for actions on homogeneous spaces.

We had many exciting talks on these and other topics on lamgepg. Exciting recent progress more
generally in dynamics, geometry and geometric group theay also discussed and presented in talks.
Many exciting new connections between dynamics of groupmstnd other areas, including number theory,
geometry, and operator algebras, were discussed.

The organizers have established a resource page for theshagk There are also plans to expand an
existing problem list from an earlier workshop to reflect pneblem session at this workshop.

Classification of Group Actions

LetG = SL(n,R)andI’ = SL(n,Z), withn > 3. More generally, we can consider any simple Lie group
G of real rank at least two, and a latti€ein G. For any natural numbet, the classical theory of roots
and weights determines all of the homomorphisms fi@mto GL(¢,C'). Roughly speaking, Margulis’

Ihttp:// people. ul eth. ca/ ~dave. norris/banff-rigidity/
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Superrigidity Theorem (1975) shows that roots and weightgaups closely related t&' determine all of
the homomorphisms froifi into GL(¢, C).

These two results classify the linear actiongzobr I' on (complex) vector spaces. Zimmer’s non-linear
generalization of Margulis’ superrigidity theorem opetieglway to classifying “non-linear representions” of
these groups. One such non-linear variant is to study ecgdup actions oz or I" up to orbit equivalence.
For higher rank groups and their lattices, orbit equivageiscnow fairly well understood, due primarily to
work of Zimmer and Furman. Recent progress has focused @n tyhes of groups, see the recent survey by
Shalom [29].

A more difficult nonlinear, problem is to classify the smo@tt°) actions ofG or I' on compact, smooth
manifolds. This work is closely connected to understandiggstructure of known algebraic actions, and
also to several questions in pure ergodic theory.

Very few volume-preserving actions bf(on a compact manifold) are known. One example is the stan-
dard action o’ = SL(n, Z) on then-torus. Certain examples similar to this are cal&gfine algebraic
actions they arise from purely algebraic (group-theoretic) corcdtons.

In 1996, Katok and Lewis produced the first examples of ngetalaic actions. However, the actions
were constructed by making minor topological modificatiohalgebraic ones. It may be the case that every
volume-preserving action is isomorphic to an algebraimacafter certain sets of measure zero are deleted.

Local rigidity [7, 9]

A smooth actiorp of I' is said to bdocally rigid if every “nearby” smooth action is smoothly conjugateto
Building upon many authors’ results of the last 15 yearshé&isand Margulis established local rigidity for
all affine algebraic actions [9]. Thus, perturbing an affifgeehraic action will not result in a non-algebraic
action.

Fisher recently pushed through another approach to logilityt, generalizing some of Weil's ideas for
proving local rigidity of lattices in Lie groups. Itis oftexasier to prove infinitesimal rigidity of a subgroup or
action. Weil for subgroups and now Fisher for actions sholaa to go from infinitesimal to local rigidity.
For actions this is a highly non-trivial problem due to thé#idilty of suitable inverse function theorems.
This approach has many novel applications to groups notredviey any previous local rigidity results.
Fisher reported on this in his talk at the workshop. He alscudised work in progress with T.J.Hitchman
which would produce further applications of this result.

Dynamics and global rigidity [6]

Margulis and Qian proved a global rigidity result for actoof I' on tori under some further assumptions.
Goetze and Spatzier completely classified the much morgatest class of “Cartan” actions on arbitrary
compact manifolds.

These proofs use the study of “hyperbolic” actions of higlaak abelian groups by Katok, Spatzier and
others. As for lattices, all irreducible actions of thiséyare conjectured to be “algebraic.”

The cross fertilization between these areas has been crisioiaexample, local rigidity of the higher rank
abelian actions led to the proof of local rigidity of projeetactions of higher rank cocompact lattices. This
is also closely related to work of Katok-Spatzier discudseldw in (13).

More recent developments concerning global rigidity ofugractions have introduced a plethora of new
techniques and ideas into the field and some of these weretedpon at the meeting, but are discussed
below in the section on low dimensional actions. In low disiens, the classification problem simplifies to
showing that no examples exist!

Arithmetic Quotients [10]

Recent work of Lubotzky, Zimmer, and Fisher constructs asuesble map from any volume-preserving
action of G or I' to some algebraic example. Fisher and Whyte gave conditindsr which the map is
continuous. Under additional assumptions, the algebm@iorais “close to” the original action. More re-
cent results of Schmidt have drawn closer connections lestwgéobal rigidity and the study of arithmetic
guotients.
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Low-Dimensional Actions of Large Groups[2, 11, 13, 19, 23]

Zimmer conjectured thdf cannot act (faithfully) on any compact manifoldd whose dimension is much
smaller than the size aF. This has not been proved in complete generality even wier{)/) = 1, al-
though much progress was made in a sequence of works by \@itigs, Burger and Monod, Navas, and
Lifschitz and Morris. More recently, there has been draojatogress whedim(M) = 2 as well, assum-
ing the action is volume-preserving, and tl@atl" is not compact. Under these assumptions, Polterovich
eliminated all the surfaces of genus at least 1, by usingnigales from symplectic topology. Franks and
Handel were able to eliminate the other surfaces, undeoaggr assumption oh, by using a completely
different approach based on low-dimensional dynamic$udicg a structure theory for area preserving dif-
feomorphisms of surfaces. Franks discussed some of thesksran his talk. In connection with this work,
M. Handel explained his joint work with Franks on fixed poifdsactions of higher rank abelian groups on
R? andS?. Higher rank abelian actions have been prominent in receatsy due to the discovery of many
rigidity properties. The work of Franks and Handel againvghthat such actions are very special.

Vanishing of bounded cohomology groups is an obstructiomoto-trivial actions on the circle. Recent
work of Ghys-Gambaudo and Polterovich indicate that bodrd&omology may also be relevant to studying
actions on surfaces.

One can interpret elements of the second bounded cohomalagyroupl™ as quasi-morphisms. Polterovich
gave a brief overview over of quasi-morphisms and how thésedor groups of Hamiltonian diffeomor-
phisms at the workshop. This very inspiring lecture wilk@&as an excellent departure point for future work
in the area.

In the complex analytic setting, S. Cantat recently esshblil a version of Zimmer’s conjecture. This
combines holomorphic dynamics with arguments from algelg@ometry, and is the first result of this kind
for actions preserving a non-rigid geometric structure @thmplex structure).

Cocycle Superrigidity [5, 8, 30]

A fundamental tool, in the analysis of actions of large g®igtZzimmer’s extension of Margulis superrigidity
theorem for cocycles for higher rank semisimple Lie grouiheut compact factors. As reported by Hitch-
man, he and Fisher extended these cocycle superrigiditjtsee actions of the Kazhdan rank 1 groups and
their lattices using the harmonic maps approach to supeitsig This builds on earlier work of Korevaar-
Schoen and Corlette-Zimmer and also gives new proofs oftilogvk cases of superrigidity. This will allow
Fisher and Hitchman to prove many results for actions ofafygeups which had so far only been available
for higher rank groups.

In recent years various superrigidity results were obthifoe lattices in products of groups and even
simply for products of finitely generated groups by many atghparticularly Shalom and Monod. Furman
reported on work with Monod in which they generalized Zimimisuperrigidity theorem for (certain) cocycle
over actions of such groups, and applied it to the study of gmeooth actions.

Another extension of superrigidity for cocycles was anrgmthat the conference by Popa. His result
applies to a wide class of groups, but requires that the dedgcover an action which is Bernouilli. This is
related to Popa’s recent work on orbit equivalence, whialigsussed in the next subsection.

Orbit Equivalence Rigidity [12, 24, 29]

Two actions on measure spaces are said torbé equivalentif there is a bi-measurable map that takes
orbits to orbits. This notion is central in ergodic theorgr Biscrete amenable groups, essentially all actions
preserving a finite measure are orbit equivalent. At therakigeme, Zimmer’s superrigidity theorem implies
that non-isomorphic actions @ are never orbit equivalent. The situation for actions ofttida is more
subtle and was recently resolved by Furman. Furman wasr@tspy the classification of lattices up to
quasi-isometry in geometric group theory. Furman’s work been used by logicians to solve longstanding
problems on Borel equivalence relations.

Several authors have recently proven orbit equivalenedtssfor more general groups. Gaboriau showed
that/2-Betti numbers of groups are invariant under measure efgmiva. This allowed him to distinguish free
groups and their products under measure equivalence. Mand&halom used techniques from bounded
cohomology to prove measure-equivalence rigidity of patslof groups acting on CAF-1)-spaces. More
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recently, Gaboriau and Popa have used techniques fromtopatgebras in conjunction with ideas from
rigidity theory to produce uncountably many non-orbit eglent actions of the free group.

During the workshop Popa reported on his recent work on thegtigidity of I, -factors of rigid groups,
and in particular of Bernoulli actions of groups which hagtative property7’). He also sketched some of
the ideas in his more recent work, which yields orbit equxak “super-rigidity” theorems for remarkably
broad classes of groups. His lecture provided a good brultfeetworld of operator algebras from the more
classical areas of rigidity theory.

Flows on homogeneous spaces and related topics

In the previous section we described attempts to classiigresof large groups. Another major theme of
research has been the study of the properties of concretp guions. A basic class of such actions is the
following: Let G be a locally compact group (usually either a Lie group oSaarithmetic algebraic linear
group),I"’ < G a discrete subgroup, and < G some other closed subgrogp Then one may study the
action of H on G/T". These actions are fascinating for their own sake and aaseailly in many contexts
particularly in number theory, and also in the study of tigédity questions discussed in the other sections of
this summary.

A basic question considered about these actions in theifgtasion of H-invariant measures o&'/T’
and of H-invariant closed subsets. A major landmark in this dimttias been Margulis’ resolution of the
long-standing Oppenheim conjecture regarding valuesdsfinite quadratic forms by classifying closures
of SO(2,1)-orbitsinSL(3,R)/SL(3, Z).

This classification resultis a very special case of much rgereral theorems proved a few years later by
Ratner [26, 27] on invariant measures and orbit closure dbomas of groups generated by unipotents (such
as the Lie group'O(2, 1)).

Invariant Measures For Actions on Homogeneous Spaces and Afications to Number
Theory [3, 14, 16, 18, 20, 21, 26, 28]

Ratner’s work (even her work on orbit closures) is based encthssification of measures invariant under
groups generated by unipotents, and the many applicatiainésovork are too numerous to be listed here!
In the workshop H. Oh explained her work with Gorodnik andtSba equidistribution of rational points in
affine spaces refining earlier work of Eskin and McMullen oa dinowth of the number of such points, a key
ingredient of which was Ratner’s theorems.

Ratner’s measure classification results apply only to finitariant measures. If one considers flows on a
quotient spacé&/T" of infinite volume the situation is much less is understoodSéxrig explained his work
with Ledrappier on the horocycle flow on infinite normal cavef surfaces. Amazingly, even in this infinite
geometric setting it is possible to classify invariant meas. Furthermore, Sarig reported that only one of
these invariant measures satisfies a generalized law & tangnbers.

Another type of actions that often arise in applicationbésdction of multidimensional abelian subgroups
which areAd-diagonalizable oveR. At first sight it seems rather unlikely that anything usefah be said
about invariant measures for such actions, since the actiarsingle hyperbolic diffeomorphism has many
invariant measures and complicated orbit closures. Bu&dn, for an abelian group generated by several
such diffeomorphisms, it seems that the invariant measagems are scarce. In the eafl§’s Furstenberg
conjectured that ergodic measures invariant under k@tland x3 on the unit interval are either supported
on periodic orbits or are Lebesgue measure. Rudolph hagptitre conjecture provided the entropy of at
least one transformation is positive. Katok and Spatzietietl general affine algebraic actions of higher rank
abelian groups, and proved algebraicity of the measuresrungositive entropy condition and other strong
ergodicity assumptions. Two new measure classificatiomatkst have been introduced that do not require
these ergodicity assumptions — one by Einsiedler and Katokwdeals with measures with “high” entropy
and a second by Lindenstrauss dealing with measures of ‘émropy. These have been combined in [3] to
classify all the measures &fiL.(n, R)/SL(n, Z) ergodic and invariant under the action of the full diagonal
group with positive entropy, which gives a partial resulvénds Littlewood’s conjecture on simultaneous
diophantine approximation. Lindenstrauss used the lowopgtmethods, in conjunction with his work with
Bourgain in number theory, to show quantum unique ergadioitcertain arithmetic surfaces.
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In the workshop E. Lindenstrauss discussed his work with Msigdler, P. Michel and A. Venkatesh
which gives another application of the results of [3] whidheg information regarding the distribution of
compact orbits of on homogeneous spaces indexed by diseimhi

Another talk which deals with the same type of action wasmlwe Tomanov who presented generaliza-
tion of his previous work with Weiss regarding the classtfmaof closed orbits, and presented an application
regarding the set of values attained by a produét kiriear forms inn. > k variables at integer points.

Other related topicq15, 22]

Using ideas developed to study unipotents flows, and inqaati their behavior near the cusp in the space
SL(n,R)/SL(n,Z), Dani, Kleinbock, Margulis and others have proven manyltesagarding diophantine
approximations. During the workshop, D. Kleinbock dis@gskis recent work on quantitative divergence es-
timates for unipotent flows and how they give precise formfda Diophantine exponents of affine subspaces
of R™, and Weiss explained how similar techniques work in thefraigller space setting.

Classical ergodic theory concerns itself with ergodicihd sequidistribution problems for actions of
“small” groups such as the reals and integers, and, moreragilneamenable groups. It was only in the
1990's that ergodic theorems for actions of semisimple gsavere established by Nevo, Stein and Margulis.
They proved both strong maximal inequalities and pointwigmdic theorems for avergaes over Riemannian
balls in the group bi-invariant under a maximal compact sabg. A. Gorodnik and A. Nevo recently gen-
eralized such theorems to a more general class of increasimgact sets. As a consequence, they obtained
strong maximal inqualities, mean ergodic theorems andtw@e ergodic theorems for actions of lattices in
semisimple groups, as was reported by Gorodnik.

GEOMETRY [4,17]

A common theme of rigidity in geometry is the charactermatf locally symmetric metrics in simple ge-
ometric or topological terms. The prime example is the SfrRigidity Theorem of Mostow, Margulis and
Prasad. Later examples are the rank rigidity theorems biyrBah and Burns-Spatzier, and the characteri-
zation by Besson, Courtois and Gallot of real hyperboliceday minimal volume and the other negatively
curved symmetric spaces by minimal entropy. A related topinterest is the study of similar rigidity prop-
erties for homogeneous spaces which are not locally synunsée work of Connell, Eberlein and Heber.

Minimal volume is closely related to Gromov’s simpliciallume. The vanishing of the latter has im-
portant consequences for the topology and geometry of theespThurston had shown non-vanishing of
the simplicial volume for closed real hyperbolic spaces.r&igenerally it is known for closed manifolds
of negative curvature. B. Schmidt reported on his recenkwath J. Lafont that the simplicial volume of
closed higher rank locally symmetric spaces of nonpostliveature and no Euclidean facfors is not 0. This
is based on a non-trivial extension of a Jacobian estimaBz=s$on, Courtois and Gallot to the higher rank
situation by C. Connell and B. Farb.

Another approach to characterize locally symmetric spa&cey symmetry: assume that the universal
cover of a closed manifold has a non-discrete group of isneset If it is also assumed that the sectional
curvature is non-positive, then the metric is automatyclaltally symmetric, as was proved by P. Eberlein
in the 80’s. B. Farb reported on his beautiful work with S. erger that achieves essentially the same
conclusion without the curvature assumption. This work tegently been extended to other Lorentz and
other pseudo-Riemannian metrics by K. Melnick. This wilbye important in the context of group actions
preserving such structures.

Mostow’s use of quasi-isometries in establishing strogglify led to many outstanding problems in ge-
ometric group theory. Gromov in particular asked for thesinisometric classification of groups. For special
groups such as lattices in semisimple groups, this waslesttat in the early 1990’s in a remarkable series
of works by Casson, Chow, Drutu, Eskin, Farb, Gabai, Grordorgreis, Kleiner, Koranyi-Riemann, Leeb,
Pansu, Schwartz, Sullivan, and Tukia. One obtains bothigs@®etric rigidity and classification. Thus,
any group quasi-isometric to such a lattice is isomorphiarte on a subgroup of finite index. There is one
quasi-isometry class of cocompact lattices for each semisigroupG. Further, there is one quasi-isometry
class for each commensurability class of irreducible nocempact lattices, except f6f = SL(2, R) where
there is precisely one quasi-isometry class of non-cocabiatices.



148 Five-day Workshop Reports

The case of nilpotent groups is still open even though Pahswed that the associated graded group
of two quasi-isomorphic nilpotent groups have to agree I@haecently found further invariants for quasi-
isometry which distinguish some nilpotent groups with isophic graded group. These invariants have been
further refined by R.Sauer.

The case of solvable groups however was wide open until oukskop when A. Eskin announced his
recent joint work with Fisher and Whyte on Sol and other maeggal solvable groups. Again they establish
guasi-isometric rigidity. Interestingly, the proof bowstechniques more commonly seen in ergodic theory.

Marked length spectrum rigiidity is yet another soughtradtearacterization of a negatively curved Rie-
mannian manifold. Much progress has been achieved in thenlaglecades. U. Bader in collaboration with
R.Muchnik connected marked length spectrum rigidity to @red representation of the fundamental group
coming from the canonical action on the sphere at infinity.

Lattices[1, 25]

Boundaries have played a central role in rigidity theoryt We still do not understand boundaries completely.
H. Furstenberg’s lecture on problems in boundary theory lbél made available as a video on the BIRS
website, and is suitable for an introduction to the field fon@e general audience.

The fine theory of lattices is still making major advancesanglified by E. Breuillard’s talk on his
work with Gelander on the uniform Tits’ alternative. Titsimhous result says that a finitely generated linear
group either has a subgroup of finite index or contains a frea This new work gives an estimate how
close to the identity one can find two generators for a freerd his improves earlier work of Eskin, Mozes
and Oh for free semigroups. They also obtained uniform Kaamti¢t constants and uniform Cayley graph
Cheeger constants.

Raghunathan gave an introductory survey lecture on theraenge subgroup problem. While this ques-
tion has been resolved in many cases, the general resulsdeamquire significant new ideas and Raghu-
nathan gave an excellent survey of known methods, theiicgiplity and their limitations.
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Chapter 14

Multimedia and Mathematics (05w5505)

July 23-28, 2005

Organizer(s): Rabab Ward (Institute for Computing, Information and CatigaiSystems,
UBC), Robert Gray (Stanford University)

Introduction

The diverse applications of multimedia technology afféxet tvay we communicate, work and play. The
Banff International Research Station (BIRS) workshop ortivhedia and Mathematics, organized by Rabab
K. Ward and Robert Gray, brought university and industryspenel together from July 23-28, 2005 to share
ideas about the latest advances in the different areas d¢innedlia and related mathematics. Forty attendees
(29 men and 11 women) from Canada, UK, Australia and the USApeised 6 graduate students and 26
faculty members from 24 universities, as well as 8 reseasdinem Microsoft, Apple, Hewlett-Packard, Tiz
Media Foundation, and the National Science Foundation. rithecross-fertilization brought about by this
workshop provided new insights into possible solutiondilatest technical challenges.

Academics and mathematicians, as well as practitioneginears, and researchers working in differ-
ent industries related to multimedia devices, describedtiproaches, advances, and constraints involved in
their area of media. With a view to discovering common grquhey explored the mathematical modeling,
analysis, and representation of information relevant éir ttespective fields. Models used in individual me-
dia as well as in multimedia systems were examined. Undsibitdad umbrella, the following topics were
discussed: algorithms, architecture and hardware, soéty@int processing and coordination of multi-model
signals and data, coding, compression, storage, retrighadistical learning, recognition, classification, seg-
mentation, communication, networking, multi-model degand systems, multimedia forensics and security,
human movements and mobile devices.

The main types of signals discussed in the workshop weretimslved in text, audio, speech, music,
images, and video, as well as sensor data such as enviramesdsurements from sensor networks and
biological data from medical devices. The role of multingeth hip-hop culture was also investigated as a
means of promoting mathematics among under-representeatities.

Among the many topics discussed, three important areas/eecgpecial attention: (1) data protection;
(2) coding; and (3) reduction in the computational load oftrmedia devices and processors. Multimedia
networking and security are intertwined topics becausegtbeith of multimedia products raises concerns
for content producers about how best to protect their infgiom. At the same time, there is a need to
make better use of bandwidth in a network hardware infrasire whose standards are fixed. This need
for greater bandwidth efficiency is reflected in the numbepm@sentations in the coding area. Reducing
computational complexity received much attention, sintare multimedia communication will be based on
wireless devices with person-to-person connections.

Peer-to-peer video streaming and wireless multimediaesgmt a paradigm shift. Traditionally, most

152



Multimedia and Mathematics 153

video content has originated from only a few places (mainbadcasters) for mass distribution to consumers.
Now, however, consumers equipped with digital camerascoatiers, and camera phones, have multiple
ways of generating, acquiring, and managing their own vicmdent. Video now comes from a multitude
of sources, and not a lot of computing power can be crammedtlireise mobile imaging devices without
draining their batteries and using up their limited dataeage. Along with the limited bandwidth of wireless
devices, this limitation requires that the video signalcbmpressed. However, functions such as motion
estimation and compensation, which are integral to videngression, are very computer-intensive. Today,
compression and other video encoding are done by broadeaBte mobiles, however, we need to shift the
computationally demanding components such as motion astimand compensation to the desktop machine
or the mobile. Mobiles, therefore, need to have simples pEsver-hungry encoders, and we need to reduce
encoder complexity in ways that wont affect compressiowmiefficy. We arent really there yet.

In the following two sections, we summarize the topics esgudoat the workshop. For convenience
of presentation, we classify the topics discussed intogcaiies, "Theory and Modeling” and "Progress in
Specific Application Areas”, even though almost every pnéstiion discussed theory as well as applications.

Presentations and Discussion

Theory and Modeling

Of the 25 presentations, 13 can be roughly categorized urttewry and Modeling. In most of these talks,
different applications to multimedia applications wersoatliscussed and demonstrated. The following four
talks could fall under the general topics of modeling imagesige rendering, humancomputer interaction
and a unified algebraic approach to time and signal modelstoghaphic Image Representation with Mul-
tiscale Gradients and Applications, e.g., to Denoising ifgiMulti-View Imaging to a New Dimension:
From Harry Nyquist to Image-Based Rendering A New Frameviorikodeling and Recognizing Human
Movement and Actions Deterministic and Stochastic, Time &pace Signal Models: An Algebraic Ap-
proach The area of image and video coding received muchtiatteas mentioned earlier. The following
four talks were given in this area: A Signal Processor’s Aph to Modeling the Human Visual System,
and Applications, e.g., to Coding Vector Quantizers for kel Bit-Rate Coding of Correlated Sources
Analytical Modeling of Matching Pursuit Time Domain Lapp&dansform and Its Applications to Cod-
ing and Error Resilience Transmission Additional presgona in this area are discussed in the following
section on Progress in Specific Application Areas. There oves presentation on information representa-
tion of networks, entitled Information Representationf@twork Systems. Image segmentation remains an
active area of research, with many applications rangingnfuideo retrieval to biomedical imaging. The
following two presentations addressed image segmentaltathematical and Perceptual Models for Image
Segmentation Deformable Models for Image Analysis: Fromak&s’ to 'Organisms’ Two presentations
that addressed reduction in computational load were Dineri®eduction for Classification and Anomaly
Detection Multi-scale Displacement Estimation and Regiiin for 2-D and 3-D Datasets. We will now
briefly describe the digests of the above talks, highlightecent developments, scientific progress and some
of the open problems.

Eero Simonelli talked about photographic image represientsvith multiscale gradients. He described
recent empirical investigation and modeling of the joiritistical properties of a multiscale representation
based on derivative operators. In particular, he discudsedse of Gaussian Scale Mixtures (product of a
scalar random variable and a Gaussian vector) to model #tistits of clusters of wavelet coefficients at
adjacent positions, scales and orientations. When apiaithte problem of denoising, these models provide
a natural generalization of both standard linear (Wiened)taresholding estimators, and lead to substantial
increases in performance. He also described how to exténcthtidel to include local geometry in the form
of phase and orientation information.

Tsuhan Chen talked about the recent convergence of imagessing, computer vision, and computer
graphics resulting in multi-view image processing. A pietmay be worth a thousand words, but a single
picture is not able to render the whole scene; it merely rextie scene as seen from a particular viewpoint.
In 1991, Adelson and Bergen proposed the concept of the plerfonction, a seven-dimensional function
that represents all the light rays in a dynamic scene. Simee, research on sampling, storing, interpolat-
ing, and reconstructing the plenoptic function has beenrgimg at both academic and industrial research
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institutions. This area of research is commonly referredgomage-based rendering, or, more familiar to
the signal-processing community, multi-view image preges. Recent convergence of image processing,
computer vision and computer graphics has resulted infsgni progress in multi-view image processing.
Now widely used in applications ranging from special effcemember the movie "The Matrix"?) to vir-
tual teleconferencing, multi-view image processing habee a critical tool for creating visually exciting
content. With multi-view image processing, real-worldrseg can be captured and rendered directly from
images captured by cameras, eliminating the need for catipoally expensive modeling of 3D geometry
or surface reflectance, as is often done in traditional cderpgraphics. Dr. Chen also discussed recent
developments in image-based rendering. While studyingrtbehanism for sampling multi-view data, he
revealed the connections between image-based renderitiidimensional multirate signal processing, and
the Sampling Theorem discovered by Harry Nyquist 80 yean$ ag

Ling Guan described a new framework for modeling and reaggihuman movement and actions.
Humancomputer interaction (HCI) study is a key research aremany scientific disciplines. Dr. Guan
started the talk with an overview of concepts, history areén¢ developments in HCI: face, speech, gesture,
human emotion and human actions, with emphasis on emotidraetion recognition. He then focussed
on a fundamental, but under-investigated research are€inrhbdeling and recognizing human movement
and actions. Inspired by the movement notation systems insgéahce and the paradigm of the phonemes
used in continuous speech recognition, he described arCmnts Human Movement Recognition (CHMR)
framework. The framework is based on a novel paradigm, thiesddet of dynemes, the smallest contrastive
dynamic units of human movement. A Differential Evolutiblente Carlo particle filter is introduced, which
has demonstrated highly effective and robust charadtevist tracking basic human movement skills. Using
multiple hidden Markov models, the recognition processmfits to infer the human movement skill that
could have produced the observed sequence of dynemes.tReteropometric data shows that the famous
"average sized human” model in Leonardo da Vinci's drawifithe human figure is a fallacy, and that there
is no one who is average in 10 dimensions. Incorporating thkehhaccurate biometric features into the
CHMR framework, Dr. Guan was able to demonstrate the effeéiss of the framework in biometrics,
biomedical analysis, and recognition of human skills. Hepoised and forecasted that this framework will
form the enabling technology for biometric authenticatsystems for a broad range of applications such as
security/surveillance, biomedicine/physiotherapycsgesffects in motion picture production, digital asset
management, battlefield surveillance, coaching/traiffiidging in sports and performing arts, to name a few.

Jose Moura presented a new algebraic approach for detstimiand stochastic, time and space mod-
els. We are all familiar with (infinite) "time” signal procgiag: time shifts, filters and convolution, signals,
Fourier and z-transforms, spectrum, fast algorithms. ksagf course, are not "time” but "space” objects.
Also, they are "finite” objects, i.e., defined over a finite émthg set. What is the natural concept of space
shift, of space filter and convolution, spectral analysiszé-transform, as well as many other related con-
cepts? To address these questions, Dr. Moura went beyaat ligebra to present an algebraic approach
where time (signal) and space (image) processing are imgians of the same mathematical structure. The
basic building block is the signal model - a triplet (A, M, f) @an algebra A of filters, a module M of sig-
nals, and a generalization of the z-transform as a bijeditngar mapping f from a vector space into the
module of signals. The shift is naturally interpreted as aegator of the algebra of filters, boundary con-
ditions connect finite with infinite indexing sets, the tnigonetric transforms (e.g., DCTSs) are appropriate
Fourier transforms, and the C-transform is the z-transfdviore than a mathematical curiosity, the algebraic
approach provides the appropriate structure to extenadkagrd image processing beyond uniform to other
grids (e.g., hexagonal or quincunx), or develop fast athors from a few basic principles, from which we
can also derive new fast algorithms for existing and newsfiaams. Connections with other image models,
in particular, with Gauss Markov fields and pinned Markovdifons, were discussed. This talk overviewed
Moura’s recent work with Markus Pueschel on the algebragoith of signal and image processing.

Sheila Hemami presented a signal processing approach telth@chuman visual system. Currentimage
and video compression algorithms (e.g., JPEG-2000, H.@@4)ide very high efficiency compression and
excellent quality at relatively high bit rates. These altjwns operate by treating images and video as tradi-
tional "signals,” employing efficient transformationsyeation-based models, and entropy coding. Human
visual system characteristics have been successfullyeaptd high-rate signal-based compression, where
stimuli such as compression-induced distortions are béh@wisibility threshold; i.e., humans cannot see
them. Operation of such signal-based compression algasitht low rates, in which compression-induced
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distortions are clearly visible, has to date operated basedsual system rules-of-thumb and has produced
moderate success for images, while little has been donddeopv Dr. Hemami presented recent results on
characterizing the human visual system in a manner thawvslfor immediate incorporation into imaging
and video applications, such as compression and qualitguneaent, at not only high rates/low distortions
but also at low rates/high distortions. Results were prteskin two distinct areas: vision-based results that
explain how humans perceive stimuli, and engineeringvat#d results that allow us to incorporate our
characterizations into practical algorithms.

Russ Mersereau discussed coding of correlated sourceswéli known that vectors derived from con-
secutive segments of most real-world signals are stronglietated. This inter-vector correlation is not
exploited in a standard VQ system. Many techniques proptsedploit this correlation render the VQ
sub-optimal or require buffering, and thus introduce emugpdelay. Dr. Mersereau presented two alternative
methods. The first approach, cache VQ, uses a cache memeguoathe bit rate and the encoding time, at
the cost of a slight, but controllable, increase in the cgdirror. The second approach, recently developed
by Krishnan, Barnwell, and Anderson at Georgia Tech, oveencache VQ’s limitations. Their approach,
called dynamic codebook reordering, dramatically redtise€ntropy in the representation of the VQ sym-
bols, which can then be exploited for lossless compres$fignamic codebook reordering can significantly
reduce the bit rate for strongly correlated sources withdubducing any additional distortion, coding delay,
or sub-optimality when compared to a standard VQ.

Shahram Shirani presented an analytical approach that Imtitke operation of the matching pursuit
algorithm on uniformly distributed signals. Matching puitss a greedy algorithm that decomposes a signal
into a redundant dictionary of basis functions. It has régediound applications in many areas, including
image and video processing. The proposed model expresseddtionship between the bit rate and matching
pursuit coder parameters such as dictionary size, quéiotizgtep size, distortion and dimension of the signal.
This relationship can be used to optimize the dictionarg sizd quantization step size for minimum bit rate.
The model is verified through experimental results, and thoeii@cy of the model is validated for different
system parameters.

Jie Liang reviewed the theory and applications of time dontegpped transform, including the design of
fast transform, its application in wavelet-based imagewadeo coding, and error resilient design for multiple
description coding.

Thrasos Pappas discussed problems arising in the segioarghimages of natural scenes. One of the
challenges of this problem is that the statistical charéties of perceptually uniform regions are spatially
varying due to effects of lighting, perspective, scale gfea etc. A second challenge is the extraction of per-
ceptually relevant information. Dr. Pappas first considehe problem of segmenting images of objects with
smooth surfaces. The images are modeled as smooth spaéialing functions with sharp discontinuities at
the segment boundaries, plus white Gaussian noise. Dr.aRajpcussed an adaptive clustering algorithm
for segmentation, which is a generalization of the K-me#unstering algorithm to include spatial constraints
and to account for local intensity variations in the imaglee $patial constraints are modeled through the use
of Gibbs/Markov random fields, while the local intensity isdions are accounted for in an iterative proce-
dure involving averaging over a sliding window whose sizerdases as the algorithm progresses. Dr. Pappas
also considered a hierarchical implementation that regultetter performance and computational efficiency,
then discussed an adaptive perceptual colortexture segtisenalgorithm that is based on low-level features
for color and texture. It combines knowledge of human pefoapvith an understanding of signal charac-
teristics in order to segment natural scenes into percysemantically uniform regions, and is based on
two types of spatially adaptive low-level features. Thetfitsscribes the local color composition in terms
of spatially adaptive dominant colors, and the second dessthe spatial characteristics of the gray-scale
component of the texture. Key segmentation parameterssdeendined on the basis of subjective tests. The
resulting segmentations convey semantic informationdhatbe used for content-based retrieval.

Another presentation on image segmentation was given bygsanaHamarneh. Dr. Hamarneh started
by giving a short overview on image segmentation and registr. He then focussed on deformable models
('snakes’ and others) for image segmentation and mentitmseds related to incorporating prior knowledge.
He then presented his work on 'deformable organisms’, aficéat-life framework for image analysis incor-
porating high-level, intelligent, intuitive control of ahe deformations. Various application examples were
presented throughout the talk.

Dimension reduction for classification was discussed byedlfHero. There has been intense interest in
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analysis of massively complex data sets with thousandsméusions. Dimension reduction methods are
critical components of any analysis method due to the requéints of computation and noise reduction. Dr.
Hero presented new variational methods of dimension réztutiiat explicitly target classification, anomaly
detection, or other tasks.

Nick Kinsbury discussed the problems in motion estimatiod igegistration of images and 3-dimensional
objects. His talk considered the problems of displacenmmhption) estimation between pairs of 2-D images
or 3-D datasets, especially for the case of non-rigid defdion as encountered in many medical imaging
applications. He showed how the use of multi-scale direetiy selective octave-band filters with analytic
(complex) impulse responses can greatly reduce the cotgmahbload associated with displacement esti-
mation by employing phase-based methods. In particulaextended the techniques of Hemmendorf for
use with dual-tree complex wavelets (DT CWT) and in an iteesgcenario, such that the usual approxima-
tions associated with phase-based approaches are midinTihese methods rely on the shift-invariant and
directional properties of the DT CWT, and are inherentlyliex® to shifts in the mean level and contrast of
the two datasets and to noise, because of the band-limitedenaf the signals and the use of phase shifts
to estimate displacements. They are computationally efftdiecause a coarse-to-fine, multi-scale approach
is used, and they are well-suited to displacement fieldscdrabe represented by locally-affine models with
smoothly varying parameters. The algorithm can also begdesiilargely to ignore data in areas where the
two datasets do not match (e.g., where a tumour is preseneidataset but not in the other). Dr. Kinsbury
believes that the computational advantages of this methtbdbevparticularly helpful for 3-D registration
tasks.

Progress in Specific Application Areas

The areas of forensics and security, video coding, autahsgteech recognition, automated music retrieval,
video for mobile devices and network coding for the Interaetl wireless networks were discussed. A
presentation of a different kind but which received muclassion was that of using multimedia and hip-
hop culture to promote math among under-represented rtiggriThere were three presentations on foren-
sics and security, entitled Multimedia Forensics for TmedtTracing Secure Signal Processing Emerging
Paradigms in Sensor Network Security Dr. Adrian Dumitrag&\pple Inc. and Dr. Amir Said of Hewlett
Packard talked about the state of the art in video coding.tifles of their presentations were Optimization
Methods for State-of-the-Art Video Encoders The Need foité&8eModels for Coding Sparse Multimedia
Representations Workshop attendees also discussed dssatidopments and open problems in the area of
speech and music. The following three talks addressed #iis fiComputer Speech Recognition: Building
Mathematical Models Mimicking the Human System Managingk&m Documents A Personal History of
Music Information Retrieval Panos Nasiopoulos and KostataRiotis gave a joint presentation regarding
consumer-grade mobile devices. The titles of these prasens were Digital Video for Mobile Devices A
Unified Framework for the Consumer-Grade Image PipelindP@how of Microsoft gave the following
talk on the newly emerging theory and applications of nekvomding: Network Coding for the Internet and
Wireless Networks

Ray Liu presented first on the art of multimedia security. Téeent growth of networked multimedia
systems has increased the need for techniques that piogetipital rights of multimedia. Traditional protec-
tion alone (such as encryption, authentication and timagitag) is not sufficient for protecting data after it
is delivered to an authorized user or after it has traveld¢side a closed system. To address the post-delivery
protection and introduce user accountability, a classaffrielogies known as digital fingerprinting is emerg-
ing. Due to the global nature of the Internet, ensuring ther@griate use of media content is no longer a
traditional security issue with a single threat or advers&ather, new threats are posed by coalitions of
users who can combine their contents to undermine the firnigésp These attacks, known as collusion at-
tacks, provide a cost-effective method for removing an fid@ng fingerprint, and thus pose a strong threat
to protecting the digital rights of multimedia. To mitigdtee serious threat posed by collusion, theories and
algorithms are being investigated and developed for coasiig forensic fingerprints that can resist collu-
sion, identify colluders, and corroborate their guilt. Téfere, multimedia forensics has become an emerging
field built upon the synergies between signal processingrtheryptology, coding theory, communication
theory, information theory, game theory, and the psychplafighuman visual/auditory perception. Dr. Liu
provided the audience with a broad overview of the recenaades in multimedia forensics, with a focus on
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multimedia fingerprinting for traitor tracing. He then tatkabout tracing traitors using collusion-resistant
fingerprinting for multimedia that jointly considers thecexing, embedding, and detection of fingerprints.
A general formulation of fingerprint coding and modulatioithxa unified framework covering orthogonal
fingerprints, coded fingerprints, and group fingerprints diasussed. Finally, traitor-within-traitor dynam-
ics and behavior was modeled and analyzed. As a result ofviris, optimal strategies for traitors and for
detectors can now be developed.

Ton Kalker talked about secure signal processing. He obdéhat (professional) multimedia signals are
increasingly made available only in protected format. €gfly, the security wrappers can only be removed by
the targeted devices or applications (e.g., the DRM agemté@mdering device). This poses serious problems
for intermediate processing applications that do no hacesscto the appropriate cryptographic keys (for
liability reasons, security reasons or otherwise) andiat to not have sufficient computational resources.
In his talk, Dr. Kalker discussed options for processing mft@cted signals in their protected format, both
by adopting the cryptographic methods (e.g., homomorpidcyption) or by adapting the signal processing
methods (scalable coding).

Deepa Kundur talked about the emerging paradigms in Senstwdxk Security. She provided an
overview of the field of sensor network security and highiéghparticular challenges in symmetric key
distribution, secure aggregation, secure routing, angedicin security. Through examination of these prob-
lems, fundamental compromises among the degree of pratectomplexity and network performance were
highlighted, leading to a discussion of appropriate piirag and paradigms for securing sensor networks.
The talk concluded with a discussion of the principal isdfoeprotecting emerging optical free space sensor
networks and multimedia sensor networks.

Adriana Dumitras discussed optimization of video encod&fach work has been done on identifying
the best methods to optimize video encoders. These effaxs focused on removing spatial, temporal
and perceptual redundancies from a video source, with tlectke of representing the data efficiently.
However, so far there is no unique "best method” to optimiz&lao encoder. Instead, various methods exist
that address (usually distinctly) different aspects ofdptmization problem and different applications. This
diversity is motivated and enabled by the tremendous flitilallowed in the encoder design by video coding
standards, the development of unoptimized video encodiolg fs part of the non-normative verification or
experimental models in the standards’ developments, angddtverful competition in the video industry. Dr.
Dumitras presented a taxonomy and an overview of the metthad€nable video encoder optimization by
tradeoffs at the algorithmic, software and hardware imgletation levels.

Amir Siad talked about the need for better models for multiimeoding. A main objective in multimedia
signal processing is to numerically eliminate redundamuy ereate sparse representations. However, for
compression an effective representation needs to be igégcentropy coded. There is a need to have good
combined models for both the signal and how its informatsodtistributed, in the sense of what and where the
most important components are. Simple recursive settipaitig methods were shown to be very effective
in coding sparse data, both in terms of compression and ctatigoal complexity, but their use still has
not been extended to more complicated media types. Dr. $&idsbed the challenges and possibilities for
improving performance using more sophisticated data nsodel

Li Deng of Microsoft discussed computer speech recognditthhow to build mathematical models that
mimic the human system. The main goal of computer speeclyné@mn/understanding is to automatically
convert naturally uttered human speech into its corresipgriéxt (and then into its meaning). While amaz-
ing success, both technologically and commercially, haslaehieved in the past by straightforward mathe-
matical methods (e.qg., hidden Markov modeling, maximurelitood and discriminative learning, dynamic
programming, etc.), solving the remaining problems legdinits ultimate success appears to require a deep
understanding of human speech recognition mechanismsD&mg analyzed various human sub-systems,
including linguistic-concept generator, motor-contestjculation, vocal tract acoustic propagation, ears, au-
ditory pathways, and auditory cortex, working in synergg¢complish the remarkable task of highly robust,
low-error speech recognition/perception and understandiow can the essence of such human information
processing power be abstracted in building a computer systigh similar (or better) performance? How
can we build mathematical models to enable the developni@th@nced machine-learning algorithms and
techniques that will run efficiently in a computer? Is it gb&sto explore and exploit some special power
of the computing machines inherently lacking in the humastesy so as to achieve super-human speech
recognition? These are some of the issues Dr. Deng addresedtalk.
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Mari Ostendorf talked about the management of spoken doetsmé\s storage costs drop and band-
width increases, there has been a rapid growth of informati@ilable via the Web or in online archives,
raising problems of finding and interpreting collectiondotuments. Significant recent progress has been
made in text retrieval, analysis, summarization and tediwsi, but much of this work has focused on written
language. Increasingly, speech and video signals are @dsiataleincluding TV and radio broadcasts, con-
gressional records, oral histories, voice mail, call cergeordings, etc.which can be thought of as spoken
documents’. Because it takes longer to listen to audio thaead text, spoken documents are clearly a prime
candidate for automatic indexing, information extractiamd other such technologies. In her talk, Dr. Osten-
dorf provided an overview of the speech processing teclyyalmderlying spoken document management,
including mathematical frameworks for both word and metadacognition, and for integrating video and
language cues. In addition, she discussed issues thatiratise processing when moving from written to
spoken language and implications for statistical modelammjuage.

George Tzanetakis gave a very lively presentation aboutawasieval, complete with beautiful and
varied pieces of music. Music Information Retrieval (MIR)an emerging research area that explores how
large digital collections of music can be effectively arzalgl for searching and browsing. It combines ideas
from many different fields, including Signal Processing,diime Learning, Music Cognition, and Human-
Computer Interaction. Dr. Tzanetakis gave a historic oesnof MIR, with specific emphasis on topics he
had more personal experience with, such as audio-feattnacérn, automatic musical genre classification,
rhythm analysis, query-by-humming, and sensor-enhanaesical instruments. He concluded the talk by
making predictions about the future of MIR and how it will really transform the way music is produced,
distributed and consumed.

Panos Nasiopoulos talked about digital video and mobilécésv Mobile wireless technologies and digi-
tal video broadcast technologies are gradually convenrgitign efforts from 3GPP and DVB 2.0 to complete
this merging in the upcoming generations of mobile techgie®. In order to support this convergence, ex-
isting video technologies need to be upgraded to ensurestiabitity and quality of the delivered content.
This calls for highly efficient video codecs in addition tdiable error resilience techniques that overcome
the bandwidth constraints and highly error-prone condgiof wireless networks.

Kostas Plataniotis talked about a unified framework for comsr grade image pipeline. A new mod-
eling and processing approach suitable for consumer-gnaaige processing was presented. Using vector
modeling principles, nonlinear image operators and adafittering concepts, single-sensor camera image
processing problems are treated from a global viewpoirtyig new classes of processing solutions. The
following varied applications of the framework were cowkrepectral interpolation (demosaicking), spatial
interpolation of the acquired (mosaic-like) single-sergay-scale images as well as demosaicked full-color
images, demosaicked image post-processing and color ieggncement, camera image denoising and
sharpening, camera image compression, spatio-tempalab\wdemosaicking, and camera image indexing
and rights management. Results obtained using the frarkemene provided. The list of the topics cov-
ered, while certainly not exhaustive, provided a good iatiim of the usefulness and often necessity of
the proposed framework in consumer grade image procesSipgn research problems and other potential
applications of the framework were also discussed.

Melanie Louisa West gave a multimedia presentation abangusiultimedia and hop-hop culture to
teach math to under-represented minorities. There is widasl agreement among educators that a strong
need exists for programs to increase math and science cengyeamong under-represented minority stu-
dents. Lack of interest and motivation are known contrifyifiactors for this lack of representation. Ms.
West proposed combining multimedia with elements of hip-bolture to promote interest in math among
under-represented minorities. In today’s society, hip-husic has captured the minds of urban youth. Mu-
sic sales, fashion trends, and advertisement stratediestréhis. Consequently, Ms. West believes that
incorporating hip-hop into math instruction for undersregented minorities holds great promise for success.
The elements of rhyme, rhythm, and repetition make rapbjpsiinguistic componentan excellent creative
vehicle for presenting concepts that require memorizafibaith, in particular, lends itself to rap because the
creative use of natural language provides a platform farsfiexring the conceptualization of math into real
life experiences through story-telling. By combining tearning experience with an activity that is already
an integral part of a person’s life, Ms. West believes that will not only increase interest in learning, but
will also maximize information retention. This coupled wihe incorporation of multimedia elements that
will be widely accessible (on public display for peers anguoblish for a general audience) will motivate
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the individual (or group) to do their very best. An innovatiaspect of this proposed approach is that it
combines teaching students at the elementary school létreiwultimedia content created by students at the
high school level. This accomplishes two goals; it makesdier to motivate the younger students, and at
the same time, provides a great vehicle for exposing the stddents to multimedia.

Summary and Highlights

The workshop topic provided a timely cross-disciplinangle between the relatively new area of multimedia
and the well-established discipline of mathematics. Fonyrrasearchers in a specific area of multimedia,
the workshop provided an excellent opportunity to broadheir tperspective. The workshops high-quality
presentations made clear the surprisingly similar mathiealapproaches applied to speech, audio, image,
and video-processing research.

The presentations and informal discussions enabled jpatits to examine the variety of approaches
in different media areasan invaluable opportunity madesiptes by the mixed formalinformal style of the
workshop. For example, the group discussion resulting fdonir Said 's presentation confirmed that coding
can only be optimized if we have good models. Another exanspiieat of Professor Pappas’ presentation
on image segmentation, which generated heated debate Isyianieg the need for an intermediate step,
given that the final task is semantic image understandiaggdication. The researchers with speech recogni-
tion/understanding expertise have found that integrastigm-recognition approaches that avoid the step of
speech segmentation always provide better results thamlargarocessing approaches that involve explicit
segmentation. The discussions on such disparities provitdech needed information that will hopefully
generate new interest in cross-media research and exptorat Deng, the General Chair of the 2006 IEEE
Workshop on Multimedia Signal Processing, was one of trend#es. He decided, together with the Techni-
cal Committee, to continue such discussions and explorsitigth a special panel at the upcoming workshop
on "Differences and Similarities of Image/Video and SpéAcklio Processing Techniques.” Professor Pap-
pas has accepted their request to organize the panel. Véedétat this will have a significantimpact on the
future of multimedia research, an initiative inspired big BIRS workshop.

We hope BIRS will continue sponsoring cross-disciplinamyrkshops such as the one we organized.
Cross-disciplinary research sharing similar mathembéiparoaches stands to benefit the most from such
workshops. The different branches of media processingrelsenake it impossible to gain expertise in every
sub-area, and this BIRS workshop helped immeasurably terffas awareness of new trends in the various
sub-disciplines. This is particularly important to somdustrial researchers whose work has a relatively
short-term scope. Most researchers in multimedia canfmikthe time-consuming process of mastering the
subtleties of all the multimedia processing techniqueg BHRS workshop provided an ideal opportunity to
make close connections among them and to deepen our unuéngtaf problem areas.

The workshop succeeded in its aim to bring mathematiciarggneers, and scientists to interact and get
exposed to each others’ ideas and advances in these dissip\s different multimedia technologies have
evolved and continue to evolve at a very rapid rate, the ed@fatition of multimedia remains illusive, even
though multimedia technologies are now being widely degdbiyn industries in a multitude of applications.
All of these applications affect the way we live, communé;étteract with each other, work, and play.

The cross-fertilization among the different disciplinesademics and practitioners, engineers and mathe-
maticians encouraged by the workshop was very useful in@rpadhe different communities to a new range
of challenging and timely technical advances, the undeglynathematical problems and applications, and
implementation challenges.

List of Participants

Liu, K. J. Ray (University of Maryland)
Abugharbieh, Rafeef(University of British Columbia)
Apostolopoulos, John(Hewlett-Packard Laboratories)
Basu, Sankar(National Science Foundation)

Chen, Tsuhan(Carnegie Mellon University )

Chou, Philip (Microsoft Research)



160 Five-day Workshop Reports

Coria Mendoza, Lino (University of British Columbia)
Deng, Li (Microsoft)

Donoho, David(Stanford University)

Du, Shan(University of British Columbia)

Dumitras, Adriana (Apple Computer)

Effros, Michelle (California Institute of Technology)
Ghoussoub, NassifUniversity of British Columbia)
Goyal, Vivek (Massachusetts Institute of Technology)
Gray, Robert (Stanford University)

Guan, Ling (Ryerson University )

Hamarneh, GhassanSimon Fraser University)
Hammond, David (New York University )

Hemami, Sheila(Cornell University)

Hero, Alfred (University of Michigan)

Kalker, Ton (Hewlett Packard)

Kingsbury, Nick (University of Cambridge, UK.)
Kundur, Deepa (Texas A&M University)

Lee, Ivan (Ryerson University)

Liang, Jie (Simon Fraser University)

Mersereau, RusqGeorgia Tech)

Moura, Jose’ M. F. (Carnegie Melon University)
Nasiopoulos, PanogUniversity of British Columbia)
O’Brien, Deirdre (Stanford University)

Orchard, Michael (Rice University)

Ostendorf, Mari (University of Washington)

Pappas, ThrasyvoulogNorthwestern University )
Pickering, Mark (University of New South Wales)
Plataniotis, Konstantinos(University of Toronto)
Pourazad, Mahsa(University of British Columbia)
Said, Amir (Hewlett-Packard Labs)

Shirani, Shahram (McMaster University)

Simoncelli, Eero(New York University)

Tzanetakis, GeorggUniversity of Victotia)

von dem Knesebeck, MatthiagUniversity of British Columbia)
Ward, Rabab (Institute for Computing, Information and Cognitive Systg UBC)
West, Melanie(TIZ Media Foundation)



Chapter 15

Mathematical Epidemiology (05w5003)

August 20-25, 2005

Organizer(s): Herb Hethcote (University of lowa), Simon Levin (Princetdniversity),
Pauline van den Driessche (University of Victoria)

Background

Population growth and spread, global climate change, aadethergence and reemergence of novel and
deadly forms of infectious diseases have increased the foeexbund quantitative methods to guide dis-
ease intervention practice [1, 15, 18]. In the 20th centinfjiuenza was pandemic several times and new
diseases such as Lyme disease, Legionnaire’s disease;sttotk syndrome, hepatitis C, hepatitis E, and
hantavirus were encountered. The human immunodeficiemag YHIV), which is the etiologic agent for
acquired immunodeficiency syndrome (AIDS), was identifred981 and now causes over 3 million deaths
per year in the world. Drug and antibiotic resistance hawmbee serious issues for diseases such as tuber-
culosis, malaria, and gonorrhea. Prions have been idehtifghe infectious agents for bovine spongiform
encephalopathy (BSE or mad-cow disease), Creutzfeldtbddisease, kuru, and scrapie in sheep. Changing
patterns of social behavior and travel present new cladséis@ase transmission problems. For example,
West Nile virus has spread to North America. Biologicaldeism with diseases such as smallpox or plague
has become a new threat. In the 21st century, we have alreadyetered severe acute respiratory syndrome
(SARS) and will undoubtedly face more new infectious disedwllenges.

The epidemiological modeling of infectious disease transion has a long history in mathematical biol-
ogy, but in recent years it has had an increasing influenchetheory and practice of disease management
and control [15]. Mathematical modeling of the spread oéatious diseases has become part of epidemiol-
ogy policy decision making in several countries, includimg United Kingdom, Netherlands, Canada, and the
United States. Epidemiological modeling studies of dissasich as gonorrhea, HIV/AIDS, BSE, foot and
mouth disease, measles, rubella, and pertussis have hagpantion public health policy in these countries.
Thus modeling approaches have become very important fasideemaking about infectious disease inter-
vention programs. Recent approaches include deterntimstdels, computer simulations, Markov Chain
Monte Carlo models, small world and other network modets;tsastic simulation models, and microsimu-
lations of individuals in a community. These techniquesaditen implemented computationally and use data
on disease incidence and population demographics. Soegetime epidemiology, immunology, and evolu-
tion of a disease must all be considered. For example, soceatreesearch has studied the rational design
of influenza vaccines by considering the effects on the inwtagy of influenza immunity in individuals of
the yearly epidemics of influenza A variants, the vaccinepasition each year, and the yearly evolutionary
drift of influenza A virus variants.

One barrier to effective modeling of infectious diseases iatervention policies has been the lack of
communication between the modelers and the policy makenstimary objective of the BIRS Mathemat-
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ical Epidemiology workshop was to encourage communicatimong internationally-recognized applied
mathematicians, statisticians, and epidemiologists. rdmpte communication, 50 minute lectures were fol-
lowed by 30 minute discussion periods on specific diseapetemiological problems, public health policies,
comparisons of disease intervention strategies, receanaes, open questions, new approaches, and future
directions for research. The formal lectures and discuassio the mornings and evenings were supple-
mented by more informal discussions and special sessidhs ifternoons. The topics included Compound
Matrices, Incidence Functions, Modelling Rubella Vactiom, and Wildlife Diseases.

Partcipants in this BIRS workshop (August 20-25, 2005) @né=d the latest results on the theory and
applications of mathematical modeling of infectious ds&seapidemiology and control. Mathematicians,
statisticians, and epidemiologists presented succesgéurhples of mathematical modeling studies. They
also described current epidemiological problems and guressabout strategies for vaccination and other pre-
vention methods that could be studied using mathematicdkiitg approaches. The variety of approaches
included not only deterministic and stochastic modelingd,dso network and agent-based modeling. Some
talks emphasized new methods in dynamical modeling of titfes diseases, while others considered new
applications of modeling approaches and new methods fanpater estimation from data. The participants
included many young scientists including assistant peafiess postdoctoral fellows, and graduate students.

Both mathematical modelers and public health policy denishakers will ultimately benefit from this
workshop on modeling as a decision making tool for the epidkrgy and control of infectious diseases.
Epidemiologists and public health policy makers have modearn about successful and potential applica-
tions of modeling approaches to understanding diseasaniiagion and using interventions to reduce disease
incidence. It was the consensus of the participants thatstmps should be organized by modelers for public
health officials, in which they would work on epidemiology dating and computer simulations of infectious
disease transmission and control. Applied mathemati@adsstatisticians learned about new and challeng-
ing problems in modeling the spread and prevention of desea$his workshop may lead to new projects
and collaborations involving the applications of modekipgproaches to problems in understanding infectious
disease transmission and intervention strategies.

Challenges in modeling influenza and antigenic variation

Viggo Andreasen opened the conference with a detailed ptasen of the biology of influenza viruses, and
of mathematical models used to understand influenza’s wohry ecology. As Andreasen discussed, in-
fluenza’s biology is complicated, even though the diseasalised by a relatively small RNA virus. The virus
consists of eight separate RNA segments encoding a totél gétes. In temperate regions of the globe, the
virus causes regular, annual epidemics. In the years 19853, hnd 1968, however, the virus caused major
pandemics worldwide. As Andreasen described, pandemécasmociated with antigenic “shifts” — that is,
reassortment of entire viral RNA segments between aviarhantan forms of the virus. In non-pandemic
years, by contrast, annual epidemics are possible becaasgigenic “drift” — that is, the gradual accumu-
lation of point mutations in hemagglutinin, the gene enngdhe primary surface antigen of influenza. The
phylogeny of drifting influenza viruses is very unusual wikempared to all other known RNA viruses (such
as HIV).

Influenza drift is the result of selection for novel antigeniral strains, selected because of “cross-
reactivity” between related strains. The processes ofénfta transmission and drift can be modeled by
generalizing the standard SIR framework in one of severgbwa

1) Assume a fixed sel{, of . distinct strains. Instead of using only three classes a¥iddals (S(t) I(t)
andR(t)), we introduce more classes (or@&) of individuals, which indicate the set of strainsC K, from
which an individual has previously recovered, or the stvdth which an individual is currently infected. The
resulting model requires a very large number of ODESs, bua# been thoroughly analyzed in the case of
n = 4 strains. 2) Assume of a one-dimensional continuum of sfraamd index susceptible individuals
according to the strain of their most recent infection. Te&ults in a PDE version of the SIR model, and the
steady-state evolutionary rate depends upon the kernebs$-dmmunity between strains. The phylogenetic
structure of viral strains cannot be studied in such a m@jé&tmploy individual-based stochastic simulations
that keep track of the full infection history of each indival, transmission events between individuals, and
mutational events to viral strains.
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Although individual-based simulations have successfidyroduced the empirical patterns of influenza
drift evolution [13, 26], such simulations are very comptied and do not easily reveal the underlying prin-
ciples that govern the structure of influenza drift. Dr. Aeagen introduced new work based on an earlier
framework he has developed with colleagues [19, 2]. Andneasd Sasaki have recently analyzed simplified
2-strain “annualized” models which attempt to determiree¢bnditions under which a mutant viral lineage
will co-exist with its parent strain (phylogenetic branaty), and under what conditions a mutant viral lineage
will extinguish earlier lineages (phylogenetic prunin@his modeling approach helps to identify generic
principles that govern the structure of drifting influenzaises.

In the second session, Junling Ma presented another maddatied to help gain analytic understanding
of the complex process of influenza drift. Ma’s approachisgsized a variety of data about drift to support
the development of a simple modeling framework that captiey aspects of influenza drift. He presented
an argument beginning from a Poisson process of random ionsadrising and showed that a few simple
assumptions allow construction of a novel modeling franmgamilar to the earlier models of Andreasen et
al. [3, 19, 2].

Junling Ma thereby provided a rationale for the “linearagtrevolution framework of Andreasen, Levin
and others. He showed that his model leads naturally to spélabout one year, with explicit evolution, tying
in to an earlier theory by Dushoff and others [9] that strongual cycles in influenza arise from resonance
between a natural tendency to cycle and exogenous seasoadialgf This earlier theory was developed in
part at a 2003 BIRS workshop in honor of Lee Segel.

The discussion ranged over a broad set of existing chalteilg@fluenza modeling, including: how to
how to bridge scales from cellular interactions, to indisatloutcomes, to population-level patterns of disease
incidence and viral evolution; and how to guide choice ofcuae strains and policies of vaccine allocation.
We expect that collaborations started here will lead toifiant progress on these important questions.

Most of the diseases discussed at the workshop exhibitemitigzariation: the ability of the disease
organism to change its surface in order to evade the immustersy Discussions focused on models in-
corporating multiple strains for subtypes of a virus ciatirlg in a host population. For example, the virus
responsible for Dengue Hemorrhagic Fever may appear in bfoeiosubtypes, which has complicated the
development of an effective vaccine. These subtypes coHaite in the host population and the course of in-
fection within a host depends on the previous history ofdtiéas with other subtypes. Subsequent infections
are hypothesized to increase one’s viral load, and increas’s infectiousness. This effect is called antibody
dependent enhancement (ADE). Even the simplest assurapifahis phenomenon lead to large complex
models, which possess very interesting dynamics, both fhenmathematical and epidemiological perspec-
tive. The complexity of these models is necessary to resplestions of outbreak patterns and development
of effective vaccines and vaccination strategies.

Lora Billings presented a dynamical system model of coutéing subtypes in diseases such as dengue,
with both autonomous and seasonally driven outbreaks [Be showed that for sufficiently small ADE,
the number of infectives of each subtype synchronizes, auithreaks occurring in phase. When the ADE
increases past a threshold, the system becomes chaotm,#mmdaks from differing subtypes become desyn-
chronized. However, windows of synchronization can pér3ikis drives down the number of susceptibles,
and can threaten persistence of the virus. She concludeththeased number of subtypes and ADE effect
may provide a competitive advantage to a virus, but therdéirarts.

The current state of the art in both the epidemiological daththe analysis of the models falls short of
answering the questions of vaccine strategies, but desynizied outbreaks of different subtypes can be par-
tially understood. There are several clear directionsdsearch: one, the further development of analytical
techniques for these types of dynamical systems, partigutafurcation analysis and integration methods,
and two, further study of immunological mechanisms andiwitiost modeling of immune response to both
understand the details of susceptibility and immunity amgroperly model the spread of subtypes within
the host population. The challenges surrounding withistfaspects of antigenic variations, such as drug
resistance and its consequences for treatment and véaooipabgrams, were not discussed at the meeting
and should be addressed in a future workshop.
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New approaches: Network modeling

Mark Newman'’s talk on Disease Dynamics on Contact Networksiged an introduction to the use of net-
work approaches in epidemiology, together with a numberxaivles of their application to real-world
problems. The spread of an infection on a network can be nibpp® a percolation problem, where the
probability of there being a connection between two nodegs/isn by the transmissibility of infection. This
quantity is simply the probability of transmission betweaninfective and a susceptible, over the entire in-
fectious period of the infective. With this mapping, the laggveloped machinery of percolation theory (most
notably, generating function methods) can be brought to bedhe problem. Epidemic thresholds, proba-
bilities of disease invasion and epidemic sizes can theralilated. A number of examples of networks
were presented, together with a discussion of the problemdsssues that accompany attempts to capture
the structure of real-world networks. The central poinhtia network consists of both nodes (individuals)
and edges (connections between individuals). The statiefisampling individuals from a population is a
well-studied problem, but appropriate techniques for dargpedges are less well understood. Many tech-
nigues, such as contact tracing, may introduce biasesheteample of the network obtained. The network
structure is highly dependent on the infection setting, @sessed by the impact of increased long-range
travel: the spread of Black Death in medieval Europe invblveinly local spread of infection whereas the
SARS outbreak rapidly jumped between countries and evetinamts.

For many rapidly spreading infections, the contact netweak be treated as being fixed, but such an
assumption would be quite inappropriate for sexually tngitted infections. In many settings, transmission
is enhanced by superspreaders: individuals who give ris&toy more secondary infections than the average
person. The percolation analysis highlights this phenamewith the basic reproductive number depending
not only on the average number of contacts made (i.e. the wiethie degree distribution) but also on the
second moment of the degree distribution. This result exctiaefamiliar "mean + variance over mean” result
from mathematical epidemiology. A hospital-based netwoddel was presented, depicting hospital wards,
patients and caregivers. Fitting the model to data on arreakiof Mycoplasma pneumonia suggested that
the probability of transmission between patients and ¢eeegwas highly asymmetric, with a much higher
transmission probability from caregivers to patients tifram patients to caregivers. As a consequence,
the model makes a strong prediction regarding control: eackgiver should be limited to one ward, and
caregivers should be given antibiotics. These recommantadre in stark contrast with conventional public
health wisdom, which states that patients should be confmeadrds and patients should be treated. In the
resulting discussion, it was pointed out that the standalidymight be more concerned with mitigating the
effects of infection (i.e. preventing patient deaths) eatihan preventing transmission.

The spread of SARS in a city such as Vancouver was studied asgimulated contact network, based
on demographic data. Properties of the network were disdygegether with epidemiological questions
(such as the probability of invasion) that can be addressetjihe percolation approach. Interestingly,
despite all of the structure that was included in the netwdrkppeared, in many ways, to behave very
similarly to a random graph model. Sexual partnership nekgbave a quite different structure to the social
networks that govern the spread of respiratory infectidiige dynamic structure of the network, as sexual
partnerships are formed and break up, is an important feaasris the degree to which partnerships overlap
(concurrency). If the infectious period of sexually tranised infections is short, then most transmission
events must be associated with partnerships that are edheurrent or that closely follow other partnerships.
"Gap dynamics” are, therefore, an important determinatviasfsmission, in addition to concurrency. Survey
data that examines partnership dynamics, including coanay and gap dynamics, were presented. There
was considerable discussion of biases in such data. Thedattuded with the question of whether network
models are really appropriate for sexually transmitteddtibns, despite their long history of use in this area.

A lively discussion followed. Questions of different netikkastructures were raised. Bipartite graphs
have been used in some instances, such as the EpiSims modptéad of smallpox in Portland, Oregon,
that describes people and places, such as offices, schaladsoaes. In such models, places can be considered
as being infected, so that people visiting those places cquii@ infection. Vector borne diseases may be
more appropriately described using random graphs, if isisimed that the vector (e.g. mosquito) does not
distinguish strongly between different people. On the phand, such networks may exhibit aggregation if
the vector shows preference for biting certain classes aplge

The usefulness of the basic reproductive number concemtimank settings was questioned. In reply,



Mathematical Epidemiology 165

it was pointed out that different network structures (anddeeR?y) may explain the different patterns of
spread of HIV in different settings. Control measures cao ke explored using the analytic approach. The
difficulties in applying network approachesto the realdd@rere a recurring theme in the talk and discussion.
Important issues remain regarding how we can gain insighastie structure of networks on which infection
spreads. There are only a small number of instances (suchRS,Sor which intensive contact tracing was
carried out, or the hospital study presented, whose snelt mabled a complete description of the network
to be obtained) in which detailed network data is availabteother settings, we only have a sample of the
network or a sample of the individuals involved in the netkvor

Mercedes Pascual spoke about her joint work with Juan Ajpaoic translating from networks to pop-
ulations using modified mean-field models of disease dyren8ach models ignore network structure and
assume homogeneous mixing. At the opposite extreme, highrsional models that are both individual-
based and stochastic incorporate the distributed naturam$mission. In between, moment approximations
have been proposed that incorporate the effect of corelatin the dynamics of mean quantities of interest.
As an alternative closer to traditional epidemiologicaldals, she presented results on ‘modified mean-field
equations’ for disease dynamics, in which only mean quastére followed and the effect of heterogeneous
mixing is incorporated implicitly. She illustrated the aef formulating these equations from the basic re-
productive number of the diseasi(), and illustrated the approach with SIR dynamics in randachsmall
world networks. She asked how much detail is needed on thsrtrigsion network to predict the population
course of disease dynamics. She derived an expressiadr,for small networks and showed that in spite
of high levels of clustering, the resulting system of diffietial equations are able to capture the initial tran-
sients and the long-term equilibrium of the more complexvoek simulations. Pascual argued, however,
that modified mean field equations will be most useful whemigtevork is not known, and therefore, when
the analytical expression fak, is not know. Thus, she addressed how much information iseteed the
network to parameterize the model using only the initiah$iants (i.e. the beginning of an epidemic). From
initial data on incidence vs. time, she estimafégdand used it as a parameter in the modified mean field
equations. This exercise showed that no information on ¢teark is required to parameterize the system
and predict the course of the disease. Limitations of thecgmh were discussed.

A second method relies on power-law relationships betwé@nadjand local densities. Pascual specif-
ically investigated the previously proposed empiricalgoaeterization of heterogeneous mixing in which
the bilinear incidence rateSI is replaced by a nonlinear terk591? [25, 21], for the case of stochastic
SIRS dynamics on different contact networks, from a reglaltlice to a random structure via small world
configurations. She showed that, for two distinct dynamiegimes involving a stable equilibrium and a
noisy endemic steady-state, the modified mean field modebajppates successfully the long term dynam-
ics and short term transients of decaying cycles. A reginebérent cycles in the small world regime is not
well-approximated by this simple model. Pascual arguetfthare work should couple aspects of the two
proposed approximations to better capture the effectsteftgeneous mixing.

Pascual asked whether the demographic noise introduceditg/gopulations in individual-based mod-
els must be kept. That is, do we need the noise even when riesivacture is only implicitly incorporated?
She presented some recent results on the dynamics of a sticcBHR models for infectious diseases with
immigration. In particular, she derived the power specfiaath infective and susceptible numbers and gave
conditions under which large and sustained cyclic stoahésictuations are expected. This analytical re-
sult formalizes the well-known observation that demogiapbise sustains persistent oscillations when the
corresponding deterministic system approaches an equitibwith decaying cycles [4, 22]. These results
show that the dominant period of the deterministic and sistib system do not necessarily coincide. More
importantly, they suggest a complementary explanatiothfemajor dynamical transitions observed in epi-
demics of childhood infectious diseases after vaccinafimm regular to irregular cycles [11, 5]. Seasonal
forcing does not appear to change the basic character obtherspectra, other than adding an annual peak.
They also show that childhood diseases fall in regions o&pater space prone to high noise amplifica-
tion, an observation that raises interesting evolutiogamgstions. Discussion of the interplay of seasonality,
stochasticity and nonlinear disease dynamics clearly stibat this is an important area in need of further
study.
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Modeling emerging/reemerging diseases such as HIV, SARS @hest
Nile Virus

The presentation by Brandy Rapatski and James Yorke [23] wih the epidemiology of HIV. There have
been only a few attempts in the literature to estimate thbatiity of HIV transmission per sexual contact.
A number of years ago J. Jacquez and J. Koopman at the Unyvef#ilichigan analyzed a data set dealing
with gay men in San Francisco that were part of a hepatitisd®®iue trial for which multiple blood samples
were taken during the early years of the HIV epidemic. Fromlysis of the data from 1978-1984, before
the introduction of antiretroviral therapy, Jacques an@pan concluded that the highest probability of
transmission occurred during the first few months afteratiém, a period called primary infection. Rapatski
and Yorke reanalyzed the same data with a model that incatgdithree stages of disease, primary infec-
tion, asymptomatic infection (lasting on average 7 yeasy, symptomatic infection (lasting on average 3
years). Using data on the fraction of gay men that were HI\tpesvs time during the years 1978-1984,
they concluded that to sustain the rapid increase in the pumbinfected gay men into the later years of
the San Francisco epidemic that the probability of transimismust be highest during the third stage, the
symptomatic stage of disease, rather than during priméegtion. Their conclusion, given the data, seemed
very surprising given the adoption by the field that HIV is nigispread during primary infection. This talk,
which was supported by rigorous modeling and data analysesented an important change in the view of
HIV spread. Much discussion followed both about the metheisl and the conclusion, but no one identi-
fied any flaws. In fact, all approximations seemed to be coasige and adding more realistic features to the
model only appeared to increase the probability of transignsin the third stage.

Zhien Ma spoke about the work of his group on modeling the SARSBreak in China during November
2002 to June 2003 [29, 28]. A compartmental model is propdsadmimics the SARS control strategies
implemented by the Chinese government after the middle of 2p03: the division of the whole population
into two parallel blocks corresponding to the so-calle@ avironment and the isolated environment and the
partition of these blocks further into the compartmentsusiteptible, exposed, infective, suspected SARS,
diagnosed, removed and health care workers. A novel appras introduced to calculate the transfer rate
from the free environment to the isolated environment. Hpgroach incorporated undiagnosed suspected
SARS individuals that were put into isolation because fasRS tests were not available. Methods were
developed for parameter identification using the daily reggbdata from the Ministry of Health of China.
Simulations based on these parameters agree with the sedata well, thus providing additional validation
of the model. Finally some parameters were varied to askessffiectiveness of different control measures:
these new parameters correspond to the situation when #ramfine measures in the free-environmentwere
prematurely relaxed (thus the observation that the secotimeak with the maximal number of daily SARS
patients is much higher than the first outbreak) or when ttegantine time of SARS patients is postponed
(noting the delayed peak time but with much higher number ARS patients at the peak). The basic
reproductive number and the basic adequate contact ragealger calculated.

Interestingly, the modeling work was carried out in 12 dayZhien Ma and his group in May of 2003,
before the SARS infections had subsided in China. Yet, tlesiults came very close to predicting the real
SARS case data in China that accumulated almost a month Teltées demonstrates the need for modelers
to consider approaches to real-time modeling and prediaiio an ongoing outbreak, as opposed to the
traditional prediction of future outbreaks or retrospeetinalysis, which are abundant in the literature.

Zhilan Feng presented work done together with John Glagde€] in which they investigated potential
public health response strategies for an emergent infectissease. They constructed a general compart-
mental ODE model incorporating the possibility of infectimess during clinically distinguishable stages,
during which patients could be quarantined or isolated withying efficiencies. They tested their model
by application to SARS data in Hong Kong. Analysis of this mlodith increasingly accurate and com-
plete information indicates that recommended public healerventions may change during the course of
an epidemic. This led into a more general discussion of hothemaaticians can best help public health
decision-makers who are planning for or responding to epicde

Spatial aspects are important in infectious disease trizsfon, but are often taken into account implicitly
in models. Throughout the workshop, the spatio-temponalgmment of disease spread was often alluded to,
for example during discussions on network models, but seldiscussed explicitly. Of the various modeling
techniques at hand to address spatial aspects, the onevblaeis integro-differential equations is at the same
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time the most accurate and the hardest to use. Shigui Ru@negaresentation entitied Nonlocal Epidemic
Models, in which he presented models employing this apgrolde first introduced a host-vector model for
a disease without immunity, with the specificity that thereant density of infectious vectors is related to the
number of infectious hosts at earlier times. This resul@niintegro-differential equation model, in which a
diffusion term is used to model the spatial spread in a redixamples of these host-vector diseases include
West Nile Virus and malaria.

Ruan showed how, for the general model, the stability of teady states can be studied using the
contracting convex sets technique. When the spatial Varislbne-dimensional and the delay kernel assumes
some special form, the existence of traveling wave solstisrestablished using the linear chain trick and
the geometric singular perturbation method. In a secont] aigui used a multi-compartment model to
describe the nonlocal spread of SARS, discussing in péatitiie effect of global travel on the transmission
of the disease.

Recent advances in modeling disease transmission and vazaiion

David Greenhalgh spoke on estimation®f and evaluation of vaccination programs from age-strudture
serological data. There were questions on whether or nostigetured bootstrap samples were used in
these kinds of studies. It is likely that when the infectiangess is independent of the age and the age
specific samples are good, then the age specific bootstrachist applicable. In rubella, children may be
infected by the adults and vice-versa, so the samples ardeggendent. However, many people have the
opinion that it is not easy to validate the model. One reasoithis could be changes in the behaviour of
the individuals who are vaccinated. There was also disonossi general difficulties on validating the given
mathematical model which predicts the proportions of newbto be vaccinated.

John Glasser gave a talk entitled “Mathematical Epidengiplof Varicella and Herpes Zoster”. The
United States has recently begun to recommend childrendmnated against varicella (chickenpox); how-
ever, there is a complex process by which the varicellaezostus reactivates resulting in herpes zoster
(shingles). Previous work has considered this reactimatiat this work includes the effect of boosting of
immunity to herpes zoster due to either the periodic reatitim of the virus within a person or contact with
a varicella-infected person.

Previous studies had cast doubt on the varicella vaccimgtadicy of the United States because of a
predicted temporary increase in herpes zoster infectioadilts who are no longer boosted by exposures to
children with chickenpox. Other considerations, inclggpossible evolutionary changes in the virus caused
by vaccination, might provide further evidence for or agathe policy.

Chris Bauch spoke on the behavior-incidence dynamics ildlebod disease vaccination. The interplay
between disease prevalence, population behavior andnecoiverage is explored in a game theoretical
setting for the case of pertussis in England and Wales dihi@d 970's. A model that considers imitation
dynamics is able to give a good fit to the time-series data gfipsis vaccine uptake. The model is able to
recover the oscillatory dynamics characteristic of soniklbbod diseases. The model also predicts that the
probability and amplitude in oscillations increase with thtensity of imitation behavior in the population or
with increases in disease prevalence. It is suggesteddina ¢heoretical approaches could aid in predicting
the population behavior towards vaccination and therefmititate public health decision making.

In this session, we also briefly discussed issues relateaksopeter estimation, uncertainty and sensitivity
analysis. The capability of the model to uniquely identifgael parameters needs to be addressed. Parameter
estimation can be achieved using maximum likelihood methtahst squares fitting, etc. Uncertainty in
parameter estimates can be quantified under different getgns in the data (e.g., heterogeneity in variance,
correlated errors, etc.). Sampling techniques (e.gn agpercube, simple random sampling) are useful to
explore the parameter space and assess the uncertaintiglefreplogical quantities of interest. Sensitivity
analysis (e.g., partial derivatives, partial rank cotiietacoefficients) of parameters on the model solution of
interest are useful not only in determining the sensitivityparameters, but also in constructing asymptotic
variance-covariance matrices from which parameter vaei@md correlation information can be obtained.
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Modeling wildlife diseases

Linda Allen spoke about modeling wildlife diseases inchglhantavirus infections in rodents and chytrid
infection in amphibians. Hantavirus pulmonary syndromarissmerging zoonotic disease that is carried
by wild rodents. The mortality rate in humans is as high as 3#mans are usually exposed to the virus
through geographically isolated outbreaks. Two new mattea models for hantavirus infection in rodents
were presented. The models were based on a male/female $EI&ec model. The first model was a
system of ordinary differential equations (ODESs) while seeond model was a system of stochastic differ-
ential equations (SDEs). The SDE model can be derived dirfrom the ODE model assuming variation
with respect to the birth, death, and infection process.[These new models capture some of the realistic
dynamics of the male/female rodent hantavirus interactigher seroprevalence in males and variability in
seroprevalence levels.

Two diseases associated with recent amphibian declinesaaa@irus infection and chytridiomycosis.
Chytridiomycosis is a disease caused by the fungal pathBgeachochytrium dendrobatidi8oth pathogens
causing these diseases are found throughout the worldislpréssentation, models for amphibian populations
infected by the fungal pathogen were discussed [12]. Thehdrigm host population is structured according
to two developmental stages, juveniles and adults. Thajlesstage is a post-metamorphic, nonreproductive
stage, whereas the adult stage is reproductive. Each ¢eweltal stage is further subdivided according to
disease status, either susceptible or infected. There ieagavery from disease. Each year is divided into
a fixed number of periods. The first period represents a tini@rtifs. Amphibians are generally explosive
breeders, resulting in a large increase in population thedaring the breeding season. During the remaining
time periods there are no births, only survival within a stagansition to another stage or transmission of
infection. Conditions were derived for population extinat High transmission rates can destabilize the
disease-free equilibrium and low survival probabilitiem dead to population extinction.

There are several reasons for studying wildlife diseas¢sd,127, 16].

1) If the wildlife species is of conservation interest andréhare concerns about the impact of the
disease on the survival of the populations, for exampleesab Ethiopian wolves.
2) If there is increasing worry about the possibility of eithransmission from wildlife to humans or

to domestic animal species. In this case we often think aflifél as the reservoir species.

3) Wildlife diseases pose a threat to global diversity. @ardf wildlife diseases is important for the
preservation of our natural world.

Emerging diseases often occur because of anthropogemiges#o the environment or human encroach-
ment. These changes result in increased contact with feilsiiecies which allows disease to jump between
species. Wildlife diseases are often associated with siksem humans (zoonotic disease) and domestic
animals. A few examples of wildlife disease that are tratt®uito humans include hantavirus pulmonary
syndrome (transmitted by wild rodents such as rats and mic#)enza in birds, and plague from prairie
dogs and rats. Rabies cases in humans are often due to bitgfeted bats. The annual number of human
deaths worldwide caused by rabies is estimated to be betd@600 and as high as 70,000. An estimated
10 million people receive post-exposure treatments eaghafter being exposed to rabies suspect animals.

Vector-transmitted diseases affecting wildlife and humantiude West Nile Virus and Lyme disease.
Canine distemper virus is a spillover infection from donteded dogs that has resulted in extinction of
black footed ferret and African wild dog populations. A femerging diseases are known to only impact
wildlife, such as chytridmycosis, a fungal infection in dmifians, and chronic wasting disease (transmissible
spongiform encephalopathy) in deer and elk.

The main differences between modelling wild life and humeealse identified in the discussion are that

i) Wildlife populations do not remain constant over timejéed, they can be highly variable due to
environmental factors or the landscape. This can have apndfimpact on the dynamics of the disease.

i) Multiple species interactions are often involved. Faample a reservoir for infection does not
have to consist of one species, but can be made up of a numbpeois which interact (at least) via the
pathogen and allow the disease to persist. There are maegseis which infect multiple species and we
often observe “apparent competition” between these spe@eghe pathogen.

iii) In many cases, wildlife population dynamics are bedidvto be controlled by pathogens. For
example, red grouse and Trichostrongylus tenuis (althaugltan also think of examples where diseases
have had a profound effect on human populations, e.g. HIVfiita).
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iv) Data can be more easily obtained from animal systems.attiqular, it is often possible to do
experiments on wildlife populations, or individual animatithout the ethical issues involved with human
disease systems.

The workshop concluded with remarks by the organizers agdestions for follow-up activities. The
organizers and participants thank BIRS and the funding@gsifor their support for this excellent workshop.
The following references were suggested by participantsthis list is not comprehensive.
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Chapter 16

Topology (05w5067)

August 27-September 1, 2005

Organizer(s): lan Hambleton (McMaster University), Michael Hopkins (Mashusetts
Institute of Technology), Matthias Kreck (University of idelberg), Ronald Stern (Uni-
versity of California Irvine).

Introduction

The idea of the conference was to bring together distinguistenior and some of the best junior mathemati-
cians representing a broad variety of subjects in topoldgpology has become - like many other areas of
mathematics - a field which is a collection of many areas alirfgathe size to justify a conference of its own.
Most conferences nowadays are of the latter type. If oneddakck, important progress often was based on a
combination of methods and ideas from these subareas anft@is some neighbouring areas. To mention
a few examples:

e The Donaldson and Seiberg-Witten theory addresses prshbiertopology of 4-manifolds and uses
methods ranging from partial differential equations, eli#ntial geometry, index theory, algebraic ge-
ometry to algebraic topology.

e Novikov conjecture and related conjectures where highedisional manifold theory, in particular
surgery, index theory, algebraic K-theory and geometiieigrtheory are centrally involved.

e The attempts to create elliptic cohomology use methodsimgrfgom stable homotopy theory, alge-
braic geometry, index theory to theoretical physics (comf field theory).

Almost no mathematician is able to be familiar with all thesbjects and even to follow the main results
and fundamental ideas is very hard. A conference like thogsiges an unusual opportunity to hear some of
the most important and fundamental developements and +B@emimportant - to discuss ideas with experts
from other areas.

The conference was attended by forty participants. Whemthanizers selected the participants, they
had the difficulty that to cover all these areas with leadixgeets left rather limited room for young people.
And so they had to give up some very prominent names. Thetisserined to us a good mixture of leaders
and excellent young people some of which are already leademsselves. One indication of success: we
heard during the conference ttiatr of our main speakers had been asked to give talks at the niek20D6
in Spain.
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To give enough time to discussions between individuals amgloups, we limited the talks to five per day
and 45 minutes each. All three of the outstanding develop&eentioned above were represented in the
talks. We had asked the speakers to address a broad audiehogoat of them succeeded very well. Our
impression was that our goal was fully achieved. We havedagke participants to send us comments and
we quote from them after the problem list.

We were uncertain about a problem session and finally deeigaihst one. But on Wednesday evening
a group of about twenty people met in the lounge and spontesfea problem discussion came up. More
precisely, we asked everybody to formulate her/his fateuyproblem. Since the list looks very nice, we
gave those who did not participate in this round the chanealtbtheir favourite problems afterwards. The
problems are attached after the summaries of talks.

Many participants asked for another conference of this.tyjge like the idea, and are planning to apply
again for 2007.

Program

Sunday, August 28, 2005

8:45-9:00 Introduction and Welcome to BIRS by BIRS Statioardger, Max Bell 159

9:00-9:45 Bruce Kleiner, Univ. of Michigan: Geometrizatiand uniformization of metric spaces
10:00-10:45 Arthur Bartels, Univ. Munster: The Farradihés Conjecture for groups acting on trees
11:15-12:00 Denis Auroux, MIT: Fiber sums of Lefschetz filwas

16:00-16:45 Jacob Lurie, Harvard: Elliptic Cohomology &retived Algebraic Geometry

17:00-17:45 Jongil Park, Seoul National University: Ratibblow-downs and smooth 4-manifolds with one
basic class

Monday, August 29, 2005
9:00-9:45 Weimen Chen, University of Massachusetts: Rs@atbmorphic curves and finite group actions
in dimension 4
10:00-10:45 Shmuel Weinberger, University of Chicago: Aligan conjecture for equivariant structure sets
11:15-12:00 Martin Bridson, Imperial College London: Lin@roups: non-positive curvature, logic, and
group theory
16:00-16:45 Thomas Mark, Southeastern Louisiana Uniyer@izsvath-Szabo invariants of fiber sums
17:00-17:45 William Dwyer, Notre Dame: Duality in algebradetopology

Tuesday, August 30, 2005
9:00-9:45 Oleg Viro, Uppsala University: Virtual links din relatives and Khovanov homology
10:00-10:45 Jesper Grodal, University of Chicago: p-cothgeoups and their classification
11:15-12:00 Peter Ozsvath, Columbia University: Heegéwdifhomology of links
16:00-16:45 Jacob Rasmussen, Princeton University: iftials on Khovanov-Rozansky homology
17:00-17:45 Yongbin Ruan, University of Wisconsin: Twiste-theory on orbifolds and its stringy product

Wednesday, August 31, 2005
7:00-9:00 Wolfgang Liick, Miinstel:2-invariants and their applications
10:00-10:45 Stefano Vidussi, Univ. of California, Rivelsi Taubes conjecture and twisted Alexander in-
variants
11:15-12:00 Karen Vogtmann, Cornell University: Tethard aomology stability
16:00-16:45 Andras Stipsicz, Alfrd Rnyi Institute of Mathatics: Contact Ozsvath—Szabo invariants and
tight structures on 3-manifolds
17:00-17:45 Walter Neumann, Columbia University: Grapmifudds and singularities
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Summaries of Talks
Bruce Kleiner: Uniformization and Geometrization of metri ¢ spaces

| discussed the problem of parameterizing metric spacesdeymodel spaces. More precisely, the goal
was to find conditions on a metric spaZewhich guarantee that there is quasisymmetric homeomarphis
f: X — Z,where the model spack is either optimal in some way, or at least canonical. Thisgattion
problem is motivated by a long development in Geometric Miagp@ heory and by rigidity questions in
Geometric Group Theory.

Arthur Bartels: The Farrell-Jones Conjecture for groups acting on trees

In my talk the Farrell-Jones Conjecture in algebraic K-tiyagas discussed. This conjecture proposes a
computation of the algebraic K-theory of group rings RG as\egiant homology groups. If the conjecture
holds for a group G, thei,.(RG) is in some sense computable in termd@Qf RV'), whereV runs over the
family of virtually cyclic subgroups ofs. For torsion free groups the conjecture implies the vangpbif the
Whitehead group.

The result presented in this talk is joint work with Wolfgalhgeck and Holger Reich and assertes that
the conjecture holds for groujgs that act properly, cocompactly and simplicially on a trebe proof uses
controlled algebra and the (negatively curved) geometthetree.

As a corollary of this result and of work on Nilgroups of vially cyclic groups by Kuku and Tang,
Grunewald one obtains rational vanishing results for Walfen'’s Nilgroups appearing in his work on amal-
gamated free products and HNN-extensions.

Denis Auroux: Fiber sums of Lefschetz fibrations

It is a key problem in 4-manifold topology to understand vwh&mooth compact oriented 4-manifolds
carry a symplectic structure (i.e., a non-degenerate dl@s®rm). Symplectic 4-manifolds are much more
general than complex projective surfaces, but are stillrg special class of 4-manifolds. One way to ap-
proach symplectic 4-manifolds is via Lefschetz fibrations.

A Lefschetz fibration is a may : M* — S? with isolated non-degenerate critical points, near which f
behaves like a complex Morse function. Hence, the generée fiba smooth closed oriented surface, and
the singular fibers present ordinary double point singti#arbnly, obtained by pinching a simple closed loop
(the "vanishing cycle”) on the regular fiber. A theorem of Gufrstates that (almost) every Lefschetz fibration
carries a symplectic structure; conversely, Donaldsorshas/n that, after blowing up a finite set of "base
points”, every compact symplectic 4-manifold can be presetas a Lefschetz fibration (with a distinguished
set of -1-sections).

The topology of a Lefschetz fibration is encoded by its mooodr, which is a morphism from a free
group (the fundamental group of the complement of a finiteirset?) to the mapping class group of the
fiber, mapping the standard generators to Dehn twists. Qihgpasset of generating loops, we can express the
monodromy by a "factorization” of the identity element asraduct of positive Dehn twists in the mapping
class group. Moreover, the various factorizations cowwadmg to a same Lefschetz fibration are equivalent
up to two operations: global conjugation, and Hurwitz moviesere is therefore a one to one correspondence
between isomorphism classes of Lefschetz fibrations, an@vitiuand conjugation equivalence classes of
factorizations in the mapping class group.

The classification of Lefschetz fibrations is well-undeostin genus 0 and 1 (classical results of Moishe-
zon and Livne), and in genus 2 in the absence of reducibl@iEinfbers (Siebert and Tian). However, many
"exotic” examples have been constructed in higher genusttenclassification there is not understood at all.

A simpler question is that of classification up to stabili@gatby fiber sums. The main result that one
can get is the following. For any genus, there exists a L(ezﬂszx:ﬁbrationf;J such that, given any two genus
g Lefschetz fibrations; : M; — S? and f, : M, — S? such that (1)M; and M, have same Euler
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characteristic and signature, (2) and f» have the same numbers of singular fibers of each typef; (8hd
f2 each admit a section with the same self-intersection, idaae enough, after fiber summing witm
copies offg the Lefschetz fibrationg; and f» become isomorphic.

Using Donaldson’s theorem, a corollary is the followingrigylectic Wall's theorem”: given two compact
symplectic 4-manifolds withw] integral and the same values @, 2, ¢;.w, w?), they become symplecto-
morphic after performing on each of them a certain numbetaftups and fiber sums with sonf@.

The proof is almost purely group-theoretic, and involvesuals of factorizations in the mapping class
group of a surface with one boundary component.

Jacob Lurie: Elliptic Cohomology and Derived Algebraic Geanetry

Let E be an elliptic curve over a commutative ridgy If certain mild hypotheses are satisfied By
then Landweber’s exact functor theorem ensures the existefiran essentially unique (elliptic) cohomology
theory A such thatd(x) ~ R and A(CP®) is the ring of functions on the formal completion of the «ilip
curveE. In particular, these conditions are satisfied whenéver classified by an étale map Spec

R2 M,

whereM denotes the moduli stack of elliptic curves; lef be the associated cohomology theory.
The assignment
pr— Ay

may be viewed as a presheaf of cohomology theories on the livstdck of elliptic curves. The work of
Goerss, Hopkins, and Miller implies that this presheaf dfaoology theories can be refined (in an essentially
unigue way) to a presheaf @f..-ring spectra® on the moduli stack of elliptic curves. It then makes sense
to take the (right-derived functor of) global sections,iggvan E.-ring spectrum tmf

[A™!] = RT(M, O).

A more refined approach (which includes the “pointat on M) yields a spectrunim f, the spectrum of
topological modular formsso named for the existence of a ring homomorphism frqimn f to the ring of
integral modular forms, which is an isomorphism after itver6. The spectrunim f may be regarded as a
universal elliptic cohnomology theory, and is a suitablggarfor “elliptic” invariants such as the Witten genus.

Itis natural to think of the presheéf as a kind of structure sheaf on the moduli stadlof elliptic curves.
This can be made precise using the languageenived algebraic geometrya generalization of algebraic
geometry in whichE .. -ring spectra are allowed to play the role of commutativgsinThe paif. M, O) may
naturally be viewed as a Deligne-Mumford stack in the woflderived algebraic geometry, which is a kind
of “derived version” of the classical moduli stack of ellpturves. One may then ask(iM, O) has some
moduli-theoretic significance in derived algebraic geameatur main result is an affirmative answer to this
guestion.

Given an E..-ring spectrumR, there is a natural notion of aglliptic curve over R in derived alge-
braic geometry (which specializes to the usual notion @t curve whenR is an ordinary commutative
ring). Any elliptic curveE has a formal completio®’; we define arorientationof E to be an equivalence
SpfRCP™ ~ E of formal groups over?. The main result then asserts that there is a natural hoyotop
equivalence

{ Oriented Elliptic Curvey — SpecR} < Map(SpecR, (M, O));

in other words(M, O) classifiesorientedelliptic curves in derived algebraic geometry.
This result, and the accompanying ideas, can be used toighédh virtually all aspects of the theory of
elliptic conomology.
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Jongil Park: Rational blow-downs and smooth4-manifold

It has been known that most simply connected smdattanifolds withb] odd and large enough admit
infinitely many distinct smooth structures due to the galng®ty, in particular, Seiberg-Witten theory. But
we still do not know which smootit-manifolds withb; small have more than one smooth structure. Though
it is not known yet whether the most fundamentahanifolds such a$*, CP? and S? x S? admit more
than one smooth structure, it has been some progress irolasiecof decades.

In the case wheh] = 1, S. Donaldson first proved that a Dolgachev surface is négatifiorphic to
CPQﬂQW2 (ID]) and D. Kotschick proved in the late 1980's that the Barlsurface is not diffeomorphic to
CP%S@Q (IK]). Recently, | constructed a new simply connected sygopt 4-manifold withb; = 1 and
b, = 7 ([P1]), and then R. Fintushel, R. Stern, A. Stipsicz and Alfzfound many new exotic smooth
manifolds withb] = 1 using rational blow-downs and knot surgeries in double nglghborhoods ([FS2],
[PSS], [SS1]). So it has been proved up to now that ratiorra‘adts(=,|szCP2ﬂn@2 with n > 5 admit infinitely
many distinct smooth structures. Second, in the case Whes 3, it was also known in the mid 1990’s
that theK'3 surfaceF(2) and the topological-manifold SCPQﬂnW2 with n > 14 admit infinitely many
distinct smooth structures. And later, the same statemiéhtnw> 10 was also proved. Recently, Stipsicz
and Szabo constructed infinitely many distinct smoothcstmes orBCPijQW2 ([SS2]), and then | proved
that the topologicaﬁl-manifold3CP2118@2 also admit infinitely many distinct smooth structures ([P2]

In this talk | would like to survey these recent developments
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Weimen Chen: Pseudo holomorphic curves and finite group aatins in dimension 4

As for the abstract of my talk, the main point is to proposettalg a class of smooth finite group
actions on 4-manifolds, the so-called symplectic symrastr{These are smooth finite group actions which
preserve some symplectic structure of the 4-manifold.) Adyee is that the symplectic symmetries will form
an interesting and large enough class of smooth finite grotipres to study, which on one hand are more
tractable than the general smooth actions while on the dtaed are more flexible than the holomorphic
actions.

From the technical point of view, the equivariant Seiberijt&-Taubes theory allows one in principle
to detect the fixed-point set structure of a symplectic sytryrigy looking at the induced action in a neigh-
borhood of a 2-dimensional, pseudoholomorphic subseth 8iiermation is crucial in studying finite group
actions. A key issue is how the regularity of the pseudoholqiic subset is related to the fixed-point data
of the symplectic symmetry. More generally, one can comsige orbifold version of the Seiberg-Witten-
Taubes-Gromov theory, which may find applications beyoritefgroup actions on 4-manifolds.

Shmuel Weinberger: A Sullivan Conjecture for Equivariant Structure Sets

This talk discussed the problem of classifying topolodiceEime G-manifolds up to equivariant homeo-
morphism within an equivariant homotopy type. After a quiekiew of classical surgery and the obstacles
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one faces in finding an equivariant variant of it, | discusseal key ideas: stratfied surgery, which suffices
formally to solve the problem in the isovariant setting dxet and then the second idea is purely homotopical
and uses categorical ideas (such as the homotopy fixed séte@@bodwillie calculus) to relate isovariance
versus equivariance to spaces of Poincare embeddings,li@mdtely to ordinary embeddings. Unfortu-
nately, there was not enough time to discuss examples. dlkisvas based on a combination of results that
were joint with Cappell, Klein, and Yan in various combiroaus.

Martin Bridson: Limit groups: non-positive curvature, log ic and group theory

| am interested in exploring the universe of finitely presengroups. In this lecture, | want to focus on
the region immediately adjacent and ask what natural clagsoops best approximate free groups? Having
identified the right class (and we shall see that there réallg right class”), | want to set about the task
of proving that groups in this class enjoy many of the nowidtiproperties of free groups. The property
that | am particularly interested in is the one that first ga thinking about this area: some years ago,
Howie, Miller, Short and | proved that a subgroup of a directduct ofn free groups is of typé’, if and
only if has a subgroup of finite index that is itself a direcbgmct of (at most n) free groups. Interest in
extending this result became more interesting when workedZ&ht and Gromov showed that understanding
the subdirect products of surface groups is important imeskign the question of which finitely presented
groups are fundamental groups of compact Kahler manifolttee theorem of BHMS extends from free
groups to surface groups, but the proof is rather mystedodsone would like a more coherent explanation
of why this type of splitting theorem works.

For this and other reasons | want to approximate free grdapkis talk, we looked at Gromov-Hausdorff
limits of free groups, limits coming from representatiom§initely generated groups into free groups (which
in turn comes from looking at algebraic geometry over grpup® also looked at "fully residually free
groups” (groups whose balls of arbitrary radius can be tegito a free groups), and we looked at groups
whose first order logic is that of a free group (existential/anuniversal theory). Remarkably, all approaches
lead to the class of "limit groups” with the subclass of "ekamtarily free groups”, these being the groups that
have the same universal theory as a non-abelian free grdigphdrdest parts of this classification are due to
Zlil Sela.

| described the beautifully simple structure theory of theugs in this class, the simple classifying spaces,
with their metrics of negative and non-positive curvaturd graph-of-groups decompositions. | finished by
quickly mentioning some of the results that one can proveiativs class. The basic message is that the
programme of extending from free groups to limit groups trdrial theorems is working. The most striking
example is the splitting theorem for subdirect productsimits groups (proved by Howie and I). Other
examples include recent work with my students Wilton and &aede in which we prove that elementarily
free groups are measure equivalent to free groups. Furkaenmes, proved by Hoiwe and I, include the
fact that a non-trivial, finitely generated normal subgro@ip limit group must be of finite index, and having
finitely generated?; is equivalent to being finitely generated.

Thomas Mark: Ozsvath-Szald invariants of fiber sums (joint work with Stanislav Jabuka)

Ozsvath-Szabo 4-manifold invariants associate to a&ed&%in. 4-manifold(X, o) havingb™ (X) > 2
afunction®y , : A(X) — Z, whereA(X) is the graded algebra*(H, (X)/tors) @ Z[U]. HereA(X) is
graded such that elements Hf (X) carry degree 1, whil& is of degree 2. The functio@ x , is nonzero
only on homogeneous elements of degiée) = 1(c?(o) — 2¢(X) — 30(X)), wheree(X) is the Euler
characteristic and (X)) is the signature. Furthermore, there are at most finitelyyn$arin,. structuress for
which ® x ,, is nontrivial.

Our goal here is to understand the behavior of these invariamder fiber sum of 4-manifolds. Recall
thatif f; : ¥ — X, (i = 1,2) are embeddings of a closed oriented surfade 4-manifoldsX; such that
each embedding has trivial normal bundle, fiber sumZ = X #x X5 of X; and X, alongX. is defined by
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removing a neighborhood ¢f (%) from each ofX; and X, and gluing the resulting manifolds (which have
boundary diffeomorphic t& x S!) along their boundaries usinf to identify theX factors and conjugation
in the S! factor. (In general, the resulting manifold depends on theeddingsf;.) We assume throughout
that[X] € Ho(X;;Z) is a primitive nontorsion element.

To simplify the statment of the results, we make the assumiatX; and X, have (strong¥imple type
which is to say that the onl§pin. structuresr; for which®y, . # 0 haved(o;) = 0. Furthermore, we will
consider only the sum of invariants correspondingion.. structures differing by elements &f?(Z; Z) dual
to rim tori: these are tori of the form x S'in X x S' C X #xX,, whereyis a circle onX. Specifically,
if R ¢ H?(Z;Z) is the subspace spanned by the Poincaré duals of rim tosgtd/" = ZTGR Dz opr
Implicit in the results below is the fact that the fiber sumwdtmanifolds of S|mple type is again of simple

type.

Theorem 16.0.60Assume that the genus®fis ¢ > 2, and suppose; are Spin.. structures onX; such that
(c1(0i), [X]) = 2k, with |k| = g — 1. Leto € Spin®(Z) satisfyo|x,\sxp> = 0i|x,\sxp> fori =1,2. Then

> ooy e T = (Z P xy 00401 PD[E]Tm> <Z ‘I’Xl,awnzPD[E]Tnz)

nez ni€Z no€Z

as polynomials in the formal variablE. If 0 < |k| < g — 1, we have

E : rim —
(I)Z ,o+nPD[Z =0.
nez

Theorem 16.0.61Suppose the genus ¥fis 1, ando; are Spin. structures as above witfx; (o;), [X]) = 0.
Then for any gluedpin, structures € Spin®(Z) as above, we have

Z CI)TZ”;LJrnPD = (T1/2 - 1/2 (Z Px,, U1+n1PD[E]T ) (Z (I)X1-,d1+n2PD[E]Tn2> :

nez niEZ no €Z

These formulae can be used, for example, to compute theaeSzabo invariants of elliptic surfaces:
the result is in accord with the conjecture that the Ozs&tabo and Seiberg-Witten invariants are identical.
We should note, however, that Theorem 1 admits a genetializér manifolds that are not of simple type,
for which an analogue in Seiberg-Witten theory is not known.

William Dwyer: Duality in Algebra and Topology

The talk, which represents joint work with John Greenleaes@iikanth lyengar, discusses the idea of in-
terpreting properties of ordinary commutative rings sa they can be extended to the more general rings that
come up in homotopy theory. Among the rings that arise arenBiérg-MacLane ring spectra, the cochains
on a space with coefficients in a commutative ring spectruriye@chains on a loop space with similar coeffi-
cients. Itis something of a surprise that differential g@dlgebras or ring spectra can appear naturally even
in purely algebraic settings. One line of reasoning leadsiew homological formula for the injective hull
of the residue class field of a local ring; essentially theesémnmula in another setting gives, for any prime
p, the p-summand of the Brown-Comenetz dual of the sphersipe. A homotopical interpretation of the
notion of Gorenstein ring gives a common way of understam@orenstein rings, Poincare duality spaces,
and the formal component of Gross-Hopkins duality. The nta@me here is that it is interesting to take ring
spectra seriously and to try to manipulate them as if theywedinary rings.

Oleg Viro: Virtual links, their relatives and Khovanov homo logy

We extend Khovanov homology to links in the projective spadaexpectedly, full fledged Khovanov
homology with integer coefficients are defined only for nemezhomologous links. For zero-homologous
links any construction ove# fails, provided it is based oh+ 1 TQFT.
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More generally, integer Khovanov homology extends to tleead link in an oriented 3-manifold fibered
over a surface with fibeR, if the projection of the link realizes (the surface

The construction requires a study of several new kinds ¢di@idinks: twisted virtual links (generalizing
the usual ones), blunted Gauss diagrams, checkerboatdlviitks, etc. Most of them admit not only
combinatorial 1-dimensional, but also 3-dimensionalriptetation.

Jesper Grodal: p-compact groups and their classification

In this talk I'll announce and explain a proof of the classifion of 2-compact groups, joint with K.
Andersen, hence completing the classification of p-comgemtips at all prime®. A p-compact group,
as introduced by Dwyer-Wilkerson, is a homotopy theoregicsion of a compact Lie group, but with all its
structure concentrated at a single prim@®ur classification states that there is-&-correspondence between
connecte®-compact groups and root data over thadic integers (which will be defined in the talk). As
a consequence we get the conjecture that every conng2atethpact group is isomorphic to a product of
the 2-completion of a compact Lie group and copies of the extiompact groupDI(4), constructed by
Dwyer-Wilkerson. The major new input in the proof over thegirat odd primes (due to Andersen-Grodal-
Moller-Viruel) is a thorough analysis of the concept of a roatiom for2-compact groups and its relationship
with the maximal torus normalizer. With these tools in pla@eare able to produce a proof which to a large
extent avoids case-by-case considerations.

Peter Oszvath: Heegaard Floer homology for links

I will describe recent joint work with Zoltan Szabo, in whiake define an invariant for links, generalizing
an earlier construction for knots. The filtered Euler chaastic of this theory is closely related to the multi-
variable Alexander polynomial.

Jacob Rasmussen: Differentials on Khovanov-Rozansky hontmgy

| discussed a conjecture (joint with Nathan Dunfield and 8e@ukov) which describes how the knot
Floer homology should be related to thiN') knot homologies defined by Khovanov and Rozansky. For
eachN > 0, their construction assigns to a kniéta sequence of bigraded homology groiifis (K ) whose
graded Euler characteristic is thRg V') knot polynomial of K. Work of Gornik suggests that these homol-
ogy groups should be equipped with a family of differentigl$0 < n < N). For each such, Hy(K) is
itself the underlying group of a chain complex with diffeti@ahd,,. The homology of this chain complex is
expected to bd7,, (K). This suggests that we should be able to take a limit offihgs to obtain a triply
graded homology theory with graded Euler characterisecHDMFLY polynomial of K. The conjecture
suggests that this homology should be equipped with antiweting differentialsd,,, not only forn > 0
(which would be provided by Gornik’s construction) but afson < 0 as well. In particular, the homology
with respect taly is expected to give the knot Floer homology. In the actud, tasketched the construc-
tion of Gornik’s differentials, formulated the conjectuend finally, ended by describing a simple class of
"thin” knots for which at least part of the conjecture can bersto hold. (For such knots, thg N') homol-
ogy is determined by the HOMFLY polynomial and signaturecah be shown that two-bridge knots are thin.

Yongbin Ruan: Twisted K-theory on orbifolds and its stringy product

Wolfgang Lueck: L2-invariants and their applications

The purpose of this talk is to present recent developmenmstdl?-invariants and their applications to
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problems in other areas such as topology, group thétitheory, geometry and global analysis. It addresses
non-experts. We begin with a list of theorems which a priasidinothing to do with.?-invariants but whose
proofs used.?-methods. We develope the basic definitiond.éfBetti numbers and basic tools. Then we
mention some important theorems ab@dtBetti numbers and explain in some cases how the theorems in
the first list are proved usinfj2-methods. Finally we discuss open problems ad@uinvariants.

Stefano Vidussi: Taubes’ conjecture and twisted Alexandemvariants

It is well-known that the Seiberg-Witten invariants of-amanifold provide obstructions to the existence
of a symplectic structure. When themanifold is of the forn' x N, these obstructions can be described in
terms of the Alexander polynomial &¢. C. Taubes formulated the conjecture thafifx IV is symplectic,
thenN fibers over the circle. P. Kronheimer studied the case wheigobtained as—surgery along a knot
K C S3 and showed that the aforementioned constraints on the AdiergoolynomialA i give evidence to
Taubes’ conjecture, i.eA y must be monic and its degree must coincide with the genusedfriot. Still,
these conditions are short of characterizing fibered knatthis talk we discuss how to extend these ideas
to the case of a generatmanifold and how these conclusions can be strengtheneakingtinto account
the twisted Alexander polynomials associated to an epitrienp of 71 (V) into a finite group. This way
we get new evidence to Taubes’ conjecture and, practigahy, obstructions to the existence of symplectic
structures or* x N, even in the case d@f-surgery along a knot. As an application! o! f these resuéts w
show that if N is the0—surgery along the pretzel kn@, —3, 5), a case that cannot be decided with the use
of the Alexander polynomia§* x N is not symplectic: this answers a question of Kronheimea $imilar
way, we show that Taubes’ conjecture holds for knots up2tarossings. Joint work with Stefan Friedl of
Rice University

Karen Vogtmann: Tethers and homology stabillity

| defined what it means for a sequen@g of groups to have homology stability and pointed out some
important consequences of homology stability (Quillen'sté generation ofK -groups and the Madsen-
Weiss computation of the stable homology of mapping clasgg). | then described the method introduced
by Quillen in the 1970’s for proving homology stability, bgdking at the equivariant homology spectral
sequence of the grou@,, acting on a highly-connected complék,, with simplex stabilizerss, _x_;. |
then showed how to find a suitable complex oy = Aut(F,), giving an action which makes the spectral
sequence argument work in the simplest possibly way. Thigpbex involves finding "enveloping spheres”
for coconnected sphere systems iB-manifold with fundamental group;,. The complex can alternatively
be described by "tethering” the spheres to the basepoamt both sides. This idea of tethering turns out to be
useful in other contexts giving, for instance, a simplifiedgds of homology stability for braid groups (first
proved by Arnold in 1970), for mapping class groups of ot surfaces (Harer 1980's), and symmetric
automorphism groups of free groups.

Andras Stipsicz: Contact Ozsvath—Szabo invariants and tigt structures on 3-manifolds

Recall that an oriented 2-plane figdabn an oriented 3-manifoldl is acontact structuref ¢ can be given
as the kernel of a 1-form satisfyinga: A doe > 0. A contact structure isvertwistedf there is an embedded
2-disk D in Y such that¢ is tangent toD alongdD; otherwise¢ is tight. It turns out that overtwisted
structures are determined by the homotopy typ# pivhile the tight structures capture important geometric
information of the underlying 3-manifold.

Contact structures can be constructed by performing siegalongegendrianlinks, that is, along links
for which the tangent vectors are §n The tightness ofY, ¢) can be detected by computing its contact
Ozsvath-Szabo invariantY, &), which is an element of the Heegaard-Floer homology gdgl\R(—Y). Itis
known thatc(Y, §) is zero if (Y, £) is overtwisted and is nonzero(¥, £) is the boundary of a Stein domain.
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We have studied the existence and classification problenglaf tontact structure on a special class of
3-manifolds, calledmall Seifert fibere@-manifolds.Y” is small Seifert fibered if it admits a Seifert fibration
overS2 with 3 singular fibers. As an application of Donaldson’s famdiagonalizability theorem for definite
4-manifolds, we find a tight contact structure which is net loundary of any symplectic 4-manifold.

Walter Neumann: Graph manifolds and singularities

The topology of a complex singularity is determined by itma&nifold link. The topologies are known
but until recently it was rarely possible to give explicigdytic descriptions for any but the simplest topology.
The "splice singularities” of Jonathan Wahl and the authmttds for many rational homology spheres. The
talk will describe a nice characterization of these singtiés that we have (finally) proved.

List of problems

Problem 1 (Adem) A finite group G acts freely on a finite complex X withhtv@otopy type of a product of
k spheres if and only if every elementary abelian subgroup is of rank at most k.

Problem 2 (Akbulut) Formulate and prove a Resolution Theorem for poiyial maps. This is the only
missing issue to topologically characterizing real algaibrsets, i.e. to determine when a given space is a
real algebraic set.

Problem 3 (Bartels) Borel conjecture. Let M and N be closed asphenicahifolds of dimensior 5 that
are homotopy equivalent. Then there is a homeomorplfisnd/ — — > N that is homotop to the given
homotopy equivalence.

Problem 4 (Boden) The smooth Poin@&tConjecture in dimensions three and four.

Problem 5 (Bridson) Construct counterexamples to the Andrew’s Gtnjecture: Let’ = F), be the free
group of a finite rank n with a fixed sé&t = {x1,...,x,} of free generators. Is the normal closure of a set
Y ={y1,...,yn} €quals F if and only if Y is Andrews-Curtis equivalent to Xichmeans one can get from
X'to Y by a sequence of Nielsen transformations togetherogitfugations by elements of F?

Problem 6 (Collin) If a non-trivial Dehn surgery on a kndkt in S® has cyclic fundamental group, mukt
be fibered?

Problem 7 (Edwards) The Hilbert-Smith Conjecture: @ is a compact subgroup of the homeomorphism
group of a topological mannifold, thef is a Lie group.

Problem 8 (Grodal) Find a topological proof of the classification ofifssimple groups.

Problem 9 (Hambleton) Formulate a local to global principal for smbahanifolds.

Problem 10 (Kirby) Is a slice knot a ribbon knot?

Problem 11 (Kreck) Is a random smooth manifold asymmetric, i.e. hasaretnivial finite group action?

Problem 12 (Lueck) The Atiyah Conjecture: Denote NY(G) the group von Neumann algebra associated to
G viewed as a ring (not taking the topology into account). Fé¥ @&') —module) let dim y ¢y (M) € [0.00]
be its dimension. Le;w\l,w C Q be the additive abelian subgroup@fgenerated by the inversgd | ! of

the orders H| of finite subgroup$/ of G. Notice that#(c)z agrees withz if and only if G is torsion-free.

Consider aringA withZ c A C C. The Atiyah Conjecture fad andG says that for each finitely presented

AG— moduleM we havelimy ) (N(G) ®a¢ M) € gy Z.
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Problem 13 (Lurie) Let G be a group acting on a set X. Suppose that theadf G is simply 3-transitive
on X (that is, given any two triples (x,y,z) and (x’,y’,z")dstinct points in X, there is a unique g in G such
that (gx,gy,g9z) = (X',y’,2") ). Suppose furthermore thaegvelement g in G which exchanges two distinct
points (so that (gx,gy) = (y,x) ) has order 2. Does there exisbommutative field k such that the action of G
on X can be identified witt*G L, (k) acting on the projective line over k?

Problem 14 (Mark) Does every simply connected symplectic 4-manifokhtisfyc? (X ) < 9y, (X)? Here
X (X) = (sign(X)+e(X)) wheresign(X) is the signature of the intersection form ar(d\ ) is the Euler
characteristic.

Problem 15 (Mrowka-Ozs#th) Find a proof of the existence of uncountably many exstiooth structures
onR* without using instantons, possibly using Seiberg-WitteiHeegaard Floer homology.

Problem 16 (Mrowka We have learned starting with the work of Furuta teabtle information can be
obtained from refining the Seiberg-Witten invariants froomology classes in the suitable configuration
space to a stable homotopy class of map. To what extent camikaisstory be told for the Donaldson
invariants and the Gromov invariants?

Problem 17 (Neumann) Lehmer Conjecture: Lef; (P) denote the Mahler measure for a univariate integer
polynomial P(x). Suppose that i€ (z) not a product of cyclotomic polynomials. Lehmer conjeautet

Mi(P) > Mi(1 —x+ 2% —2* + 25 — 25 + 272% + 2'0). Here M, (P) = exp[fo1 In |P(e?™)|dt].
Problem 18 (Park) Does there exist an exotic smooth structure on thepb®aprojective plan€ P?

Problem 19 (Pederson) The Arf/Kervaire Invariant One Problem: Do thexist framed manifolds with
Kervaire invariant one?

Problem 20 (Ranicki) Extend the algebraic surgery model for high-disienal topological manifolds to
dimensions 3 and 4. While at it, use the model to obtain coatbiial formulae for the Pontrjagin classes!

Problem 21 (Reich) Farrell-Jones conjecture. For a torsion free grauphe so-called assembly map :
H,(BT';K~>°(Z)) — K,(Zr) is an isomorphism for ath € Z.

Problem 22 (Stern) Is every topological—manifold,n > 5, a simplicial complex?

Problem 23 (Stolz) What is the geometric interpretation of elliptiddoonology and what is its relationship
to conformal field theory

Problem 24 (Teichner) TheAd — B slice problem.IfB* = A U B is a decomposition of the 4-ball into
two smooth submanifolds, such that the intersection Withis a thickening of the Hopf link, determine
which side (A or B) is strong. The definition of strong mustrbaiiant under Bing doubling (and thus the
obvious homological definition does not work). If there istsa definition then the topological surgery and
s-cobordism theorems are false (for free fundamental ggpirpdimension 4.

Problem 25 (Vidussi) Does there exist a closed smooth 4-dimensionaifoid with only finitely many exotic
smooth structures?

Problem 26 (Vogtman) Using Kontsevich's identification of the homglog the Lie algebrd,, with the
cohomology of OUf;.), Morita defined a sequence of 4k-dimensional claggem the unstable rational
homology of OutF2). Are theses Morita classes trivial H*(OutF,)?

Problem 27 (Wahl) Get a hold on diffeomorphisms3# manifolds.

Problem 28 (Weinberger) What does a random manifold mean? See prodiéreck. The main point is
that most manifolds we consider, e.g. have group actiorshat random. For example a random graph with
valence less than or equal to three has no symmetries.
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Comments by some participants

Adem:

| enjoyed the meeting at Banff, I'm glad to hear that you welapply.

Auroux:

Thanks for putting together such a great conference! | titimkas a great idea to have such a broad
topology conference. It's definitely useful and can helpkise topology community united. The talks were
great, and almost all speakers made a very good effort totkémgs elementary.

One suggestion, though: at this meeting, some 3-/4-matsfoécialists were confused during homotopy
theory talks, and vice-versa. It may be useful in the futarbkéave a series of remedial talks on the first day,
planned once the main topics become clear — for this meetimgyuld have been useful to have maybe a
90-minute crash-course on homotopy theory for low-dimamsi topologists (introducing ring spectra, p-
completions, and other monsters, giving concrete exanipleske them less scary) and a 90-minute crash-
course on low-dimensional topology for homotopy theor{staybe brief overviews of SW and Ozsvath-
Szabo theories ?)

Bartels:

| enjoyed the meeting very much. Most talks were very goodspehkers made an (successful) effort
to adress the general audiance. Given the number of talksdiménsional manifolds | think it would have
been a good idea to have one survey talk on 4-dimensionalfoldsito set the stage for the specialliced
talks. The talk of Bridson presented a class of groups tleanhseo be interesting to study in relation with the
Farrell-Jones conjecture.

Bridson:

| think taht the idea of sustaining communication betweentitbad community of "topologists” is a
fruitful one, and that this meeting provides an excelleraregle of the benefits. For the most part, speakers
made a real effort to communicate to the whole audience aad@sult | have a much better idea of what is
happening in adjacent subfields of topology, and who | shasldwhich questions to. This was a meeting
quite different to the highly specialised ones that happiin such great regularity these days. | think that it
has played a valuable role, and | hope that it may be repeatadegular (bi-annual?) basis.

Chen:

Thanks for organizing such a wonderful workshop. | partclyl likes this format of having a diverse
range of topics.

Dwyer:

| really enjoyed the meeting, and especially the chance & $@mething of what's going on across the
board in topology.

Grodal:

| think the conference went great!

Kirby:

The conference went very well, thanks to the organizers hadkss to the speakers who with few ex-
ceptions did an excellent job of making their specialty asi®e to everyone else. This is not easy, and is
particularly hard when the audience covers all of topold@t it is vital that we have such conferences and
such talks or else topology will just break up into its sulaare/hich no longer interact.

Kleiner:

Thanks very much for organizing the conference and for thigation to participate. | enjoyed the con-
ference overall. The only way it could have been improveminfmy own standpoint, would have been if a
few of the lectures were pitched to a more general audietasgicto a colloquium style. However, | suspect
that most of the other participants were better versed indiopy theory and the fine points of surgery, so
my comments simply reflect the fact that I'm more of a geonigéametric group theorist than a topologist.

Lueck:

In my opinion this conference shall be in the format as tharyeery broad and not specialized. There are
enough special conferences and | like to get an impressibedofrom leading representatives what happens
in other fields.

In my opinion this is a very good meeting. | have no compla@iteut the organization or the facilities,
they are excellent.

Mark:
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| found the Banff workshop to be very informative and a braddg experience. Conferences such as this
one, involving a range of mathematicians in various suliylises, are too rare. The workshop opened my
eyes to problems and techniques in topology of which | wagipusly unaware, which is extremely valuable.

Thanks for your efforts with organization, and | hope theleagion for the next workshop goes well.

Mrowka:

I very much enjoyed the meeting and think that more of the sameéd be great for topology.

Park:

As it usually happens in any conference which puts seveealssiogether, | hardly catch a theme of topics
without introducing the contents of topics enough. So,altfh | am sometimes bored, what do you think
that one hour talk is better than 45 minutes talk for speakedsaudiences? Except this, | really like this type
of conference!

Ranicki:

Thanks again to the organizers for inviting me to a most eatjey conference. The only negative com-
ment | have is that the organizers did not have the imaginatidollow the Oberwolfach tradition (possibly
initiated by Matthias himself) of distributing the abstimof all the talks proposed, and there was no oppor-
tunity of presenting posters (e.g. in the room set aside fRBacross the corridor from the lecture room).
Also, the speakers should have been asked to provide rehslisdor their talks, so that members of the
audience could follow up the talks if so inclined. Thanksiagand good luck with your 2007 proposal

Rasmussen:

This is my second time at BIRS, and my impression of the plasertot changed very much from the
last visit. | think it is simply the best conference venue docouraging collaborative work and interaction
that | have been to. The setup (breakfast room, everyonmgtaythe same place, meals together) is great
for encouraging interaction between people who might nio¢iatise get together. | had a lot of fun going
to talks from other areas, but | can’t say that | got ideasulgef my own reseach from them, or that | was
in a position to make meaningful suggestions about them piethis criticism, | should say that | really
had a great and productive time this week. Thanks to you amatther organizers for putting this thing
together.

Stipsicz

It was a great conference, | enjoyed it a lot,

Vidussi:

Some comments on the conference. | definitely enjoyed the afidaving a meeting with people that
work in different areas of topology. It is very difficult anidie consuming to keep track of the developments
of various areas only by reading papers. A conference’sitidkead, gives an easier access to main results and
ideas, and allows interaction with a specialist. If therarismprovement that | can suggest, this would be to
stress out in advance that the talks are meant for a "geraudience. (You pointed that out at the beginning
of the conference but some - including possibly myself - ditl fully comply with this.) Personally, my
interest in some of the topics discussed at the conferemee for example, | am currently reading a review
paper of W. Lueck orl? invariants, and trying to understand if this may have appiins in my research.

Third, the schedule and number of talks was perfect, andfBaafgreat place for a conference.

Finally, | am very grateful to the organizers for inviting raed giving me the opportunity to give a talk.

Vogtman:

| thought it was great, | learned a lot about what's happeiririge rest of topology. Thanks!!!
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Analytic and Algebraic Methods in
Complex and CR Geometry (05w5086)

September 4-8, 2005

Organizer(s): John Bland (University of Toronto), John D’Angelo (Unividyof lllinois),
Laszlo Lempert (Purdue University), Joseph J. Kohn (Ptorc&niversity), Yum-Tong Siu
(Harvard University)

This workshop focused on both complex analysis and algefgegmetry. Its primary purpose was to fos-
ter interactions among researchers in these areas. Tloig vl describe analytic, algebraic, and geometric
perspectives and how they blend.

Both the lectures and the informal conversations held imtbikshop developed these connections. It is
natural to place (most of) the discussions into one or motiereg categories: those with a flavor from Partial
Differential Equations, those motivated by CR Geometrg, ose concerning Algebraic Geometry. Nearly
all the lectures made at least some connections among tresse a

We begin by discussing the Cauchy-Riemann opei@tamd its impact on complex analysis. The study
of 0 as a partial differential operator leads to the basic qoestdf existence and regularity. These basic
guestions from partial differential equations naturadigd to theorems relating the geometry of the boundary
of a domain to the behavior éfon the domain. Since the 1960’s so-calledmethods and their applications
have played a major role. We recall some of these develogment

Many important developments in complex analysis in the tigéimcentury arose from the solution of the
Levi Problemidentifying domains of holomorphy with pseudoconvex damsaiPseudoconvexity is a local
geometric property of the boundary, whereas the notion afalo of holomorphy belongs to the function
theory on the domain itself. The solution of the Levi Problieiudes an existence and regularity result for
0. A domainQ) in C™ is a domain of holomorphy if and only if the following statemiéiolds: For each
nonnegative integey and each smootlp, ¢ + 1) form a on © such thatda = 0 on €, there is a smooth
(p, q) formw on Q such thabu = a.

The so-called-Neumann problem extends the above idea by consideringahel-Riemann equations
on U bS2. Suppose that the boundai§ is smooth and consider differential forms wiR coefficients on
the closed domain. Given@-closed forma, orthogonal to the harmonic space, #é&eumann problem
constructs theV-operator and the solutiol Na to the equatiodu = «. Spencer first posed this problem
in the 1950’s in order to extend Hodge Theory to manifoldswinbundary, but many analytic difficulties
arose before Kohn solved the problem in 1962 using the meaihad estimates.

Local regularityholds wherd” Na must be smooth whereveris smooth; local regularity follows from
subelliptic estimates, which imply thaf is a pseudo-localbut not a pseudodifferential) operat@slobal
regularityfor thed-Neumann problem holds wheéh N« is smooth everywhere on the closed domain assum-
ing thata is itself everywhere smooth. Several years after solvie@thleumann problem, Kohn established
a global regularity result using weightéd techniques. A smooth solution & = « exists when is every-

188
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where smooth on the closed smoothly bounded domain. Forgtiom it was not known however whether
the 9-Neumann solution was always smooth. When subelliptierests (described below) hold, of course,
the 9-Neumann solution is smooth. In 1996 Christ proved that gloggularity of thed-Neumann solution
fails for some worm domains. Boas and Straube showed thhategularity for thed)-Neumann solution
holds for domains with a defining function that is plurisubvhanic on the boundary. They also verified
global regularity when the set of points of infinite type sfiis certain topological conditions, but the prob-
lem of global regularity is not yet completely understoodefated open problem concerns finding necessary
and sufficient conditions for compactness estimates.

Results about global regularity often produce geometnidieations. The smooth extension to the bound-
ary of biholomorphic mappings between certain weakly pseadvex smoothly bounded domains provides
a striking example. Siu’s work on the nonexistence of smaeth-flat hypersurfaces in the complex projec-
tive planeP? gives a second example. In the workshop Ohsawa spoke fuatioert the use of.? methods
to study Levi flat objects. Siu has also applied techniquds’afstimates to establish the invariance of pluri-
genera first for the case of general type and later when th&alchis not necessarily of general type. Thus
L? estimates foP have provided a deep link between analysis and algebraingien

Perhaps the major advance at this workshop was Siu’s talkefamous question of the finite generation
of the canonical ring of a compact algebraic manifaldof complex dimensiom of general type. Siu
described the techniques he introduced frlbfrestimates fop) to handle the obstacles of this problem.

He introduced the infinite suri over all m of the m-th root of the sum of the absolute-value squares
of elements of a basis ef-canonical sections. By adapting Skoda%estimates of for the generation of
ideals, he first reduced the problem to proving thand one of its finite partial sums are each dominated by
a constant multiple of the other. His method involves agimtaliate steps the proofs of the rationality of the
vanishing orders ob and the finiteness of the number of irreducible componerttsso$uper level sets of the
Lelong number of/—100 log ®. For such proofs he used algebraic geometric techniqueshvené adapted
from and motivated by the following two analytic techniqu#she complex Monge-Ampeére equation for

(\/—_185 log <I>)n:

(i) an observation of Demailly thag is equivalent to the metrie~ ¥ of the canonical line bundI& x of
X with ¢ maximum among all plurisubharmonjcsubject to the normalization of the supremum of
© — v being0 for some fixed background metric ¥ of K x, and

(ii) aresult of Bedford and Taylor that the complex Monge+#ére equation is the Euler-Lagrange equa-
tion for maximizing a function among plurisubharmonic ftioos.

Notice that two analytic techniques, developed in the safdlye complex Monge-Ampere equation, have
algebraic applications here. First, Fefferman’s work (Alsr1976) on the asymptotic order of the solution of
the complex Monge-Ampére equation on a strongly pseud@oiomain motivates the algebraic geometric
technique to prove the rationality of vanishing ordersbofSecond, Yau’s regularity results (Comm. Pure
and Applied Math. 1978) for the complex Monge-Ampere equetivhen the right-hand side has complex
analytic singularities motivates the algebraic-geomeé#thniques for proving the finiteness of the number of
irreducible components of the super level sets of the Letamgber of,/—100 log ®. By incorporating the
techniques developed for the Fujita conjecture type probland the techniques of Shokurov’s nonvanishing
theorem, Siu’s method translated the analytic techniqodké algebraic geometric settings so that when
either some vanishing order @f is irrational or there are infinite number of super level sd#tthe Lelong
number ofy/—100 log ®, some new pluricanonical sections can be producefi®gstimates ob to give a
contradiction to the definition ab.

We return to the)-Neumann problem on a smoothly bounded don§aiThe geometry of the boundary
enters because of thiNeumann boundary condition. For(&, 1) form ¢ this condition is the same as
saying that the€1, 0) vector dual top is tangent td<2. This condition therefore leads to the notion of a CR
manifold. CR manifolds are real manifolds whose tangentepdehave like those of real submanifolds in
complex manifolds. The special case of a real hypersurfacernplex Euclidean space arises of course as
the (smooth) boundary of a domain. Ti#eumann problem therefore provides a deep link betwee@khe
geometry of the boundary ¢f and the function theory ofl.
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The ideas in the proofs of existence and regularity resoit)fhave led to the development of CR
geometry, the calculus of pseudo-differential operatams, subelliptic multiplier ideal sheaves. All three of
these topics have evolved considerably, and each playegba rake in the workshop.

We next discuss subellipticity and related ideas. After mpieliminary work, in 1978 Kohn introduced
subelliptic multipliers as a technique for proving sullt estimates in th8-Neumann problem. Subelliptic
estimates imply local regularity results for tBeoperator. In the 1970’s Skoda introduced the usé.df
methods in algebraic geometry. Currently the algebraiown community has become actively involved in
the study and use of multiplier ideal sheaves. The work ofiSadel, Demailly and others have demonstrated
convincingly the power of such analytic methods in algebggometric problems. Nearly all participants in
the workshop have used either analytic or algebraic aspédtsese ideas in their work, and if not, have
worked on closely connected problems.

The solution of thé)-Neumann problem on strongly pseudoconvex domains canderstood by think-
ing of the determinant of the Levi formlet(\) as a subelliptic multiplier; for any 1-form in the domain
of &', one can control the Soboley-norm of det(A)¢ in terms of the usual Dirichlet form. When this
determinant vanishes things become quite difficult. Kohseglathe problem of determining necessary and
sufficient conditions for subelliptic estimates farD’Angelo introduced a finite type condition that, through
deep work of Catlin, turned out to be necessary and suffié@ngubelliptic estimates of), 1) forms on
pseudoconvex domains. A similar result holds for forms ghler degree. Catlin’s proof does not use subel-
liptic multipliers; instead he constructs bounded plusisarmonic functions with large Hessians. The precise
relationship between the two approaches to subelliptimests is not yet understood. Because they apply in
the smooth category, Catlin’s techniques have significargalized potential in subelliptic multiplier theory.

All these ideas are closely related to singularity theoryArgelo has discussed a precise analogy:
strongly pseudoconvex points correspond to the maximal idehe ring of germs of holomorphic functions
at a point, and finite type corresponds to ideals primaryeatiaximal ideal. Thus the problem of subelliptic
estimates helped establish a basic connection betweerahalysis (PDE estimates) and singularity theory.
Developing this connection was one of the reasons for hglthis workshop.

The workshop itself succeeded in forging new connectiormeaisely this topic. For example Lazarsfeld
spoke about thgypeof a punctual ideal, a concept invented in algebra for séveasons, and independently
in analysis for the purpose of understanding the relatipnisbtween finite type and subelliptic estimates.
The type of a punctual ideal in the ring of germs of holomocghinctions is finite if and only if the ideal
is primary to the maximal ideal, and it provides an interegthumerical measurement (always a rational
number) of the singularity. The lecture of Lazarsfeld shdview ideas in algebra such as the integral
closure of an ideal, normalized blow-ups, and the Brian8&aela Theorem impact the study of the type of
a punctual ideal. The theory of finite type shows how to redheeype of an ideal in the ring of germs of
smooth functions to the types of a family of punctual ide@$osely related to these ideas is an algebraic
version of Kohn’s theory of subelliptic multipliers in thsifipler) holomorphic setting, a topic which was
discussed by many of the participants in the informal disicusheld throughout the workshop. Lazarsfeld
also gave a simple treatment and extension of a result of lMeNemethi showing how a supremum over
all holomorphic arcs can be replaced by a maximum over a fisitef well-chosen holomorphic arcs, thus
rendering evident the rationality of the type. This matdtiastrates well the sort of connections forged by
the workshop.

Hwang spoke about the relationship between the Arnold plidify and the usual notion of multiplicity
connected with orders of vanishing. The Arnold multipljag a local invariant of an effective divisor on a
complex manifold. Itis the infimum of the setwf for which a certain integral is finite; if is a local equation
for the divisor, the Arnold multiplicity is the infimum of thget ofm for which |f|%2 is locally integrable.
Hwang established a decisive estimate for the Arnold mlidifp when the base manifold is the quotient of
a complex semi-simple Lie Group by a maximal parabolic sabgr To do so he proved a product theorem
concerning the behavior of the Arnold multiplicity for ddars on the product of two manifolds. Again
we observe a powerful connection between analysis and raigefpeometry. Hwang discussed upper-semi
continuity properties of these multiplicities, making aeconnection with other issues. For example, semi-
continuity fails for the type of a family of punctual idealsknding nicely on a parameter, and this result
has impacted subelliptic estimates. On the other handuadgigs relating the type to the co-length, which
behaves better under change of parameter, play a role inavofikite type.

D’Angelo spoke on a monotonicity result for holomorphicwales. At first glance this result is not ob-
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viously related to the theme we have discussed so far; ortliee band volumes involve integrals of squared
norms of Jacobians, and the results are thereby connectied@th complex geometry antf ideas. Note
that the determinant of the complex Hessian of the squanad aba holomorphic mapping is precisely equal
to the sum of the squared moduli of all possible Jacobianseo€bmponents of the mapping. The ideas are
thus connected with properties of the integral of the deiteant of the Levi form. The monotonicity result
leads to a corollary with a nice algebraic-geometric flavat p be a proper polynomial mapping between
balls, of degred. Then the volume of the image of the ball ungés at most”:f , with equality if and only

if the mapping is homogeneous. For balls and eggs one prbeendnotonicity result for volumes of holo-
morphic images by carefully studying ti& norms of monomials. A result for more general pseudoconvex
domains can be proved using Stokes’s theorem, in case thdéasegome regularity at the boundary. Again
we see howZ? methods are closely related to complex geometry.

Several other talks in the meeting nicely illustraétimethods. McNeal spoke about a generalization
(due to McNeal-Varolin) of the celebrated Ohsawa-Takegbsborem. Suppose first thatis a pseudocon-
vex domain inC™ and thatH is a complex hyperplane. Légtbe holomorphic ond N D, and inL? with
respect to some weight. Ohsawa-Takegoshi provedftisan be extended to a functidghholomorphic inD
whoseL? norm with respect to the same weight is controlled byA&Renorm of f. McNeal-Varolin showed
how to gain strength in this estimate by manipulating theghvts. During the talk Siu observed a parallel
with these ideas and his use of thé extension result in order to establish the invariance ofigénera.

A natural problem in complex analysis asks to express a rgative Hermitian symmetric polynomial as
a squared norm of a holomorphic mapping, or more generabyopmtient of squared norms of holomorphic
mappings. D’Angelo has asked, as a complex variable analofidilbert’s 17th problem, for a charac-
terization of quotients of squared norms of holomorphig/pomial mappings. Work of Catlin-D’Angelo
relating isometric imbedding of holomorphic bundles toama norms and quotients of squared norms of
holomorphic mappings provides a general framework for spastions. Their result assumes a nondegen-
eracy condition analogous to strong pseudoconvexity; Hyederate case is quite subtle, because the class
of quotients of squared norms is not closed under limits. isntdlk at the workshop Varolin announced a
complete solution to this question. His proof ugégechniques and a form of the resolution of singularities.
Furthermore the setting applies for many bundles, and éxeeprioof in the (simplest) case of powers of the
tautological bundle over projective space requires pvire theorem for more general spaces. Varolin's
condition states that the real Hermitian polynomialwhich can always be written agF||? — ||G||? for
holomorphic mapping$’ andG, is a quotient of squared norms if and only if the function

IFIP +IGI?
1F112 = [IG2

is bounded. The proof involves the Bergman kernel functioa rather general setting. As in the above
work on isometric embedding, the Bergman kernel functigmeaps as an approximate generating function
for tensor powers of a metric.

Varolin also discussed other positivity conditions and f@entioned the connection with a famous paper
of Calabi on isometric imbedding from the early 1950’s. @ais forms of a non-linear version of the Cauchy-
Schwarz inequality play a key role in all the work on isonembedding. The condition that a bundle
metric satisfies the non-linear Cauchy-Schwarz inequiaitylves curvature, but it is distinct from the usual
curvature conditions. It could therefore could play a roleleveloping new connections between analysis
and complex geometry.

Next we turn to some connections between PDE and CR geomiéashaps the most basic example
of a CR manifold is the unit sphere. Because the unit balllielbimorphically equivalent with the Siegel
generalized upper half-plane, its boundary (the spher€Riquivalent with the Heisenberg group. This
connection between several complex variables and harnaoalysis has been especially fruitful in studying
the strongly pseudoconvex case, but new ideas are neededénad

Several talks considered issues centering around difiafeand pseudo-differential operators on CR
manifolds, typically motivated by the Heisenberg group. Ildee began the workshop with a general and
abstract treatment of a calculus of pseudo-differentigrafors that takes into account the anisotropic be-
havior of the tangent spaces on strongly pseudoconvex laoi@sd The anisotropic behavior there has one
parabolic direction He showed that operators in a very general class behavenyamder composition.
Precise descriptions of the kernels of these operatorsuwkecepitomizes the theme of the workshop; the
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relationship between the geometry of the boundary of a doraad analysis on the domain. His general
results apply in some cases admitting multiple parabolieations and also apply to other applied boundary
problems.

A central problem of local CR geometry is the embeddabilitgstion. Is an abstract CR manifold (of
hypersurface type) locally CR-embeddableGA'? Kuranishi solved the problem for strongly pseudocon-
vex CR manifolds of dimension at least nine usibrestimates. Akahori and later Webster proved the
result in dimension seven. Akahori uséd-methods, whereas Webster used integral formulas forraplvi
the 0-equation. Catlin has generalized these results when pggte finite-type conditions replace strong
pseudoconvexity. It has been long known that the result faithree dimensions, but the case of dimension
five remains open.

In the problem session Greiner proposed an approach to fpoakembeddability for CR manifolds of
dimensions at least five. This approach relies on Greinedgrmam of constructing fundamental solutions
explicitly. Previous approaches construct the embeddyragliterative procedure. In each step one solves an
approximated, equation for(0, 1)-forms on an embedded CR manifold. The solution is obtairyesbhving
a precised, equation on(0,2) forms. Use of this secondary equation requires the dimarnisicexceed
five. Greiner’'s approach, by contrast, constructs an enhbhgdd one step, by finding CR functions with
prescribed differential at one point. To do so he solvés aquation on (0,1) forms, using explicit kernels.
To make this approach work, one needs to extend Greinerlicéxpsults on fundamental solutions from
one PDE to systems of PDE.

Studying which three-dimensional CR manifolds can be erdedds a challenging part of the general
problem. Various partial results have opened new avenu@s/festigating the relationships between function
theory for pseudoconcave manifolds and CR deformatiorrihfeo the boundary.

Epstein discussed the embedding problem for abstract-tinreensional CR manifolds. He related this
question to the Dirac operator- 0" He considered the collection of embeddable CR structlgasangiven
embeddable one, and gave a necessary and sufficient condiimnely, that the restriction of the Szego
projection be Fredholm. Epstein began by describing ameida of thed-Neumann problem to a class
of Spinc manifolds. He used it to study the relative index between ¢eperalized Szegd projectors on
a contact manifold. For example, suppose that a three-diimeal contact manifold bounds two strongly
pseudoconvex complex surfaces. Then the relative indexbeagxpressed in terms of the differences of
their Euler characteristics, their signatures, and theedsions of their conomology groupt”!. In certain
cases it follows that the relative index assumes only fipiteany values among embeddable deformations
close to a given embeddable structure. In these cases thé agibeddable CR-structures is closed in the
C*-topology.

The talks by Greiner and Tie considered sub-Riemannian gggmmotivated again by the Heisenberg
group. Greiner’s talk provided many explicit relationshipetween CR geometry and geodesics. He consid-
ered second order partial differential operators giveruasssof squares of vector fields; these operators arise
for example as the Kohn Laplacian in the case of three-dimeasCR manifolds, and information about
them is therefore useful for complex analysis. Greinertlaxiplicit formulas for fundamental solutions from
geometric invariants. A new phenomenon in this sub-Rierizngeometry is the notion of the “character-
istic submanifold” attached to every poipt the locus of points connected toby an infinite number of
geodesics.

Tie's talk also evolved from generalizing some of the bad&as from CR geometry. For example, we
have seen that the anisotropic behavior of the CR geometaystrfongly pseudoconvex manifolds leads to
harmonic analysis on the Heisenberg group, which has ateifpphie algebra. For certain 3-dimensional CR
manifolds of finite type, Lie algebras of higher step arisie. discussed a specific example of step 3 and its
relations to Hamilton’s equations and the Heisenberg group

Polarization techniques play a key role whenever realygicdLinctions arise, e. g., as defining equations
of domains or as metrics on holomorphic line bundles. Thitpkd vary = andz separately lies at the foun-
dation of complex analysis. Segre introduced the varietlgsh have been used extensively by Webster and
others in diverse problems. More recently Baouendi-EbdeRfethschild developed an iterative procedure to
generate additional Segre sets. These ideas have had nemnyruparticular Ebenfelt and Rothschild proved
a CR transversality result for generic real-analytic CRnsabifolds of finite commutator type. The result
says that the germ of a finite holomorphic mapping betweerstveb manifolds is necessarily CR transverse.
In other words, in codimensio#, one obtains a result guaranteeing that a certain derévati@pping has
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rankd. The codimension one version of this result is a version efHlopf lemma. The technique of Segre
sets also provides a characterization of finite commutgfme,tdue to Baouendi-Ebenfelt-Rothschild; for a
generic CR manifold/ of codimensioni, the Segre se$.,(p) contains an open neighborhoodoif and
only if M is of finite commutator type at. Thus an issue about iterated commutators of vector fielgarta
of complexcontrol theory) has a description in terms of Segre sets atatipation.

Segre sets also arose in the talk of Christ, revealing quitet@resting connection. Christ considered
LP estimates for generalized Radon transforms. GeneralizetbiRtransforms are defined by integration
over families of submanifolds of an ambient space and aattiwith a certain geometric structure. A
basic and fascinating problem here is to relate the analgsiee underlying geometry. Part of Christ’s
talk considered this idea as a problem in continuum combiies The relationship between geometry and
analysis described here meshed especially well with theraktalks on pseudodifferential operators and
sub-Riemannian geometry.

The recent striking work of Kohn on hypoellipticity despltess of derivatives was mentioned in the
original proposal for this workshop. One talk directly caolesed this topic. Tartakoff discussed his work
with Derridj and Bove showing that Kohn's example af'& hypoelliptic operatoi;, is also locally analytic
hypoelliptic. The proof yields a simplification of Kohn’sgwf. The second order operatBg has the simple
expression

P.=LL* + (Z*L)*(z" L),
whereL is a Lewy operator of the form

o _0
L= P + ZZE'
Tartakoff also provided a generalizatiéh ,,, which is hypoelliptic in both senses but Ios‘(e;lsl derivatives.
The techniques of proof involve complicated estimationgchvievoke earlier work by Tartakoff and Treves
on global analytic hypoellipticity for operators such as #aNeumann operator.

A major advance (1981) in CR geometry was the Baouendi-Erapproximation Theorem: A CR func-
tion on a CR submanifold o€™ can be locally uniformly approximated by entire holomorphunctions.
The proof uses convolution with a complex Gaussian kern€RAfunction is of course a solution to the ho-
mogeneous tangential Cauchy-Riemann equations. Bogpgeks about global and semi-global versions of
the Baouendi-Treves result. In particular Boggess and @vidlz proved such a result for real hypersurfaces
in C™ that are graphs over a linear space of codimension one.

Animportantideain CR geometry concerns the tangentiagioamnf the inhomogeneous Cauchy-Riemann
equations. As in the case of holomorphic functions, oneinbtaformation about the solutions of the ho-
mogeneous equation by studying the inhomogeneous equiarsystem of PDE. In the smooth category
many such results have been worked out. Shaw spoke abauiésssi for the tangential Cauchy-Riemann
equations on CR manifolds with minimal smoothness. The maint is to prove Holder and? regularity
for the tangential Cauchy-Riemann equations on CR marsifofctlassC?. One application of these esti-
mates is to prove the embedding theorem of Boutet de Monveitfongly pseudoconvex CR manifolds of
real dimension at least five and of clasé.

Stolovitch considered a basic question about CR singigari€onsider a real-analytia+r)-dimensional
submanifold ofC™ having a CR-singularity at the origin. Let us restrict to dues for which one can define
generalized Bishop invariants. Such a quadric intersketgdomplex linear manifold,; = --- = 2z, =0
along some real linear sét Stolovitch discussed what happens to this intersectiaeuperturbation of
the quadric. In some cases, if such a submanifold is fornegjlyivalent to its associated quadric, then it is
holomorphically equivalent to it.

We next discuss some of the connections with algebraic gegried complex differential geometry.

Mabuchi considered three notions of stability; K-stapjEhow-Mumford stability, and Hilbert-Mumford
stability, and clarified their asymptotic relationshipse showed that asymptotic Chow-Mumford-Veronese
stability coincides with asymptotic Hilbert-Mumford sthty and that K-stability implies asymptotic Chow-
Mumford-Veronese stability. For a polarized projectivgediraic manifold with vanishing Futaki character,
Mabuchi showed that asymptotic Chow-Mumford stabilityati®de to an algebraic torus implies K-semi-
stability.
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de Oliveira considered symmetric differentials and thedmplicity of hypersurfaces if?® with appro-
priate nodal singularities. The existence of symmetritedéntials on an algebraic surfaée has a strong
impact on the algebraic and transcendental hyperboli¢ify oUnfortunately, smooth hypersurfaceshi
have no symmetric differentials. It turns out that there smooth families whose general member is a
smooth hypersurface of degrée> 6 in P3, but whose special member which is singular has many symmet-
ric differentials. By using a resolution of singularitieshis argument, he showed that the special singular
member with appropriate nodal singularities has sufficiedependent symmetric differentials to make it
guasi-algebraically hyperbolic. This situation exhilpits\ping of the cotangent plurigenera along a family.

Miyaoka provided some new examples of stable and semidthgtes bundles. Higgs bundles arise from
representations of the fundamental group of complex otafie manifolds, and are part of the active subject
of noncommutative Hodge theory. They have played an importde in gauge theory and the geometrization
of mathematical physics

Yeung discussed integrality and arithmeticity of latticegjuotients of the ball. The main result is that
a co-compact lattice in a complex two ball is integral. Healsscussed related geometric and arithmetic
problems. Although arithmetic geometry was not the prinfacys of this meeting, Yeung’s results indicate
intriguing connections between algebraic, analytic, aittirmetic geometry.

Nearly every good conference has at least one excellerthiatkat first glance, seems a bit removed from
the other talks. Often such talks profoundly impact futueeelopments in the subject, because they provide
fresh ideas. Larusson gave such a talk at this meeting, osuthject of model categories and homotopical
algebra, a subject invented by Quillen. Model categorieside an abstract setting for developing analogues
of the homotopy theory of topological spaces for variougo#iorts of objects, and they have found important
applications not only within homotopy theory itself but@ls algebra and algebraic geometry. Recently they
have appeared in complex analysis and provided a naturabptunal framework for the Oka Principle. Of
course the Oka Principle intimately connects the CauclgyylRnn equations with topology; one expects, on
a Stein manifold, to be able to do with holomorphic functiar®at one can do with continuous functions.

Many important parts of complex analysis were not expliaitientioned at the workshop, but the subject
remains finely woven, and many such topics made at least itusp@ppearance. We mention in particular
the possibilities associated with extending the ideas@fitbrkshop to infinite dimensional holomorphy, an
area thriving due to deep work of Lempert.

The workshop ended with a discussion of open problems in tongmalysis and algebraic geometry and
their connections.

There is no doubt that the workshop forged significant cotimes between complex analysis and al-
gebraic geometry. The lectures, discussions, and theosessiopen problems enabled a diverse group of
mathematicians with common interests to see first-hand bolniques from other parts of mathematics can
be used in their own research specialties. Furthermorerttenities of the BIRS helped create a lively and
stimulating environment. Research in both complex anagtsalgebraic geometry has advanced as a result
of this meeting.
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abstract

This is the final report by the organizers of the workshopridaractions between noncommutative algebra
and algebraic geometreld at the Banff International Research Station Septefel5, 2005. The work-
shop was attended by 36 mathematicians from eight diffexenntries (Australia, Canada, China, France,
Great Britain, Israel, Norway, and the United States).

This report is subdivided into three parts. In the first patimtroduce the subject matter of the workshop
and briefly discuss its history, from the beginning of thel2€tntury to the present. In the second part we
describe some of the currently active research topics winiive the use of algebro-geometric methods
in noncommutative algebra or conversely, topics in algelgaometry (and related mathematical physics),
where noncommutative algebra plays an important role. § tagsics formed the core of the scientific content
of the workshop. The third part consists of summaries ofiles given at the workshop.

Introduction

Noncommutative phenomena are perhaps as old as matheitsgitshey manifest themselves in the sim-
plest mathematical objects, such as permutations or reatriNloncommutative algebra developed into a
separate subject in the early 20th century. The initialstegken by Dickson and Wedderburn, among others,
were motivated by attempts to better understand "hypertamumbers”, such as the quaternions, discov-
ered by W. Hamilton in 1843. Subsequent steps, due to E. ARtiBrauer, H. Hasse, E. Noether, etc., came
in the context of abstract algebra, which was a rapidly dgialy subject in the 1920s and 30s. The next
phase, lasting roughly from the 1930s to the early 1980s eaidby A. Albert, S. Amitsur, N. Jacobson, I.
Kaplansky, A. Goldie, |. Herstein, among others, focused@reloping the structure theory for various types
of noncommutative rings.

196
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To illustrate how quickly one encounters open problems imcoonmutative algebra and to give the reader
a bit of a flavor of the subject, consider the Weyl algera- C{x1, x>}, given by two generators;; and
9, and one relation,
T1X9 — X221 = 1.

If we replace thel on the right hand side by any other complex numbe# 0, we will get an isomorphic
algebra; however, if we set = 0 then the resulting algebra will become the commutative pahyial ring

P = C|x1, z5] in two variables. Thus we can think dfas a noncommutative deformation®f the two have
some properties in common, hdtis considerably more complicated. One property they haeeimmon is
that in both cases we can obtain a skew field by formally inwegrall non-zero elements. Recall that a skew
field (otherwise known as a division algebra) satisfies @lakioms of a field (i.e., one can perform the four
arithmetic operations, and all the usual associativeridigive, etc. rules hold) except that multiplication is
not required to be commutative. Of course, if we formallyarall non-zero elements in the polynomial ring
P = CJz1,z2], the skew field we obtain will be the rational functi@{x1, z2) in two variables. If we do
the same thing tel, we will obtain a noncommutative skew field, called the Weyl skew field. There are
many proper skew subfields C D isomorphic toD itself. Given one sucl¥, we can viewD as anS-vector
space in two different ways, with scalar multiplication dre tleft or on the right. It is thus natural to ask
whether or not these two vector spaces have the same dimeii$is seemingly simple question is, in fact,
a long-standing open problem. A more general question alomgame lines is whether or not the left and
the right dimensions ofl over B are the same, wher is an arbitrary skew field an8 is a skew subfield.
This question was posed by E. Artin and settled in the negétyvP.M. Cohn [25] and A.H. Schofield [44].
Returning to the Weyl skew field), note that much is unknown here. If the left and right dimensiof D
over S turn out to be the same, what invariants distinguisifirom the examples constructed by Cohn and
Schofield? On the other hand, if the right and left dimensamedifferent (for some), is there an effective
way to compute them or to determine whether or not they arsahee for a givery?

In last 20 years the subject of noncommutative algebra has tpidly developing in several different
directions. Once common theme has been the increasingrpgoetof algebro-geometric methods into the
subject and conversely the increasing use of noncommataiig theory within algebraic geometry and re-
lated mathematical physics. One important outgrowth of thieraction is an entirely new research area,
called noncommutative algebraic geometry. Recall thatafrtbe foundational steps in the early develop-
ment of (commutative) algebraic geometry was the reatindtiat every commutative rin§ can be thought
of the the ring of regular functions on a suitably defined spaamely,X = Spec(R). This dichotomy
is of fundamental importance in commutative ring theory: gagsing fromk to X, one can often trans-
late purely algebraic questions into problems about thengdy of X, in a setting where both geometric
tools and geometric intuition are available. Noncommugagilgebraic geometry is motivated by an attempt
understand noncommutative rings in a similar manner. @ghy this turned out to be somewhat easier to
do with graded rings, using methods derived from projecfie¢her than affine) algebraic geometry. The
reason is that affine algebraic geometry tends to rely omiqaks like localisation that are rarely available
in the noncommutative setting, whereas the more global ateborical approaches to projective geometry
can and have been generalized. Another goal of noncommweitdtiebraic geometry is to build up and study
“noncommutative algebraic varieties” or “noncommutaebemes”. In addition to clarifying the structure
of noncommutative rings they are of independentinterasis$ may have interesting and unexpected applica-
tions (e.g., in mathematical physics). At this point we atber far from fully realizing these goals. However,
the methods developed in noncommutative projective gegrhate already found a number of applications;
in particular, they have been used to solve several outstgioghen problems in noncommutative ring theory
[5,6,4,7,8].

The purpose of the workshop was to discuss various aspetis afteraction between noncommutative
ring theory and algebraic geometry, including the latesettgpments in noncommutative algebraic geometry.
In particular, the following topics were discussed.

Areas of recent activity

We will now outline several areas of interaction betweerehigic geometry and noncommutative algebra,
where there have been interesting new developments intrgeans. Most of these developments were
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discussed during the workshop.

Foundation of noncommutative algebraic geometry

One important question in the field concerns the foundattdn®ncommutative algebraic geometry. For
example, what is “the right” axiomatic definition of a noncmntative space? The approach usually taken in
(commutative) algebraic or differential geometry is totfitsfine what a space of the desired type should look
like locally, in a sufficiently small open neighbourhood @ith point, then specify what kind of transition
functions are allowed to "glue” these local charts togethieor example, in a differentiable manifold, a
sufficiently small neighbourhood of every point looks like @pen ball inR”, with differentiable transition
functions between these local charts. A scheme looksSike:(R) in a neighbourhood of each point, with
regular transition functions between the charts. As wetpdimut above, it is not possible (or at least has
not been possible so far) to mimic this approach for noncotative spaces, because it ultimately relies
on the assumption that one can easily pass to a smaller opsetsaf a given point. In the commutative
setting this is done through the technique of localizatiom,(inverting certain elements in a ring), which
is usually not available in the noncommutative setting. Ebecessful approaches so far have taken the
global point of view from the very beginning. Here is a pdrlist of papers addressing this subject. M.
Artin [3], M. Artin and J.J. Zhang [9], M. Kontsevich and A. Benberg [34], Y.I. Manin [37], A. Rosenberg
[39, 40, 41], M. Van den Bergh [52], F. Van Oystaeyen and Asthoren [54], A.B. Verevkin [55, 56], V.
Ginzburg [31], W. Crawley-Boevey, P. Etingof and V. Ginzyp{27]. One purpose of having many different
approaches to noncommutative spaces is to understand themdifferent points of view. The foundations
of noncommutative projective geometry that were estabtidhy A.B. Verevkin [55, 56] and M. Artin and
J.J. Zhang [9] have been largely accepted but this is judtelganing of this theory, and much foundational
work remains to be done.

Finite-dimensional division algebras of transcendence degree 2.

Division algebras (or skew fields) that are finite over theitces have been studied since the beginning of
the 20th century. These algebras play an important rolegielaihic geometry, the theory of algebraic groups,
algebraic number theory and algebraietheory. Some of the most exciting recent developmentsgfitid
have to do with algebras defined over function fields of seda®kecall that every finite-dimensional central
simple algebral/K can be written in the formal = M,,(D), whereD is a division algebra with centrg’.
The indexd of A is the degree oD, i.e., v/dimg (D). The exponent ofd is the smallest positive integer
e such thatA®¢ is a matrix algebra oveK. It is known thate < d and thate andd have the same prime
divisors. If K is the function field of a surface it has been long conjecttinedle = d; this is sometimes
called the period-index problem. Special cases of thiseminje were proved by M. Artin and J. Tate [2] in
the 1980s, but a full solution was obtained only a few yearstagJ.A. de Jong [28]. Similar results in the
context of arithmetic surfaces were proved earlier by Daltnsan [42, 43] (who spoke on this topic at the
workshop), and subsequently strengthened by M. Liebli6h [3

Another important open problem in the theory of central davglgebras is the Albert conjecture. Recall
that a cyclic algebra of degreeover a fieldK, containing a primitiventh root of unity¢,, is a K-algebra
given by two generators, andy and three relations,

2"e K, y"eK, and xzy=(yyz.

Albert’s conjecture asserts that every division algebrarohe degree: = p is of this form. This conjecture
(which might or might not been stated by Albert), has moédanuch of the research in the theory of central
simple algebras, going as far back as perhaps the 1930s.

In a recent preprint, M. Ojanguren and R. Parimala [38] uskfarther develop the ideas of M. Artin,
D.J. Saltman and J.A. de Jong, to prove Albert’s conjectaralivision algebras of prime degree over the
function field K of a complex surface. The details of this argument are silhdp checked by the experts.
If the proof holds up, it is believed that a similar method ba&nused to show that the abelian closurdsof
has cohomological dimensidn (Here K is the function field of a complex surface, as above.) Notettiea
inequalitycd(K,») < 1is currently only known in a few cases; in particular, #6r= a number field, or a
p-adic field by class field theory and féf = C((X))((Y)) by [26, Theorem 2.2]. For a related conjecture
of Bogomolov, see [11, Conjecture 2].
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Birational classification of noncommutative surfaces.

Division algebras that are infinite dimensional over th&ntces appear naturally in noncommutative
algebra and noncommutative algebraic geometry. Simitarlhe commutative situation, the classification
of division algebras of transcendence degree 2 would bevalguit to the birational classification of integral
noncommutative projective surfaces. Hence it is impor@amtork out the classification of division algebras
of transcendence degree 2. M. Artin proposed a conjectigteofidivision algebras of transcendence degree
21in [3]. All algebras on this list are known to be of transcence degree 2; the conjecture is that there are no
others. If Artin’s conjecture is proved, it will have manya@ig consequences in noncommutative ring theory.

Quantum projective spaces.

QuantumP?2s have been classified by M. Artin, W. Schelter, J. Tate and &h den Bergh [4, 7, 8].
They are well understood. So it is natural to ask if we cansifiagiuantumP?s, or more generally quantum
P"s foralln > 3. QuantumP”s are fundamental objects in noncommutative algebraic gggmMany
interesting noncommutative spaces can be embedded inte gopemtumP™. On the other hand, it is not
clear if every noncommutative space can be embedded intatgud"s. This problem is not solved even
for quantum or noncommutative K3 surfaces and the quantuab&#au 3-folds. The reason for this is that
quantumPs are not fully understood.

The complete classification of quantd®i's is an extremely difficult project. An algebraic approach to
constructing quantur®”s is to form the noncommutative schefeoj A where A is a noetherian Artin-
Schelter regular connected graded algebra of global diimens+ 1. Therefore the algebraic form of the
above mentioned question is the classification of noethgAatin-Schelter regular, connected graded al-
gebras. Researchers have been studying many specialsctdgseetherian Artin-Schelter regular algebras
of global dimension 4. One well-studied example is the Skiyalgebra of dimension 4, introduced by
Sklyanin [50, 51]. Artin-Schelter regular algebras of dims®n four have been extensively studied by many
researchers (S.P. Smith, J.T. Stafford. T. Levasseur, IBrugn, M. Van den Bergh, J. Tate, M. Vancliff, B.
Shelton, K. Van Rompay, L. Willaert, T. Cassidy, D. Steplem®.-M. Lu, J. Palmieri, Q.S. Wu and others).
in recent years. This gives us hope that a complete clag®ificaf quantumP?®’s may be in sight. Note
that quantunP?’s will provide new examples of division algebras of transence degree 3. These division
algebras are likely to play an important role in noncomniwggirojective geometry.

Combinatorial noncommutative algebra  The study of finitely generated algebras like the Weyl
algebra, enveloping algebras of finite dimensional algetBalyanin algebras is greatly aided by the use of
combinatorial techniques that go back to Shirshov, Golati@mafarevich, Gelfand and Kirillov, and others.

The first real issue is to determine when a finitely generakgebaa (or a module over it) is actually
finite dimensional. In fact, Golod and Shafarevich founditedon for infinite dimensionality of algebras
involving generators and relations that led to an example fifitely generated nil algebra (an algebra in
which every element is nilpotent) that is infinite dimensibnThis settled the Kurosh problem for algebras
by showing that not every finitely generated algebra thalgiekaaic over its base field is finite dimensional.
This example also gives immediately a counterexample t8thaside problem for groups.

Until very recently, the Golod -Shafarevich example wassdme sense, the only such example. These
rings all had exponential growth. This past year, Tom Lenagal Agata Smoktunowicz produced examples
of finitely generated nil algebras with polynomial growth.

Let A = k[V] be a finitely generated algebra, whéfes a finite dimensional generating subspace of the
algebra over the field, and letd(n) bedim(V™), whereV™ is the subspace generated by all products of n
or fewer elements of . The Gelfand-Kirillov dimension GKA) of A, is defined as

GK(A) = limsup log,, (d(n)).
This definition is independent of the choice of the genegasiet,V. For example, the GK dimension of
the commutative polynomial ring in variables isn; a free algebra has infinite GK dimension; the GK
dimension of a finite dimensional algebra is zero; a finitetpnerated polynomial identity(Pl) algebra has
finite GK dimension; given any real numbet, greater than or equal to two, there is a finitely generated PI
whose GK dimension is. Remarkably, Victor Markov has shown that any finitely geted subalgebra of
matrices over a commutative algebra has integral GK dino@nsi
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In general, it 's not known when finitely generated algebmagehintegral GK dimension even if they're
noetherian. An important recent positive step is Smoktucog/result that a finitely generated graded in-
tegral domain cannot have GK dimension properly betweenamathree. The conjecture is that finitely
generated graded domains all have integral GK dimension.

Noncommutative lwasawa algebras

Noncommutative lwasawa algebras form a large and inteigestass of complete semilocal noetherian
algebras, constructed as completed group algebras of @bppadic analytic groups. Thus, lgtbe a prime
integer, letZ,, be thep—adic integers, and l&t be a compagp—adic analytic group, so (equivalently - see
[29]) G is a closed subgroup 6L ,(Z,,) for somed > 1. Then thelwasawa algebra of7 is

Ac = lmZ,[G/N],

where the inverse limit is taken over the open normal suljggduof G, (which have finite index ii# by the
compactness hypothesis). Closely related ¢ois its epimorphic imag€, defined as

Q¢ = lmF,[G/N],

whereF,, is the field ofp elements.

These definitions, and the fundamental properties of thags,rwere given in M. Lazard’s monumental
1965 paper [35]. In particular, Lazard proved thatontains an open normal subgraipnowadays termed
auniformsubgroup, whose lwasawa algebra has a particularly smooth fThus, forU uniform, Qs is the
J—adic completion of the ordinary group algeli#al by its augmentation ideal. SoQy is filtered by the
powers ofJ{);;, and the associated graded algebra is a (commutative) golghF, —algebra. It follows by
standard filtered-graded technology that is a complete noetherian Auslander-regular scalar localaio.
Similar remarks apply t@\;;, and - thanks to the fact th&; [resp. A¢] is a crossed product dd;; [resp.
Ay] by the finite group& /U, similar conclusions can be drawn regardiag andA¢.

In the twenty years from 1970 lwasawa algebras were littielistl. Interest in them has been revived
by developments in number theory over the past fifteen ysaesfor example [24]. Building on the filtered
algebra and crossed product techniques outlined abosaaty known when Iwasawa algebras are prime,
semiprime, domains, and when they have finite global dineensBounds have been found for their Krull
dimension, and information obtained about their centrestalls about these results - and much else besides
- can be found in the survey article [1].

The emerging picture is of a class of rings which in some wag& kimilar to the classical commuta-
tive lwasawa algebras, (which are rings of formal poweresei finitely many commuting variables over
the p—adic integers), but which in other respects are very diffefeom their commutative counterparts.
And while some progress has been made in understandingihgse many aspects of their structure and
representation theory remain mysterious. A large numbepeh questions are discussed in [1].

Cluster algebras and cluster categories.  Cluster algebras were invented by Fomin and Zelevinsky
[32, 33] in 2000 as a tool to approach Lusztig's theory of caocal bases in quantum groups and total
positivity in algebraic groups. Since then, cluster algstitave become the center of a rapidly developing
theory, which has turned out to be closely related to a lapgetsum of other subjects, notably Lie theory,
Poisson geometry, Teichmiuller theory, integrable systdgebraic combinatorics and polyhedra, and quiver
representations. Recent work by many authors has showthit&st link is best understood using the cluster
category, which is a triangulated category associated evigny Dynkin diagram. A partial list of papers are
[10] by Assem, Brustle, Schiffler and Todorov, [12, 13, 18, 16, 17, 18] by Buan, Marsh, Reineke, Reiten
and Todorov, [19, 20] by Caldero, Chapoton and Schiffler, P2 by Caldero and Keller, [30] by Geiss,
Leclerc and J. Schrder. The combinatorics of clusters @svshto be tightly related to tilting objects in
cluster categories. There have been many new questiongateatiby the study of cluster algebras [57] and
cluster categories and it is expected that there will be raotwities in this direction. Derived categories or
triangulated categories have been used more and more inanaay. The recent development of the cluster
category is a good example of such.

In the workshop Keller gave a talk on some recent developsremd present the cluster multiplication
theorem, obtained in his joint work with Caldero [21, 22],iahhdirectly links the multiplication of the cluster
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algebra to the triangles in the cluster category using adlgdbra approach. Reiten gave a talk based on her
recent work with lyama about algebras of global dimensioh@ne its bounded derived category of the finite
length modules is Calabi-Yau of dimension 3. This deriveiggary has connections with cluster algebras
and the noncommutative crepant resolutions of Van den Bergh

Noncommutative stacks. The noncommutative phenomena of algebraic stacks (i.¢in Atacks
and Deligne-Mumford stacks) has been observed for manysyedsing some ideas from Connes’ non-
commutative geometry, Chan and Ingalls recently definedremmmutative coordinate ring associated to
a Deligne-Mumford stack with a finite flat scheme cover [23hisThas been extended to the case of Artin
stacks by Behrend. There are many moduli problems suggeaktihnoncommutative algebras are the correct
algebraic structure which describe the underlying geamgpaces. The noncommutative crepant resolutions
of Van den Bergh [53] is a good example. Most of noncommuaigebras appearing with stacks are finite
over their centres.

Summaries of selected talks

Speaker: Jacques Alev (Universit'e de Reims)
Title: Poisson trace group of certain quotient varieties.

Summary: Let V' be a symplectic space of dimensim, G a finite group of symplectomorphismsof
X = V/G the quotient varietyA,, the Weyl algebra of index and AS the invariant algebra which can be
seen as "noncommutative functions” ovEr hence as a quantization &f. A standard theme is to compare
all possible algebro-geometric invariants of the (ususithgular) Poisson variet¥ and of the algebral¢’:
Poisson (co)homology of, Hochschild (co)homology ofl$, desingularizations ok, etc. Alev presented
his computation oflim / Py(X) in certain cases and compared itdion Ff Hy(AS).

Speaker: Daniel Chan (University of New South Wales)
Title: Minimal resolutions of canonical orders and McKay corregpence.

Summary: Recently, the Mori program was adapted to orders over sesfaén particular, there are
noncommutative generalisations of discrepancy, canbsiivgularities and resolutions of singularities. Chan
reviewed some of these concepts and showed how minimalutestd of canonical orders can be written
down explicitly. We also discussed McKay correspondencéhfese canonical orders. This talk was based
on joint work with Colin Ingalls and Paul Hacking.

Speaker: William Crawley-Boevey (University of Leeds)
Title: Noncommutative Poisson structures

Summary: This talk described a notion of Poisson structures on nomeatative rings which seems to
be better than the straightforward generalization of Poissackets to such rings. The speaker also discussed
some open problems in this area.

Speaker: Victor Ginzburg (University of Chicago)
Title: Double derivations and cyclic homology.

Summary: Ginzburg described a new construction of cyclic homologgpmfssociative algebré that
does not involve Connes’ differential. His approach is bdase the compleX2 A, of noncommutative dif-
ferential forms on A, and is similar in spirit to the de Rhanpagach to equivariant cohomology. The
cyclic homology is defined as the cohomology of the total clexp(QA)[t],d + ¢ - ), arising from two
anti-commuting differentialsy andii, on QA of degreest+1 and—1, respectively. The differential, that
replaces the Connes differentid| is the Karoubi-de Rham differential. The differentidhat replaces the
Hochschild differentiab, is a map analogous to contraction with a vector field. This m&ap has no com-
mutative counterpart.

Speaker: Ken Goodearl (University of California Santa Barbara)
Title: Quantum matrices and matrix Poisson varieties.
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Summary: Goodearl discussed the relations among prime and primdeas of the generic quantized
coordinate ringd = O4(M,(C)), Poisson prime and Poisson primitive ideals of the claksicardinate
ring R = O(M,(C)), and symplectic leaves in the Poisson varigfy(C). The Poisson algebrA is the
“semiclassical limit” of A, and so it is conjectured that there should be a bijectiowden the primitive
spectrum ofA4 and the Poisson primitive spectrum Bf hence also a bijection with the space of symplectic
leaves inM,,(C). All of these bijections should be equivariant with resgechatural actions of the torus
H of pairs of invertible diagonal matrices. Consequentlg,thinvariant prime ideals oft should naturally
match up with theff-orbits of symplectic leaves inf,,(C). Specifically: EachH -invariant prime ofA is
conjectured to be generated by a set of quantum minors, &se tuantum minors should match minors
defining the closure of a correspondifzorbit of symplectic leaves id/,,(C). In recent joint work with
K.A. Brown and M. Yakimov, Goodearl determined these orbitsymplectic leaves, and described sets
of minors defining their closures. These results lead toipeemonjectures concerning generating sets for
H-invariant prime ideals i, which were discussed in the talk.

Speaker: Birge Huisgen-Zimmermann (University of California SaB@rbara)
Title: Top-stable degenerations of finite dimensional repretenta

Summary: Given a finite dimensional representafidf a finite dimensional algebrd, two hierarchies
of degenerations a¥/ are analyzed: the poset of those degeneratiofig efhich share the top//.J M with
M — hereJ denotes the radical of the algebra — and the sub-poset oé thbh share with\/ the full
radical layering(.J'M/J""1 M), _ . In particular, the speaker addressed the existence oeptop-stable
or layer-stable degenerations — more generally, the sizbe @orresponding posets including bounds on the
lengths of saturated chains — as well as structure and fitasigin. Here are two sample theorems to indicate
the level of detail one can draw from the proposed geomegtiing. The most transparent case is that of
a squarefree toff". In this situation, two numerical invariants (with quitetmal intuitive interpretations)
govern the size of the poset of top-stable degeneratiois,afamely:

e The difference — s, wheret is the number of simple summands in the top\éfands the number of
indecomposable summands/f, and

o the differencen = dimyx Hom (P, JM) — dimyx Hom (M, JM), whereP is a projective cover of
M.

Theorem A. Top-stable degenerations. Supposel’ = M/JM is a direct sum of pairwise non-
isomorphic simpled-modules and a projective cover of . Write M in the formM = P/C withC' C JP.

(1) The lengths of chains of proper top-stable degeneratibf/ are bounded above by + ¢ — s.

(2) Existence:M has a proper top-stable degeneration if and only i t — s > 0, if and only if either
M fails to be a direct sum of local modules, or efsdails to be invariant under homomorphisiis— J P.

(3) Unique existenceM has a unigue proper top-stable degeneration if and only i a direct sum
of local modules andn = 1. If m = 0 andt — s = 1, M has precisely two distinct proper top-stable
degenerations. For all values+ ¢ — s > 2, there are infinitely many top-stable degenerations in ggne

(4) Bases: W.l.o.g.4 is a path algebra modulo relations, aRdx direct summand ofl. If M’ = P/C’
is a top-stable degeneration f, thenM andM’ share a basis consisting of paths in the underlying quiver.
That is, there exists a sét of paths such thafq + C' | ¢ € B} is a basis fodll and{¢+ C’ | ¢ € B} isa
basis forM’.

(5) The maximal top-stable degenerations\éfalways possess a fine moduli space, classifying them up
to isomorphism. It is a projective variety of dimension atsnaax{0, m + (¢t — s) — 1}.

(6) The casen = 0: M has only finitely many top-stable degenerations, and themagtion order
coincides with theZzt-order.

As for proper layer-stable degenerations in the case ofrefrga top: IfM is a direct sum of local
modules, there are none. Otherwise, “huge” hierarchieayartstable degenerations may arise.

As a by-product, the theory provides a method for computiedap-stable degenerations from quiver and
relations ofA and a presentation df/. Hence, there is a rich supply of examples. Huisgen-Zimraarm
displayed three examples of particular interest and desdrthe conjectural classification in the general
situation in terms of these specific instances.

The lecture ended with a sample of the theory for the mordwedbsituation of an arbitrary top:
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Theorem B. Suppose\//JM = S ¢ ... @ Si», whereSy, ..., S, are the isomorphism types of the
simple left A-modules (corresponding to a full set of primitive idempdse; of A).

ThenM has no proper layer-stable degenerations if and only if

(@) M is a direct sum of local modules, say = @, EB;;l M,;, whereM;; = Ae;/C;j.

(b) dimHom (P, JM) = dimHom (M, JM), and

(c) For each, theC;; are linearly ordered with respect to inclusion.

Speaker: Tom Lenagan (University of Edinburgh)
Title: Prime ideals and the automorphism group of quantum matrices

Summary: This talk was based in joint work in progress, ifatmiration with Stéphane Launois. In work
with Launois and Rigal, the speaker has recently shown Heatilgebra of quantum matrices is a UFD in
the generic casey(is not a root of unity), in the sense that each height one pignpeincipal, generated by
a normal element. The present work starts by establishimgeaion to decide when the algebra of quantum
matrices is primitive. This is linked to the description bétheight one primes since each height one prime
is either invariant under the action of the natural torus #ttés on quantum matrices, or it is in the so-called
O-stratum. The algebra of quantum matrices is primitiveigsedy when there is no height one prime in the
O-stratum, and, in this case, there are only a finite numbkeigiht one primes, each one invariant under the
torus action. For example, the algebra of 2x3 quantum nestigcprimitive. Next, the speaker considered the
automorphism group of quantum matrices by studying th@adf this group on the prime spectrum, and, in
particular on the height one primes. The situation is muchersomplicated in the non-primitive case, where
there are infinitely many height one primes, than in the ghmicase, where there are only finitely many
primes. In the nonsquare case, Lenagan described the ayoista group. In the square case the situation
is not yet fully resolved, but there are partial results.

Speaker: Valery Lunts (Indiana University)
Title: Motivic measures and zeta functions.

Summary: A "motivic measure” is a ring homomorphisi[V] — A from the Grothendieck ring of
varietiesK [V] to an arbitrary ringA. Lunts considered two interesting motivic measures. Tis¢ dine is
related to stable birational geometry of varieties and #w®sd — to derived categories of coherent sheaves.
He also discussed a counterexample to a conjecture of Kep@anthe rationality of motivic zeta function.
This lecture was based on joint work with Michael Larsen.

Speaker: Daniel Rogalski (University of California San Diego)
Title: Birationally commutative surfaces are naive blow-ups

Summary: The aim of the work presented in this lecture isdssify a wide class of graded rings of GK-
dimension 3 in terms of geometry. We say that a connectecedrddmainA is a birationally commutative
if its graded ring of fractions looks lik&[t, t{ — 1); o] where is a commutative field. The main theorem
states that if4 is such a domain which is noetherian, generated in degreedlwih GK dim A = 3, then
A can be described as a naive blow-up of some twisted homogsmeordinate ring of a surface. This is an
analog of the commutative result that all surfaces in a ghieational class are related by blowing-up. This
talk was based on joint work with Toby Stafford.

Speaker: David Saltman (University of Texas at Austin)
Title: Brauer groups of function fields of surfaces.

Summary: The goal is to take a second look at the Brauer group of fundiglds of surfaces. One
aspect is to generalize, in a way, a result proved for p-agtieas. LetK' = F'(.S) be the function field of a
regular surface (not necessarily over a field but excelledtNoetherian). Letr € Br(K') be a Brauer group
element of order a prime unequal to any residue characteristics. Assutnbas a primitivey root of one.
Then we state a geometric obstruction on the ramificationdaxf « to its being represented by a division
algebra of degreg. Absent this obstruction, we show that there is a cyclicresitsn of degreg which splits
all the ramification ofx. In another direction, we recall and redevelop fi¢obstruction to ramification data
coming from a Brauer group element. We want further propsiti this obstruction, the ultimate goal being
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to make it computable. Along the way, we consider the caseevbie= Spec(R) and R is a regular local
domain (of dimension 2 etc. ) with henselizatiBfi. We also consider the function field = ¢(R), and the
relationship betweeBr(K) andBr(K") for K" = q(R").

Speaker: Paul Smith (University of Washington)
Title: Noncommutative covers of weighted projective varieties.

Summary: LetAd be a commutative graded ring generated by a finite numbeeofetts of positive de-
grees and leX,,. = Proj,.A be the Artin-Zhang Proj, and = Proj(A) the usual commutative weighted
projective variety. There is a map: X,,. — — > X in the sense of noncommutative geometry. Moreover,
X, is a quotient stack with coarse moduli spa€eand f "is” the natural map of stacks. We study,..
and the mapf from the point of view of noncommutative geometry. Oftéris a birational isomorphism,
and oftenX can be singular whileX,,. is smooth so functions as a sort of noncommutative resaiuifo
X. Locally X,,. is covered by affine spaces that have coordinate rings thatkaw group rings for finite
cyclic groups over commutative rings. We describe a stizaf noncommutative algebras ofi such that
Mod(X,.) = Qcoh(B). The case wherel is the polynomial ring on two generators of weights 4 and 6
was used to illustrate some of the ideas. This is an impoeeaunple because thef, . is the compactified
moduli stack for pointed elliptic curves. We give an easyobi(n the spirit of noncommutative geometry)
of Mumford’s result that the Picard group of the uncompaatifinoduli stack isZ/12.

Speaker: Michaela Vancliff (University of Texas at Arlington)

Title: Using an Algebro-Geometric Method to Construct Clifforda@tumP?s with a Predetermined Finite
Point Scheme.

Summary: The classification of generic quantBis (generic regular algebras of global dimension four)
has been hindered by the lack of sufficiently generic exasnpleguantuniP?s on which to formulate and
test conjectures. Candidates for generic quarisare regular algebras of global dimension four that have
a finite point scheme and a one-dimensional line scheme,uolt @lgebras are rare in the literature. One
possibility for constructing such an algebra is to buildytdeforming a regular Clifford algebra of global
dimension four that has a finite point scheme.

Speaker: Nikolaus Vonessen (University of Montana)
Title: Group actions on central simple algebras

Summary: Suppose an algebraic grogpacts on a central simple algebfeof degree: (and character-
istic 0). The goal is to be able to answer the following questia about the action:

(a) IsA¢ a simple algebra, and if so, what is its degree? Its center?
(b) DoesA have aG-invariant maximal subfield?

(c) Can theiG-action on the centeZ (A) be extended to a splitting fieltl, and if so, what is the minimal
possible value ofrdeg ;( 4y L?

It turns out that under mild assumptions dnand the action, one can obtain much information along
these lines by using techniques from birational invariaebty (i.e., the study of group actions on algebraic
varieties, up to equivariant birational isomorphisms).eTalk illustrated the results with the example of
the natural action of7L,,, on the universal division algebfidD(m,n) generated byn genericn x n-
matrices. In this case the invariants form a division sublailg of degree if and only if assuming: > 3 and
2 < m < n? — 2. Related methods also make it possible to give an asymstiimate of the dimension of
the space of Sj,-invariant homogeneous central polynomig{y, . . ., X,,,) for n x n-matrices. This talk
was based on joint work with Zinovy Reichstein.

Speaker: Amnon Yekutieli (Ben Gurion University)
Title: Deformation quantization in algebraic geometry.

Summary: The goal is to study deformation quantization of the strieeheal) x of a smooth algebraic
variety X in characteristi®). The universal deformation formula of Kontsevich givegris anL., quasi-
isomorphism between the pullbacks of the DG Lie algelfias, x and D, x to the bundle of formal
coordinate systems of . Using simplicial sections one obtains an induced twidted quasi-isomorphism
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between the mixed resolutiodigiz(Tpory, x ) andMiz(D,ory, x ). If certain conomologies vanish (e.g Xf

is D-affine) it follows that there is a canonical function fronetbet of gauge equivalence classes of formal
Poisson structures oK to the set of gauge equivalence classes of deformationigatiohs ofOx. This is

the quantization map. Whex is affine the quantization map is in fact bijective. This isségebro-geometric
analogue of Kontsevich’s celebrated result.
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Gary Margrave (University of Calgary)

Objectives

The primary objective of this workshop was to bring togetheth theoretical researchers and the more
applied practitioners in time-frequency analysis for astorctive exchange of ideas. There are many very
advanced concepts in the recent theoretical publicatiotiss field but most of these have had little impact
to date upon applications to real world signals. The orgasiinvited some of the top theoreticians in
time-frequency analysis to interact with mathematicalgitigts and engineers, particularly such as those
in geophysics and communications engineering where nibmséay filtering is a fundamental tool. The
workshop provided a format with time for formal presentati@s well as unstructured time for interaction
and collaboration.

This workshop served as a the capstone for the special senibkidern Methods of Time-Frequency
Analysis which was held at the Erwin Schrodinger Institut&/ienna during spring 2005. The ESI session
brought together a wide spectrum of scientists from Eureggle the following BIRS workshop involved
these top researchers with the North American contingehé BSI special semester was organized by Fe-
ichtinger, Grochenig, and Benedetto; two of whom are atg@oizers for this proposal. More information
on the ESI workshop is available dtttp://www.univie.ac.at/NUHAG/ESI05/index.html

A secondary objective is to encourage long-term collabandietween the theoreticians and the applied
researchers. While the former often have a deeper unddistpof the potential of time-frequency analysis,
the latter have access to physical data and are in touch watttipal necessities such as computational
limitations.

Overview of the Field

Time-frequency analysis finds its roots in Fourier analystsere a signal in time can be analyzed in the fre-
guency domain as a sum of sines and cosines. Originally oleedlby Fourier to solve an open problem in
heat flow on a plate, the techniques of Fourier analysis haslewide application in such diverse areas as par-
tial differential equations and mathematical physicsnalgrocessing and electrical engineering, geometry
and Sturm-Liouville problems, probability theory and Braan motion, to name just a few.
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Ironically, Fourier’s new ideas and techniques were rddio@ugh that they forced a reassessment of
the Calculus, and ushered in a new mathematical era of an#ify could properly deal with infinite sums,
convergence issues, unusual functions that are contiruduakfferentiable nowhere, and other important dif-
ficulties. So while his work lead directly to the theoretiaetas of Fourier and Harmonic analysis, indirectly
Fourier’s ideas are responsible for the development of th&ifihing areas of real and complex analysis,
measure theory, functional analysis, and more.

The development of Fourier analysis and exploitation offttfedorization of translation-invariant linear
systems (convolution integrals) by the Fourier transfoan tead to a rich field with many practical appli-
cations, particularly in mathematical physics (PDEs) amgireering (signal processing, vibration analysis,
and systems theory). However, there is growing recognttian the ever more complex applications abso-
lutely necessitate the inclusion of nonstationary systenamalysis and filtering techniques. Extensions of
Fouriers concepts to the nonstationary setting are nurseand include: the Gabor transform, the wavelet
transform, the Wigner transform, pseudodifferential apans, Fourier integral operators, and more. While
most of these extensions have origins within quantum théasmow true that applications abound in many
other fields such as geophysics and engineering.

The essential idea in all these extensions is that ratharahalyzing signals only in the time domain, or
only in the frequency domain, we instead can make a jointesgrtation of the signal in a time-frequency
domain. A musical score is a excellent analogy of this anmslysn entire piece of music (signal) can be
represented as a collection of notes (frequencies) thaplayed at particular instances of time. In this
domain, it is elementary to identify particular notes, nipdhem, remove them, or even rearrange them.
In real applications such as medical imaging or cellular camications, these time-frequency components
may be identified as noise to be removed, features to be f@dehtind enhanced, or encodings of complex
data messages to be transmitted and received. Modifyingjginal is a filtering operations; since the effects
of the filter changes with time and frequency, this is calledastationary filter.

Essential in all applications is choosing a suitable timetfiency representation of a signal, whether that
be through a short time Fourier transform, a Gabor transfawavelet transform, or via a pseudodifferential
operator. Then choosing an appropriate operator to madégsignal, be that a Gabor multiplier, a pseudod-
ifferential operator, or some other form of time varyinggar operator. Questions of achievability, stability,
and computational speed are all critical issues.

Theoretical work includes identifying appropriate functispaces that represent signals well in the time-
frequency domain (the modulation spaces), identifying pivagp properties of operators on these spaces,
guestions about choices of bases and frames for such sgaksnany of the analogous results that are
common in general Banach space theory and its applications.

Recent Developments and Open Problems

This is an exciting momentin time-frequency analysis agtikery is evolving rapidly while new applications
are also constantly emerging. Similar to the trend fromdirie nonlinear problems, the move from stationary
to nonstationary leads to a richer solution set but at thees@ of greater mathematical and computational
complexity. Stationary filtering has been an important algrocessing tool in industry for many years but
today we have an emerging understanding of nonstationgayitfify that promises to have a immense impact
on signal processing as well as the associated modellinigeoffetal world. The rapid increase of available
computing power makes the implementation of complex naiostary filters possible today where they were
only concepts a short while ago.

Examples of recent concrete applications in nonstatiofiléey theory include the development of Gabor
deconvolution and Gabor wavefield extrapolation for seisimiaging, nonstationary filtering in cell phone
networks, nonstationary noise reduction, modelling oftigig variable quantum systems, coherent state
techniques, and filtering and analysis in commercial musidipction. In addition, any physical system that
can be modeled as a variable coefficient partial differéetiation can be re-expressed as an equivalent
nonstationary filter problem.

Many of the open problems are deep questions in the analfsismotions, including such things as
optimal choices of base functions for frames, linear inaelemce of time-frequency translates of base func-
tions, properties of modulation spaces and linear opesatoithese spaces, and the representation of linear
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operators or nonstationary filters via pseudodiffereiedrators and Gabor multipliers.

Presentation Highlights

The talks concentrated on four or five general areas, botirétieal and applied. Research questions about
frames, whether in the Gabor, wavelet, shearlet or otheiedomains, were addressed by Bodmann, Four-
nasier, Heil, Jorgensen, Kutyniok, Larson, and Torresdihie Gabor transform, and representing nonsta-
tionary filters through Gabor multipliers and pseudodéfgral operators, were addressed by Ali, Balazs,

Feichtinger, Lamoureux, Okoudjou, and Strohmer. Loc#braoperators were addressed by Groéchnig,

Oliaro and Toft. Applications considered included seisarid medical imaging, signal processing, deconvo-

lution, and psychoacoustics; talks on applications werergby Balazs, Casazza, de Hoop, Fishman, Gibson,
Hermann, Hlawatsch, Klauder, Margrave, Mitchell, Pfan&acchi, Shen and Stolk.

Details of individual talks are given below.

The Talks

SPEAKER: Syed T. Ali

TITLE: A Suggestion for a Vectorial Gabor Transform

ABSTRACT: Using some recent results on coherent statesmagix and C*-algebraic domains, a possible
candidate for a vectorial Gabor transform will be preseneth a transform is expected to have applications
to signals with additional (internal) degrees of freedonom® interesting holomorphic properties of such
transforms will be discussed.

SPEAKER: Peter Balazs

TITLE: Gabor Multipliers with Application to Psychoacoicst

LINK-Preprint: http://www.kfs.oeaw.ac.at/xxl/dissation/dissertation.pdf

ABSTRACT: In this talk the basic ideas of the PhD thesis 'Ragand Irregular Gabor Multipliers with
Application To Psychoacoustic Masking’ will be present&dhe concept of frame multiplier will be intro-
duced. Frame multipliers are a generalization of Gaboriplidts to frames without further structure. Basic
results, like the dependency of the operator on the symbapved. Furthermore irregular Gabor frames
are investigated. In particular some results on irregulss@ multipliers are proved like the continuous de-
pendency of Gabor multipliers on the symbol, the lattice trelwindows. Finally a concept is presented
how to implement a masking filter, which approximates theusiameous and temporal masking known in
psychoacoustics. As the linear frequency scale (in Hz) isery well adapted to human perception, another
is chosen (Bark), this filtering can be seen as an irreguléoGaultiplier with adaptable mask.

SPEAKER: Bernhard Bodmann

TITLE: Frame paths and error bounds for sigma-delta quatitia

ABSTRACT: We study the performance of finite frames for theaating of vectors by applying first-order
sigma-delta quantization to the frame coefficients. Ourudision is restricted to uniform tight frames, given
by NV vectors in ad-dimensional Hilbert space, and mostly concerns the useiaftigers that assume only
integer multiples of a step-size(mid-tread). We prove upper and lower bounds for the maxme@dnstruc-
tion error in terms of geometric quantities of a path intéafing the sequence of frame vectors. We calculate
these bounds for various known frame families and introdbeeso-calledi-circles and semicircles frames.
The latter give a slight improvement in the upper bound okieritarmonic frames. The maximal error for
all of these families is asymptotically of the ordil*/2 /N, with numerical constants that are comparable to
that of coordinatewise application of the sigma-delta athm.

SPEAKER: Pete Casazza
TITLE: Pure Mathematics, Applied Mathematics and EngimegrA common thread
LINK-Preprint: http://www.math.missouri.edu/"pete/
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ABSTRACT: We will see that the famous 1959 Kadison-SingeiRrm is equivalent to fundamental un-
solved problems in a dozen areas of research in both matlesnaaid engineering, including problems in
signal reconstruction, internet coding, reconstructionf sparse representations and much more. This gives
all these areas of research common ground on which to itarat helps to explain why each area has
volumes of literature on their respective problems witheaatisfactory resolution.

SPEAKER: Maarten de Hoop

TITLE: Analysis of ‘wave-equation’ imaging of reflectionismic data with curvelets

ABSTRACT: In this presentation we discuss how techniquesifdyadic parabolic decomposition of phase
space and curvelet frames can be exploited in representidgamalyzing the process of ‘wave-equation’
seismic imaging. The approach aids in the fundamental gtaleding of the notion of scale in the data and
how it is coupled through imaging to scale in - and regulaoity the medium. Furthermore, the use of
curvelets admits a rigorous treatment of the concept ofrotlad! illumination.

SPEAKER: Hans Feichtinger
TITLE: What do we know about Gabor multipliers?

SPEAKER: Lou Fishman

TITLE: Phase Space and Path Integral Methods in Seismic Wesgagation Modeling and Imaging
ABSTRACT: Seismic wave propagation modeling and imagirgamplicated by the large-scale and rapidly-
varying environments encountered in the earth. Traditiprthese classical problems have been addressed

by

1. direct approximations on the wave field (e.g., asymptatyctheory, Gaussian beams, spectral repre-
sentations),

2. the application of approximate wave equations (e.gm&one-way wave equations), and

3. the direct application of computational PD methods (digite differences, finite elements, spectral
methods).

This talk will survey the application to seismic wave progtgn modeling and imaging of what is loosely
referred to as “phase space and path integral methods."eTimethods were originally developed in the
guantum physics and theoretical Pd communities, and iedbe Feynman path integral constructions for
the Sc hrdingier equation, and the theories of pseudodiitéal and Fourier integral operators, for example.
For fixed-frequency modeling, the primary aims of this apgtoare

1. to incorporate well-posed, one-way methods into therigridy two-way global formulations,

2. to exploit the correspondences between the classica prpagation problem, quantum physics, and
modern mathematical asymptotes (micro local analysig), an

3. to effectively extend Fourier-analysis-based consitvas to inhomogeneous environments.

It will be seen that the explicit, exact, well-posed, onepneformulation of "elliptic wave propagation” prob-
lems (e.g., the scalar Helmholtz equation) in phase spamgadas an explicit mathematical framework for
wave-equation-based seismic migration, both unifyinglilierse approximations (e.g., wide-angle parabolic
modeling, generalized phase screens, generalized phifisplss interpolation (GOSSIP)), and systemati-
cally extending the physically based GPSPI algorithm. €lte=velopments result in improved seismic imag-
ing algorithms.

SPEAKER: Massimo Fornasier

TITLE: Frame adaptive methods for signal processing andatpeequations

ABSTRACT: We illustrate several adaptive algorithms foe tolutions of bi-infinite singular linear sys-
tems. Such algorithms are realized from exact iterativeses (e.g., Richardson, steepest-descent methods,
matching pursuit) by finite dimensional approximationsacieiteration, performed with a greedy approach.
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We show that these algorithms are convergent and optimalresipect to certain sparseness classes of vectors
as soon as the system matrix has sufficient off-diagonald@&ianfinite linear systems of this type typically
arise in the solution of functional operator equations.(éngegral and differential equations) by discretiza-
tion with respect to frames, i.e., stable, complete, andimddnt expansions. We present applications in
signal processing/transmission and PDE.

SPEAKER: Peter Gibson

TITLE: Gabor deconvolution of one-dimensional seismicadat

ABSTRACT: The last several years have seen a new techniguietmnvolution based on the Gabor trans-
form incorporated into industrial seismic image procegsas a replacement for so-called Wiener deconvolu-
tion coupled with certain corrections. The Gabor methodsanstationary, and are thus much better suited
to the extraction of reflectivity, of which the data is a n@atisinary combination. The real nonstationarity
stems from the relationship of the reflectivity to the Graenction of the standard model for a layered
earth. In this sense Gabor deconvolution can be viewed ahaitpie for solving a nonlinear inverse prob-
lem while simultaneously removing the effects of a non-Dsaurce signal. In this talk we will describe in
detail the theory and implementation of Gabor deconvohuie it is applied to actual seismic data.

SPEAKER: Karlheinz Gr ochenig

TITLE: Mapping properties of localization operators

LINK-Author: http://ibb.gsf.de/homepage/karlheinagchenig/

ABSTRACT: We will discuss the mapping properties of locatian operators, which are a version of non-
stationary filters. Planned topics:

1. Boundedness of localization operators on modulationespa
2. What happens when the symbols are rough?
3. Composition of localization operators

4. The range of a localization operator.

SPEAKER: Christopher Heil

TITLE: The Homogeneous Approximation Property for Wavéleimes

LINK-Author: www.math.gatech.edu/ heil

ABSTRACT: The Homogeneous Approximation Property is a keypprty of Gabor systems which leads to
necessary conditions for Gabor frames in terms of the Beyidensity of the associated sequence of time-
frequency shifts of the generator. We show that, with sorsgiotions, wavelet frames and wavelet Schauder
bases also satisfy an analogue of the Homogeneous AppridaimiRroperty with respect to the affine group,
and that this leads to necessary conditions for existentarins of an affine Beurling density. However, in
stark contrast to the Gabor case, we show that the densigndsmn the generator, and there is no Nyquist
density. This is joint work with Gitta Kutyniok.

SPEAKER: Felix Herrmann

TITLE: Non-linear seismic data regularization and separatith directional curvelet frames

LINK-Preprint: zoozoo.eos.ubc.ca/ felix/BIR8ep.pdf

ABSTRACT: In this paper, directional frames known as cuet®hlre applied to solve two important tasks
in seismic data processing namely data interpolation aimdgpy-multiple separation. We show that by ex-
tending the Fast Discrete Curvelet Transform (from Cunbeaawww.curvelet.org) to include non-uniform
Fourier Transforms (from NFFT www.math.mu-luebeck.dé4lafft/) a new directional frame is defined
which is particular suitable to solve non-parametric sé&shata interpolation problems. We show that min-
imizing the/*-norm as part of inverting the frame synthesis operatorsgitie sparsest set of curvelet co-
efficients that explain the unstructured data. Hitting g&s with the regularly sampled synthesis operator
gives the interpolated result. This approach is a pracéipalication of recent ideas on robust uncertainty
principles.
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The second topic involves using curvelets to separate y@ascomponents — the primaries and multiples
with the multiples constituting those events that includesance at the surface. The aim is to separate the
multiples from the primaries in the presence of noise anérgan inaccurate prediction for the multiples.
The main distinction of this signal separation problem @t tine two signal components are sparse in the
same frame as opposed to the signal components in Morplealdgomponent Analysis. We show that we
arrive at an viable alternative to match filtering approadmeformulating this signal-separation problem in
terms of a weighted' optimization problem with the weights defined by the pregtianultiples.

SPEAKER: Franz Hlawatsch

TITLE Linear Methods for Time-Frequency Filtering (joinowk with Gerald Matz)

ABSTRACT: Time-frequency (TF) filters are linear time-vary (LTV) systems whose filter characteristics
(gain/attenuation, pass/stop) are specified in the TF donsaich a TF filter specification is convenient and
intuitive in many applications. In this talk, we discussivas linear TF filter methods that can be grouped
into the following two broad classes.

e Explicit filter design: The LTV filter is calculated such treTF representation ("symbol”) of the filter
is equal to, or optimally approximates, a given TF weightcliion. A variation of this principle using
an orthogonal projector side constraint results in "timegfiency projection filters” with very sharp
time-frequency pass/stop selectivity.

e Implicit filter design: The LTV filter is implemented as an &rss-weighting-synthesis scheme based
on a linear TF representation (an example of such a TF filtgragided by a Gabor multiplier). Thus,
the filter is designed implicitly during the filtering proces

We also explain the connections of TF filters with the thedryralerspread operators and TF transfer func-
tions. The performance and application of the TF filters gmésd is demonstrated through numerical simu-
lation.

SPEAKER: Palle Jorgensen

TITLE: Computation of wavelet coefficients in generalizedltinesolution systems

LINK-Preprint: http://arxiv.org/abs/math.CA/0405301

ABSTRACT: We consider wavelets ib?( R?) which have generalized multiresolutions. This means tiet t
initial resolution subspack, in L?(R?) is not singly generated. As a result, the representationeoiftteger
lattice Z¢ restricted tol, has a nontrivial multiplicity function. We show how the cesponding analysis
and synthesis for these wavelets can be understood in tdromstary-matrix-valued functions on a torus
acting on a certain vector bundle. Specifically, we show Hwwtavelet functions oR? can be constructed
directly from the generalized wavelet filters.

SPEAKER: John Klauder

TITLE: Signal Transmission in Passive Media

ABSTRACT: Under rather general assumptions, and in a velgtisimple and straightforward manner, it
is shown that the characteristics of signals which traveduh homogeneous, as well as inhomogeneous,
passive media have the principal features usually assacvaith the phenomena of precursors, as generally
follows from more elaborate studies. The simplicity of thegent arguments permit analytic studies to be
made for a greater variety of media than is normally the case.

SPEAKER: Gitta Kutyniok

TITLE: Shearlets: Sparse Directional Representationmaiges within a Multiresolution Analysis Structure
LINK-Preprint: http://www.math.uni-giessen.de/Nunidgittak/publications.html

ABSTRACT: In this talk we describe a new class of multidimensl representation systems, called shear-
lets. They are obtained by applying the actions of dilat&mear transformation and translation to a fixed
function, and exhibit the geometric and mathematical pritgs e.g., directionality, elongated shapes, scales,
oscillations, recently advocated by many authors for gparage processing applications. In contrast to
other approaches these systems can be studied within thevirark of a generalized multiresolution analy-
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sis, which leads to a recursive algorithm for the implemiomeof these systems, that generalizes the classical
cascade algorithm. This is joint work with Demetrio Labate.

SPEAKER: Michael Lamoureux

TITLE: The Rotation Algebra in Time-Frequency Analysis

ABSTRACT: The translation and modulation operators thateasp in the Gabor transform generate a rep-
resentation of a well-studied family of operators on Hitbgwace, known as the rotation algebras. These
algerbas arise naturally in physics in the study of Blocletetss, and mathematically are noncommutative
generalizations of a two torus. We will present some of th@doaroperties of this field of algebras and their
connection with Gabor theory.

SPEAKER: David Larson

TITLE: Frames and Operator Theory

ABSTRACT: A few years ago the speaker and his collaboratewsidped an operator-interpolation approach
to wavelets and frames using the local commutant (i.e. cotami@at a point) of a unitary system. This is
really an abstract application of the theory of operatoehifgs to wavelet and frame theory. The concrete
applications of operator-interpolation to wavelet theimgiude results obtained using specially constructed
families of wavelet sets. Our methods include the constrabf certain groups of measure preserving
transformations, and groups and algebras of operatotsspécial algebraic properties. Other results include
applications of a theory of projection decompositions dfifiee operators, and a theory of operator-valued
frames. We will discuss some unpublished and partially ighbH results, and some brand new results, that
are due to this speaker and his former and current studemtsither collaborators.

Note this talk was cancelled due to travel delays.

SPEAKER: Gary Margrave

TITLE: A stable, explicit nonstationary filter for wavefieétrapolation

ABSTRACT: We present a new approach to the design of stall@ecurate wavefield extrapolation opera-
tors needed for explicit depth migration. We split the ttetioal operator into two component operators, one
a forward operator that controls the phase accuracy andttiee an inverse operator, designed as a Wiener
filter that stabilizes the first operator. Both componentafmes are designed to have a specific fixed length
and the final operator is formed as the convolution of the comepts. We utilize this operator design method
to build an explicit, wavefield extrapolation method basedh® migration of individual source records. Two
other features of our method are the use of dual operatadabiith high and low levels of evanescent fil-
tering, and frequency-dependent spatial down samplingh Bbthese features improve the accuracy and
efficiency of the overall method. Empirical testing showattbur method has a similar performance to the
time-migration method called phase shift, meaning it scake NlogN. We illustrate the method with tests
on the Marmousi synthetic dataset. We call our method FOGthvis an acronym for forward operator
conjugate inverse.

SPEAKER: Ross Mitchell

TITLE: Time/Frequency Applications in Medical Imaging

ABSTRACT: Medical imaging research at the Hotchkiss Braistitute, University of Calgary, is focused
on the application of mathematics, computer science, physid engineering to help understand, diagnose,
treat and monitor neurological disease. Several multilimary research teams, consisting of both basic
scientists and clinicians, have been deployed within FtetiMedical Center. This seminar will provide
an overview of the Fourier-based medical imaging modalité computerized tomography and magnetic
resonance imaging. It will then cover several neurologigailications of time/frequency analysis. In par-
ticular, our team is using time/frequency techniques testigate signals and images from patients suffering
from stroke, brain cancer, multiple sclerosis, and epilep¥e believe that time/frequency techniques have
tremendous potential to advance the science of medicalimgagnd improve outcomes for patients.

Note: this presentation will be targeted towards a non-pediudience. Nevertheless, it may contain some
graphic images.



216 Five-day Workshop Reports

SPEAKER: Kasso Okoudjou

TITLE: On some Fourier multipliers for modulation spaces

LINK-Author: http://www.math.cornell.edu/"kasso

ABSTRACT: In this talk, | will use some time-frequency ansiltechniques to study the continuity propeprties
of a class of Fourier multipliers on the modulation spaceswist be pointed out that, in general, these Fourier
multipliers are known to be unbounded on Lebesgue spaces.

SPEAKER: Alessandro Oliaro

TITLE: Continuity of localization operators ih? spaces

ABSTRACT: We study some properties of two-wavelet locdl@aoperators, i.e., operators which depend
on a symbol and two different windows. In the case when theb®yi belongs tol? (R?"), we give results
on L%(R™) boundedness, non-boundedness and compactness of thepomidng operator.

SPEAKER: Goetz Pfander
TITLE: Sampling of operators and channel measurements

SPEAKER: Mauricio Sacchi
TITLE: On the Regularization of the Local Radon Transform ppiications to Seismic Coherent Noise
Atenuation

SPEAKER: Zuowei Shen
TITLE: Deconvolution: A wavelet frame approach.

SPEAKER: Chris Stolk

TITLE: Combining finite elements and geometric wave propiagan 1-D

ABSTRACT: We consider the initial value problem for a stisidyperbolic partial differential equation on
the circle. We transform the equation to an operator valuB& @u/dt = R(t)u, whereR(t) is bounded.
The transformation involves application of differentiplevators, solving an elliptic differential equation, and
applying a coordinate transformation involving the chseestics, which can be done at c@3{N). The
resulting ODE is solved using a multiscale time-steppinghoe, which results in a®(N) algorithm for
the original hyperbolic equation.

SPEAKER: Thomas Strohmer
TITLE: Capacity of time-varying channels and pseudodéfdial operators

SPEAKER: Joachim Toft

TITLE: Schatten properties for pseudo-differential operaand localization operators on modulation spaces
of Hilbert type

ABSTRACT: Schatten-von Neumann (SN) classes are spaceéseairland continuous operators between
Hilbert spaces. The largest SN class consists of of contimoperators, and all other SN classes are subsets of
compact operators, where in particular the smallest Sklsdtathe set of trace-class operators. Consequently,
by using such classes, it is possible to make a detailed stmapmpactness. In general it is hard to decide
if an explicit operator belongs to a certain SN class or nohe @& therefore forced to search embedding
properties between SN classes and well-known spaces. astesuch embeddings have been established
between SN classes in context of pseudo-differential apexgpsdo) acting o2, and Besov, Sobolev or
modulation spaces. In the talk we present a non-trivial gdization of embedding between SN classes in
psdo and modulation spaces, where flfehere above is replaced by general modulation spaces ofrHilbe
type. This generalization is obtained by a combination oéftd use of time-frequence methods and Hilbert
space techniques.

SPEAKER: Bruno Torresani
TITLE: Identifying sparse hybrid time-frequency models
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ABSTRACT: Several signal families may be adequately matlatesparse expansions with respect to unions
of time-frequency bases or frames. We shall focus on prdisbimodels involving several layers of ran-
domness (sparse subset of the dictionary, coefficientseaéxpansion,...) and the corresponding estimation
algorithms. A couple of two-steps estimation procedurdidsistudied and compared. Thesretical estimates
as well as numericalm results will be presented.

Outcome of the Meeting

The best outcome of this meeting was to get the theoreticiadshe applied researchers talking together.
Many of the theoretical people have not been aware of thelsletar the great extent to which applied re-
searchers have been making use of time-frequency ideasarate applications. In fact, researchers have
created commercial software and hardware in imaging (naédieismic, etc) and telecommunications (cell-
phones) that take advantage of these techniques, and haslepked a whole vocabulary that is distinct from
the theoretical work. The applied researchers have bedtadimunaware of details of extensive theoreti-
cal work that has been done on the mathematics of time-frexyugnalysis which will directly benefit the
applications. In particular in optimal choices of frames¢adnvolution work in wavelet bases, properties of
localization operations which are particularly suitedrfgpid numerical computations, design and implemen-
tation of Gabor multipliers and other time-frequency fiteil depend on good theoretical work.

It has been particularly useful to bring together the Euaopand the North American researchers. The
Vienna school is outstanding in its theoretical work andésedoping a strong applied connections. The
organizers at Calgary are very pleased to be learning abisutieoretical work and begin applying it to their
large project in the mathematics of seismic imaging. We exfugther collaborations to develop from these
new connections.
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Chapter 20

Challenges in Linear and Polynomial
Algebra in Symbolic Computation
Software (05w5039)

October 1, 2005 — October 6, 2005

Organizer(s): Wolfram Decker (University of the Saarland), Keith Geddésiyersity of
Waterloo), Erich Kaltofen (North Carolina State UniveyitStephen M. Watt (University
of Western Ontario)

Summary

Overview of area covered

The subject of the workshop was innovation in algorithms swoiftivare addressing key bottlenecks in sym-
bolic mathematical computation software. By symbolic neatlatical computation software we mean soft-
ware like Maple (represented by several participants dtiolyi Jurgen Gerhard from Maplesoft), Mathemat-
ica, Macaulay 2 (represented by Michael Stillman), Magneargsented by Allan Steele), MuPAD, NTL,

SINGULAR (represented by Gert-Martin Greuel) etc., whosgpse it is to aid a mathematician, scientist,
engineer, or educator to solve mathematical problems om®uter. The specific area of focus for this
workshop was challenges arising from linear and polynoaigebra at the core of these systems.

Symbolic computation software implements many sophiitalgorithms on polynomials, matrices,
combinatorial structures and other mathematical objetis multitude of different dense, sparse, or im-
plicit (black box) representations. Several of the aldwnis are well-known: Buchberger's Grobner basis
reduction algorithm in all its flavors, lattice bases rethrchlgorithms (LLL, PSLQ) [addressed by M. van
Hoeij's presentation], Wiedemann'’s sparse linear systauesfor scalars from a finite field [addressed by P.
Giorgi's and J.-G. Dumas'’s presentations], polynomialdeazation algorithms [addressed by M. van Hoeij's
presentation], algorithms for solving in closed form diéfetial and difference equations [addressed by E.
Hubert's presentation], sparse interpolation algorithiatdressed by W.-s. Lee’s presentation], and many
more. These algorithms form the backbone of any symboligudation software, and their improvement is
the continuous effort of researchers.

In addition, several categories of algorithms for new basablems are the subject of vigorous current
investigation: diophantine linear system solution, aitpons for approximate data, e.g., floating point scalars,
such as approximate polynomial greatest common divisddrfssed by L. Zhi’'s and H. Kai's presentations],
factorization and non-linear system solving via homotapiformation [addressed by A. Sommese’s pre-
sentation], manipulation of polynomials over non-comntiuéedomains, and more.
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We estimate that the company-based systems Maple and Matilcartogether are licensed to over five
million users. We note that the Research & Developmentidngin these companies are quite small. One
objective subject of the workshop was how academia and tndoan provide the users an ever-increasing
speedup in the known algorithmic solutions on platformsgiesd with modern computer science principles.
This entails the discovery of completely new algorithms;tsas the ones in the new problem categories
mentioned above, the change of existent algorithms foriefficomputer implementation [addressed by A.
Steele’s presentation], and the computer science of mgsh@individually implemented algorithms into a
large symbolic computing environment [see the section eriilv software discussions].

Overview of achieved objectives

Our workshop brought together algorithm designers and sjimtomputation software builders from indus-
try and academia. Our first objective was to review the stafttise problems in the core area whose solution
has the greatest impact in systems for symbolic mathenhaticaputation. Our second objective was to de-
sign an approach that can achieve fast transfer of new matieahalgorithmic advances and new computer
science concepts into the available software. We invitedigzussion those who make the new mathematics
for the discipline and those who make the computer progransrticular those who are engaged in both
activities.

The software builder is faced with a mammoth task: the iredlinathematical analysis in current algo-
rithms can be highly sophisticated, using deep mathenmadieas. We give as an example the computation
of sparse resultant formulas via exterior algebras and Ghaws or F.-O. Schreyer’s presentation.

The underlying system for programming these algorithmagkliz complex, combining techniques from
reusable object-oriented design with entirely origindbdaructures and standards. For example, the LinBox
group, which is developing a symbolic linear algebra lipiaranalogy to numerical libraries such as LinPack
and MatLab, had to revise the basic generic archetype foaeckbdiox matrix three times, thus requiring a
re-programming of the entire library. The revisions wereassitated when new concepts such as non-native
garbage collection and BLAS (basic linear algebra subpmg) were introduced. J.-G. Dumas presentation
addressed several of those issues. In general, our expeligthat efficient delivery of effective symbolic
computation software requires ongoing and often originalputer science research.

Clearly, given the proliferation of algorithmic ideas am@ tcomplexity of a modern computer environ-
ment, innovative design principles and linkages are regiio bring the new breakthroughs quickly into the
software that the users, including our own community, need.

This workshop provided a forum for focused discussion antbagxperts in industry and academia, and
among algorithm designers and algorithm implementors. gds was to understand a framework which
will foster the evolution of new algorithmic ideas into utaboftware in a timely fashion. The pressures on
being able to faster compute more are great. In some casedifférence can be the proof or disproval of a
mathematical conjecture [addressed in partin D. Lazaatksan the Solotareff problem]. In others, the yield
can be a better FFT (fast Fourier transform) algorithm.

Titles and abstracts of presentations

SCHEDULE
| | Sunday | Monday | Tuesday | Wednesday | Thursday |
| Session chairg M. Dewar | A. Storjohann] C. Brown | M.Stillman | |
9:00-9:45 J. Demmel P. Giorgi L. Zhi E. Hubert | SWdisc! Il
9:45-10:30 E. Schost F. Rouillier H. Kai F.-O. Schreyer
11:00-11:45 M. van Hoeij | J.-G. Dumas W.-s. Lee G.-M. Greuel
| Session chairg  T.Lange | F. Winkler | | J.Gerhard | |
14:30-15:15 | von zur Gathen  D. Lazard | Hike at Lake Luise/ A. Steel
15:45-16:30 A. Sommese | SW disc! | Moraine Lake M. Monagan

TSoftware group discussion
tHubert's talk was recorded
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SpeakerJames DemmelUniversity of California at Berkeley)

Title: Toward accurate polynomial evaluation in rounded arithimet

Abstract: Given a multivariate real (or complex) polynomiand a domairD, we would like to decide whether
an algorithm exists to evalugiéz) accurately for all: € D using rounded real (or complex) arithmetic. Here
“accurately” means with relative error less than 1, i.ethwbme correct leading digits. The answer depends
on the model of rounded arithmetic: We assume that for atlgragtic operatoop(a, b), for examplex + b

ora - b, its computed value isp(a, b) - (1 + 0), where|d| is bounded by some constantvhere0 < ¢ < 1,

but ¢ is otherwise arbitrary. This model is the traditional onedito analyze the accuracy of floating point
algorithms. Our ultimate goal is to establish a decisiorcpdure that, for any and D, either exhibits an
accurate algorithm or proves that none exists. In conteatbte case where numbers are stored and manipu-
lated as finite bit strings (e.g., as floating point numbersitonal numbers) we show that some polynomials
p are impossible to evaluate accurately. The existence otamrate algorithm will depend not just gn
andD, but on which arithmetic operators and which constants exeagailable and whether branching is
permitted. Toward this goal, we present necessary conditimp for it to be accurately evaluable on open
real or complex domainB. We also give sufficient conditions, and describe progmsartd a complete de-
cision procedure. We do present a complete decision proeddunomogeneous polynomialsvith integer
coefficients,D = C", and using only the arithmetic operations— and-. Reference: [1].

SpeakerJean-Guillaume Dumas(Université de Grenoble, France)

Title: LinBox-1.0

Abstract: Three major threads have come together to forrfintbar algebra library LinBox. The first is the
use of modular algorithms when solving integer or rationatn® problems. The second thread and original
motive for LinBox is the implementation of black box algairits for sparse/structured matrices. Finally, it has
proven valuable to introduce elimination techniques tlatait the floating point BLAS libraries even when
our domains are finite fields. The latter is useful for densdlams and for block iterative methods. Black
box techniques are enabling exact linear algebra compuatatf a scale well beyond anything previously
possible. The development of new and interesting algosthas proceeded apace for the past two decades.
Itis time for the dissemination of these algorithms in arilgased software library so that the mathematical
community may readily take advantage of their power. LinBoxhat library. In this talk, we sketch the
current range of capabilities, describe the design andsgiveral examples of use. Reference:

http://www.linalg.org

SpeakerJoachim von zur Gathen(B-IT, University of Bonn, Germany)

Title: High-performance computer algebra

Abstract: There are two scenarios for putting the asymgabii fast algorithms of computer algebra to work:
in software and in hardware. The first is exemplified by polyra arithmetic, in particular factorization, on
sequential and parallel machines. The size of cutting edn@gms is measured in megabits. The second one
deals with a few hundred bits and yields fast cryptograpbfracessors at the size of current key lengths.
Reference: [4].

SpeakerPascal Giorgi(University of Waterloo)

Title: Integer Linear System Solving

Abstract: Recent implementations of algorithms for intdgear system solving can compute solutions of
systems with arouné, 000 equations over word size numbers in about a minute. Thederpamnces are
achieved for dense matrices using the highly optimized BLiB&ry. Currently we are exploiting the same
approach to provide practical implementations for largersp systems. In our talk we describe our prototype
implementation of an experimental algorithm for sparseiaglwhich reduces much of the computation to
level 2 and 3 BLAS and seems to improve the bit complexity frohto n2-°. Reference: [3].

SpeakerGert-Martin Greuel (University of Kaiserslautern Germany)

Title: Computing equisingularity strata of plane curve sigulist

Abstract: Equisingular families of plane curve singuiast starting from Zariski’'s pioneering 'Studies in
Equisingularity I-III" have been of constant interest esigice. The theory was basically topologically moti-
vated and so far it was only considered in characteristic® dé¥elop a new theory for equisingularity in any
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characteristic which gives even new insight in charadier@® Moreover, it is algorithmic and the algorithms
for computing equisingularity strata have been implemegteSingular.

SpeakerMark van Hoeij (Florida State University)

Title: Complexity results for factoring univariate polynomialgeo the rationals and bivariate polynomials
over finite fields

Abstract: In this talk, a polynomial time complexity boursdgiven for the algorithm in “Factoring polyno-
mials and the knapsack problem” [6]. A complexity resultlsoagiven for factoring bivariate polynomials
over finite fields. Specifically, to solve the combinatoriablpiem, it suffices to Hensel lift to accuracy
min(p,n) - (n — 1) + 1 wherep is the characteristic of the finite field ands the total degree.

SpeakerEvelyne Hubert (INRIA Sophia Antipolis)

Title: Rational and Replacement Invariants of a Group Action

Abstract: Group actions are ubiquitous in mathematics.yTdrése in diverse areas of applications, from
classical mechanics to computer vision. A classical butreéproblem is to compute a generating set of
invariants. The proposed presentation is based on a jdiokeawith I. Kogan, North Carolina State Univer-
stity, and is part of a bigger project for differential systeinvariant under a Lie group that was started with
E. Mansfield, University of Kent at Canterburry.

We consider a rational group action on the affine space arbpeoa construction of a finite set of rational
invariants and a simple algorithm to rewrite any rationgaimant in terms of those generators.

The rewriting of any rational invariant in terms of the congmligenerating set becomes a trivial replace-
ment. For the general case we introduce a finite set of replestinvariants that are algebraic functions
of the rational invariants. They are the algebraic analegafehe normalized invariants in Cartan’s mov-
ing frame construction. The construction generalizes ¢ccttmputation of a fundamental set of differential
invariants.

SpeakerHiroshi Kai (Ehime University)

Title: Reliable rational interpolation by symbolic-numeric caumtgtion

Abstract: A rational interpolationis computed by simubans linear equations numerically. But, if the linear
equations are solved by fixed precision floating point aréticy there appear a pathological feature such as
undesired pole and zero. An algorithm is presented to editeithe feature and then give a reliable rational
interpolation with the help from stabilization theory armhtputer assisted proof. Reference: [7].

SpeakerDaniel Lazard (INRIA France)
Title: New challenges in polynomial computation and real algebggometry: Example of Solotareff ap-
proximation problem
Abstract: Most of the computations related to polynomiaiaepns and inegalities are done either by numeric
computation, either by using Grobner bases, Collin’snadfical decomposition or triangular systems. With
the progress of all these methods, the main algorithmideingé becomes to select well specified classes of
problems which may be solved by using appropriately sew#thlese methods.

Examples of such an approach may be found in global optiiizat parametric systems (see Rouillier’s
talk).

We illustrate this with Solotareff approximation probleKa(tofen’s challenge 2) for which CAD fails
in degree 6, while a complete solution in degrees up to 10 mayblained by mixing theoretical considera-
tions on quantifier elimination and with well choosen opierat of localization and projection done through
Grobner bases. Reference [10].

SpeakerWen-shin Lee(University of Antwerp, Belgium)
Title: Sparse Polynomial Interpolation and Representation
Abstract: As polynomials are one of the fundamental objecgmbolic computation, being able to represent
and manipulate them efficiently can have dramatic effecthertost of many algorithms.

This talk focuses on sparse polynomials. | discuss blackdpatse interpolation and explore sparse
representations of polynomials. The interplay betweesdtlmoblems and recent development [5] are also
addressed.
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SpeakerMichael Monagan (Simon Fraser University)
The talk was on sparse rational interpolation.

Speakerfabrice Rouillier (INRIA France)
The talk was on parametric system solving.

SpeakerEric Schost(Ecole Polytechnique France)
Title: Point counting in genus 2, and some of the problems it raises
Abstract: Computing the number of points in the Jacobian bfgerelliptic curve is a basic question for
hyperelliptic cryptosystem design. For curves of genuse? pvime fields, present solutions rely on a variety
of tasks: polynomial system solving, root finding, compiotatvith algebraic numbers, ...

This talk (given from a computer algebraist point-of-vieaims at describing problems met when trying
to reach "cryptographic size”, some solutions, and how timegt, or can motivate, research in symbolic
computation. This is joint work with Pierrick Gaudry.

SpeakerfFrank-Olaf Schreyer (Universitat des Saarlandes, Germany)

Title: Computing the higher direct image complex of coherent skeav

Abstract: The higher direct image complex of a coherentfgfoedinite complex of coherent sheaves) under
a projective morphism is a fundamental construction thatlmadefined via a Cech complex or an injective
resolution, both inherently infinite constructions. Usigerior algebras and relative versions of theorems
of Beilinson and Bernstein-Gel'fand-Gel'fand, we give dteanate description in finite terms.

Using this description we can give explicit descriptionghdd loci in the base spaces of flat families of
sheaves in which some cohomological conditions are satisffer example, the loci where vector bundles
on projective space split in a certain way, or the loci whemr@ective morphism has higher dimensional
fibers.

Our approach is so explicit that it yields an algorithm sdifter computer algebra systems.

SpeakerAndrew SommesgUniversity of Notre Dame)

Title: Exceptional Sets and Fiber Products

Abstract: Regard the solution set of a polynomial sysfém: y) = 0 with algebraic parameters as a family
X — Y of algebraic sets. A symbolic/numeric algorithm based oerfiiroducts is given to compute the
subsets ofX’ consisting of points where the fiber dimension'dfs greater than it is for generic values of the
parameters. A discussion of motivating problems from eggjiimg is given.

SpeakerAllan Steel (University of Syndey)

Title: Linear and Polynomial Algebra in Magma: A Detailed Overview

Abstract: | give a detailed overview of the many structumes algorithms in the Magma Computer Algebra
system for computing in Linear and Polynomial Algebra. Thg khallenges and successes are highlighted,
particularly in the goal of practical implementations ofemptotically-fast algorithms.

Speakerlihong Zhi (Key Lab of Mathematics Mechanization, AMSS Beijing China)

Title: Structured Low Rank Approximation of a Sylvester Matrix

Abstract: The task of determining the approximate greatestmon divisor (GCD) of polynomials with
inexact coefficients can be formulated as computing for argBylvester matrix a new Sylvester matrix of
lower rank whose entries are near the corresponding emtirigst input matrix. We solve the approximate
GCD problem by new methods: one is based on structured &sat horm algorithm, another is based on
structured total least squares algorithm, in our case farioes with Sylvester structure. We present iterative
algorithms that compute a minimum approximate GCD and taataertify an approximate GCD when a
tolerance: is given on input. Each single iteration is carried out withuanber of floating point operations
that is of cubic order in the input degrees. In the univai@®D case, we explore the displacement structure
and reduce the complexity of each single iteration to be &f gnadratic with respect to the degrees of
the input polynomials. We also demonstrate the practicbpmance of our algorithms on a diverse set
of univariate and multivariate pairs of polynomials. Thegaint work with Erich Kaltofen, Bingyu Li and
Zhengfeng Yang [11, 9, 8].
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Summary of the two discussions on software

Both discussions were moderated by Stephen M. Watt.
The first discussion on Monday afternoon covered two tofog, given by Gert-Martin Greuel on the
Oberwolfach References on Mathematical Software (ORvig&ct

http://orms.mfo.de

and one by James Demmel on plans for the next release of LAPACK
http://www.netlib.org
and ScaLAPACK
http://www.netlib.org/scalapack

, including arbitrary precision versions, [joint work wiffack Dongarra et al.]. In particular, arbitrary preci-
sion, was discussed. One approach is to use F90 operattwadieig so that one can produce fixed precision
versions of any precision, calling someone else’s arlyitpaecision package. A web site to enter opinions
was

http://icl.cs.utk.edu/lapack-forum/survey/

, which now has the survey’s results.

The second discussion on Thursday morning addressed prslidransferring algorithms into systems.
The use of generic algorithm techniques either by templiaté€s++ or by types in Aldor was promoted.
The philosophical difference between opensource freavaoft and commercial products was noted. For
purpose of comparing implementations, the creation ofradstal repository for tests and specific versions of
software was deemed to be useful. E. Kaltofen pointed otinthay symbolic computation problems require
parallel computation like those done in ScaLAPACK. He st that more parallel symbolic computation
algorithms and implementations should be developed inéixéfive years.

Assessment
This workshop provided a unique opportunity for leadingeegshers and developing younger investigators
to exchange ideas on current challenges in several imfa@ntaas of computer algebra. The areas of concen-

tration of the workshop were:

e Linear algebra, both for exact methods (Dumas’s and Gmtgik) and numerical methods (Demmel’s
presentation in the first discussion on software).

Polynomial algebra. Polynomial factorization was covelogdhree speakers (von zur Gathen, van
Hoeij and Steel), sparse polynomial interpolation by Maragnd problems in commutative algebra
and polynomial systems by Greuel, Lazard, Roullier and &ar

Applications of symbolic computation to cryptography wpresented by Schost.

Hybrid symbolic-numeric algorithms were a focus, covergdhi, Lee, Sommese and Zhi.

Differential equations were addressed by Hubert, the télickvwe chose to record.

We feel the workshop was valuable for several reasons:, Rirahy speakers chose to discuss new on-
going work. Second, Demmel’s numerical computation poirtiew made it apparent that numerical meth-
ods must be an integral part of symbolic computation softw&ne of the questions Demmel raised, that
of the difference of structured vs. unstructured conditiombers in the case of the Sylvester matrices has
subsequently been addressed [8]. Third, there was paticipfrom the software industry, namely Gerhard
from Waterloo Maplesoft and Dewar from the Numerical Alglons Group (NAG).
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Chapter 21

Progress in algebraic geometry inspired
by physics (05w5081)

Oct 08 — Oct 13, 2005

Organizer(s): Jim Bryan (University of British Columbia), Michael Thadde(Columbia
University), Ravi Vakil (Stanford University)

This is a report of the workshoprogress in algebraic geometry inspired by phystesid at the Banff
International Research Station, October 8-13, 2005.

This meeting was a great success and a stimulating begitmitigg 2005—-06 academic year. Some 37
participants attended from top institutions in Canada,uUBé\, Europe, Korea, Hong Kong, and Japan. As
anticipated in its proposal, the workshop covered many efttipics where theoretical physics has most
greatly influenced algebraic geometry in recent years.

Gromov-Witten theory, for example, which originated as armfum field theory governing the propa-
gation of loops or strings on a Ricci-flat space-time, ha®bera mathematical theory of the enumerative
geometry of algebraic curves on projective varieties. I$ @scussed in many of the lectures, such as those
of Conan Leung and Jim Bryan.

A related topic from physics was discussed in two relatetlles by Lothar Gottsche and Hiraku Naka-
jima: the Nekrasov partition function. This partition fuion can be regarded, thoroughly physically, as
a partition function in anV = 2 supersymmetric quantum field theory, but also has matheaiatiter-
pretations both in terms of Gromov-Witten invariants andemms of their analogues and forerunners, the
Donaldson invariants of redtdimensional manifolds.

Mirror symmetry provides another example of an explicithypical topic discussed at the meeting. Mir-
ror symmetry began as a duality between quantum field theosied was reinterpreted in physics as the
“T-duality” of Strominger-Yau-Zaslow, in which string tbey on a torus of large radius is dual to that on a
torus of small radius. Mirror symmetry has received manyheatatical interpretations:

e in terms of duality of polytopes by Victor Batyrev and Lev Bmv,

e the “homological mirror symmetry” of Maxim Kontsevich inling derived categories of sheaves and
related to the Fourier-Mukai transform, and

e the torus fibrations inspired by Strominger, S.-T. Yau, aadldw.

These were represented in the conference by the lecturestyfa®, Hori and Mark Gross, respectively.

The principal topic of Kentaro Hori's lecture was, howewdifferent, and perhaps more surprising to
most participants at the meeting. As one of the few cardygagphysicists present, Hori was able to inform
the mathematicians that physics is able to shed light onixfairtorizations of polynomials — certainly a
new and intriguing direction that we are likely to hear mofedhe future.
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But there were also topics of a more purely mathematicalreatizzet Coskun and Bumsig Kim gave
talks on moduli spaces of curves, for example, a more “aatsiopic as it goes back in some sense to the
nineteenth century. In its modern incarnation, interes¢sl#o the late 1960’s, long before the resurgence
of physicists’ interest in algebraic geometry. Yet it iscaldearly a subject that has been revivified and
reanimated by the indirect influence of physics. Coskurisiteade this clear: stable curves can be better
understood using stable maps, which were only introducd<bloysevich thanks to the motivation of physics.

Another “classical” topic which kept cropping up was thatk® surfaces, which were discussed in (at
least) the lectures of Leung, Gross, and Bertram. There waxplicit reference to physics in any of these
talks, but the indirect influence was clear: these K3 sugare (rather elaborate) toy models of Calabi-Yau
threefolds, proposed by string theorists to constitutenifesing dimensions of space-time.

Some other recurring themes, though less classical, weoepairely mathematical. Derived categories
of coherent sheaves made an appearance several times/ectiives of Aaron Bertram, Kentaro Hori, and
Alistair Craw, for example. These certainly play a role inygias, as is evident in the work of Michael
Douglas, and this was a motivation for Bertram’s constargtbut the elementary transformations that he
described in holomorphic symplectic geometry had a purelthematical elegance. Craw explained how the
study of derived categories could be led in another diractiotowards combinatorics — by applying them
to the theory of toric varieties.

Another contemporary mathematical theory that was ofteokied at the meeting was that of orbifolds
or Deligne-Mumford stacks. These are now understood to Aauentum cohomology theory analogous to
that of smooth varieties (work due to a number of researghansl their Gromov-Witten theory, K-theory,
and Hochshild cohomology were discussed by Charles Cadifak@shi Kimura, and Andrei Caldararu
respectively.

The concept of topological quantum field theory or TQFT stdt be overlooked either. This is not
really part of physics; it is more a mathematical formaligmt forward in around 1990 by Michael Atiyah
and Graeme Segal, inspired by such physicists as Edwarén\atid Robbert Dijkgraaf. But it simplifies
and systematizes many calculations in algebraic geomespired by physics, any time we want to cal-
culate some invariant on a moduli space by degeneratingtingwp the space on which it is based into
smaller constituents (for example, by cutting up a Riemamfase into pairs of pants, interpretable as thrice-
punctured spheres). It was discussed, for the enumeragvmetry of spaces of admissible covers, in an
attractive lecture by Renzo Cavalieri, and alluded to intéiiles by Leung and Bryan as well.

There was much informal discussion of all of these topicsl more, at the meeting. The number of
formal lectures was intentionally kept small — only sixteento provide ample time for informal discus-
sions. However, each of the sixteen speakers was given g5utlinutes to speak, which ensured an in-depth
treatment in each lecture. The topics discussed in therlexare briefly summarized below.

Conan Leungfirst reviewed the conjectural Yau-Zaslow formula, whiclpeesses the generating func-
tion on the number of curves in a K3 surface as a quasi-moétuiar.

Then he explained his recent joint work with Junho Lee on tie@fof this formula for the index 2 case,
generalizing previous work with Jim Bryan for the index 1&as

The technique employed was the gluing formula for Gromow&Miinvariants.

Lothar G odttschespoke on his recent work on instanton counting, Donaldsaariants, and line bundles
on moduli spaces. (This is joint work with Hiraku NakajimadaKota Yoshioka.) They computed the
Donaldson invariants of a rational surface in terms of tleeeahentioned Nekrasov partition function, which
can be viewed as a generating function for the Donaldsonianvs of the affine plane. For a line bundle
on the rational surfac&’, they computed the holomorphic Euler characteristic

X(ME (1, ¢2), O(u(L)))

of associated line bundles on the moduli spacé/edtable rank 2 bundles oli. Using the Nekrasov con-
jecture, this yielded explicit generating functions foe thonaldson invariants and the holomorphic Euler
characteristics in terms of modular forms and elliptic fiimrs.

Reporting on joint work with Bernd SiebeNlark Gross described a “nonlinear Mumford construction,”
by which he menat the following. Mumford’s construction guces explicit degenerations of abelian vari-
eties, starting with data of a polyhedral decomposition @fad torus and a (multi-valued) convex piecewise
linear function on the torus. This can be generalized bya@pg the torus with a more general integral affine
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manifold with singularities. From these data, one can g@sdduce the central fiber of the degeneration, so
the challenge is to smooth this fiber.
Gross showed how Kontsevich and Soibelman’s approacHatasshaturally into this setting, producing
explicit smoothings of K3 surfaces. Tropical rational @semerged naturally out of his construction.
Aaron Bertram spoke about new moduli associated to a K3 surface, studigihinwork with Daniele
Arcara. For a K3 surfacg whose Picard group is generated by a divisor claésd self-intersectiorzg — 2,
he considered the “old” moduli spadé of stable coherent sheaves Smwith invariantschy = 0, ch; = H,
che = g — 1 agreeing with those of the push-forward of a sheafbof rank 1 and degre2y — 2. This is a
smooth holomorphic-symplectic manifold.
The object of Bertram'’s talk was to exhibit a sequence of nlicgghaces

Mo M oM —- ..

that are linked by Mukai flops over projective bundles ovedurcts of Hilbert schemes of points Sn These
new moduli spaces are not (at least in any manifest way) mepgates of coherent sheaves$rbut rather
are moduli space of stable objects in the derived categarglodrent sheaves aghunder a family of stability
conditions motivated by physics. Bertram argued that #igisnce of flops was the natural generalization of
Thaddeus flips to K3 surfaces.

Kentaro Hori reported on his work on matrix factorizations and complexfegector bundles. Physics
shows the equivalence of certain aspects of matrix factoas of, say, a degréepolynomial in5 variables

G(Il,.. .,I5),

and complexes of coherent sheaves of the quintic hypersufér,, ..., z5) = 0 in complex projective
4-space. Recently D. Orlov proved the equivalence of thegoayeof matrix factorizations ofy and the
bounded derived category of coherent sheaves on the quintic

In his talk, Hori described these equivalences and argusdtiey are the “right ones” for physics. He
suggested that a proper understanding of the physics mayrhaxy applications, for example, to stability
or to homological mirror symmetry.

Victor Batyrev also spoke about mirror symmetry for Calabi-Yau threefobds discussed a subtle fea-
ture not previously studied: their integral cohomologyr Ealabi-Yau varieties andY of dimensiond
that are mirror to each other, mirror symmetry predicts thatHodge numbers of andY” are related by
the equality

hP9(X) = hd7Pa(Y).

Batyrev’s main interest was to understand the relationsbipveen the torsion in their integral cohomology
rings. Ford = 3, he observed that the torsion ii*> and H3 must be exchanged by mirror symmetry. His
verification of this statement for Calabi-Yau complete isgetions in toric varieties reduced to an explicit
computation of the fundamental group and the Brauer group.

Izzet Coskungave a lecture about the cones of ample and effective ds/@oKontsevich moduli spaces.
The cones of ample and effective divisors are among the mmgsiritant invariants associated to any variety.
But the study of these cones for moduli spaces is especiafhpitant. For example, in a celebrated series
of papers in the 1980’s, Harris, Mumford, and Eisenbud wéie to prove that the moduli space of stable
curves is of general type in genus greater thaiby studying these cones.

In recent work with Joe Harris and Jason Starr, Coskun retlitiee computation of the ample cone of
the Kontsevich space of (genus zero) stable maps to pnegespiace to a standard conjecture about curves.
They also determined the stable effective cone of the Keitisenoduli spaces. He described these results in
his talk and discussed applications to the theory of ratiomanectivity and the divisor theory of the moduli
spaces of pointed stable curves. For example, similar tqabs have allowed him to determine the effective
cone of the moduli space of pointed (genus zero) stable sumedulo permutations.

Hiraku Nakajima discussed his joint work with Kota Yoshioka on instantonrming. This refers to
the computation of Nekrasov’s deformed partition funcsief N = 2 supersymmetric Yang-Mills theories
by integrating in the equivariant cohomology or GrothenHigroups of instanton moduli spaces over four-
dimensional Euclidean space, which are quiver varietise@ated with the Jordan quiver. These partition
functions are analogues of the Donaldson invariants, andléq the Gromov-Wiotten invariants of certain
noncompact Calabi-Yau threefolds. Nakajima reviewed écemt results on these functions.
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Alastair Craw reported on work about quivers and exceptional collectionprojective toric manifolds.
He described how certain collections of line bundles on gptive toric manifold can be used to reconstruct
that manifold as a moduli space of quiver representationgour it another way, he introduced new quiver
gauge theory constructions of projective toric manifoldss condition on the line bundles was remarkably
weak, and in particular holds for nice “full strong exceptib collections” (if they exist) that describe the
derived category of coherent sheaves. Indeed, Craw’s anodgads to new examples of such collections.
(This was joint work with Greg Smith.)

Harry Tamvakis spoke about the Gromov-Witten invariants of isotropic Gra@nnians. He has studied
them in joint work with Anders Buch and Andrew Kresch. For antageneous space which is the quotient of
a classical Lie group by a maximal parabolic subgroup, Tisvexplained a series of results which show that
the three-point genus-zero Gromov-Witten invariants aaedpuated with, and hence derived from, classical
triple intersection numbers on related homogeneous spadesapplied this principle to prove structure
theorems for the small quantum cohomology of these homagengpaces, which give new results in the
case of a Grassmannian parametrizing non-maximal isatsafispaces of a vector space equipped with a
symplectic or orthogonal form. Buch was also a participarthe workshop, and explained many technical
aspects of this work informally in the evenings.

In his lecture on “Hurwitz-Hodge integrals and the crepasbiution conjectureJim Bryan stated the
following. A well-known principle from physics asserts tisé&ring theory on an orbifold is equivalent to string
theory on any crepant resolution of its coarse moduli spiacmathematics, this can be stated as saying that
the Gromov-Witten potentials for the orbifold and the crepasolution contain equivalent information: that
is, one can be transformed to another by an appropriate ehafngariables. Bryan illustrated this in some
examples, showing how it leads to interesting new formutasritegrals of Hodge classes over Hurwitz
schemes. The lecture touched on important work joint withiR®@andharipande, Andrei Okounkov, Tom
Graber, Dagan Karp, and others.

Bumsig Kim spoke about the moduli space of rational plane curves withigue irreducible singular
point. He showed that this moduli space can be decomposaghasreof irreducible smooth rational varieties
of varying dimensions. He showed how to compute the degréeedargest component with fixed tangent
line at the singular point. He was reporting on joint workiwiRosang Joe and Hyungju Park.

Andrei Caldararu gave a stimulating lecture entitled “Towards computinghtoehschild cohomology
ring of orbifolds,” in which he attempted to explain the iadrents that should go into proving the general-
ization of Kontsevich’s Theorem for complex manifolds tbiéolds. More explicitly, he went over the proof
of Kontsevich’s Theorem and pointed out what changes habe tmade when dealing with orbifolds. For
example, the inertial orbifold appears in a natural way endburse of the argument.

Takashi Kimura described the latest results from his long-standing coliation with Tyler Jarvis. They
apply to the setting of a global quotient, that is, a smoothjqutive variety equipped with the action of a
finite groupG. To these data, they have associate@-aquivariant Frobenius algebra, which they call the
“stringy K-theory,” whose=-coinvariants yield the orbifold K-theory of the quotiefitiey then introduced a
stringy Chern character, which is a ring isomorphism fronmgy K-theory to its cohomological counterpart.
It contains “corrections” to the ordinary Chern characidre proof of the isomorphism follows from a new,
simple reformulation of the relevant obstruction bundléjch does not involve stable maps. Hence their
work significantly simplifies earlier work in simpler siti@ts.

Renzo Cavalierispoke about his doctoral work which gave the intersectianbers on moduli spaces
of admisible covers the structure of a topological quantetd fiheory. More precisely, he explained how to
construct a two-level weighted topological quantum fielelaty whose structure coefficents are equivariant
intersection numbers on moduli spaces of admissible co®rsh a structure is parallel (and related, albeit
somewhat mysteriously) to the local Gromov-Witten thedrguoves of Jim Bryan and Rahul Pandharipande.

Cavalieri described the explicit computation of the theosing techniques of localization on moduli
spaces of admissible covers of a parametrized projectiee IThe Frobenius algebras he obtained were one
parameter deformations of the class algebra of the symmgtiup. In certain special cases he could produce
explicit closed formulas for such deformations in termshaf tepresentation theory of the symmetric group.

Charles Cadmanalso described the work of his doctoral thesis, which usgk téchnology from the
theory of stable maps to Deligne-Mumford stacks to solveoaaighly classical problem, namely the enu-
meration of rational plane curves with tangency condititma fixed cubic. His key idea was to consider
what he calls the “stack ofth roots” associated to a schemYewith a Cartier divisorD: that is, the stack
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whose objects are morphisms 3 together with sections of anth root of the pullback of the line bundle
O(D), whosenth powers correspond to the natural sectio®dD). This is a Deligne-Mumford stack whose
coarse moduli space i§, and (for smoothX and D) stable maps to this stack correspond to maps teith
tangencies of ordet alongD. Recursions solving the enumerative problem can then taéraat, following
Kontsevich, by applying the Witten-Dijkgraaf-Verlindesiinde equations in the quantum cohomology of
the stack ofith roots.
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Chapter 22

Therapeutic Efficacy in Population
Veterinary Medicine (05w5201)

Oct 19 — Oct 22, 2005
Organizer(s): Fahima Nekka (Université de Montréal)

Report

e General

This workshop has been organized by the MITACS BIO5 teamratdiie general theme of therapeutic ef-
ficacy in population veterinary medicine at Banff Interoatll Research Station. It has brought researchers
working in applied mathematics, veterinary sciences, Weligal sciences as well as in microbiology and
nutrition. Additional to academic researchers, speakedsparticipants from other public sectors attended
the workshop: Agriculture and Agri-Food Canada and the iBid#alth Agency of Canada. Representatives
of Pfizer Animal Health and Elanco Animal Health were presé@tfiie representatives of Scheringer-Plough
Animal Health and Avantis, who are among the sponsors of thxshop, were not able to attend but asked
for a follow up on the workshop outcomes. The conferencesraa/different aspects relating to animal col-
lective therapy, in particular in swine and poultry, in terof determinants and outcomes, spanning the areas
of: animal behaviour, quantification of feeding behaviond &s relationship with pharmacokinetics, phar-
macodynamics and antibiotic resistance, risk assessmégrtns of antibiotic use and genetic determinants
for antibiotic resistance and its different transfer modesistance to infection diseases, zoonotical borne
viruses, identification of contamination sources, chardwation of microbial hazards and manure, impact
on the environment. A complete portrait of animal behaviauhe context of therapeutic efficacy has been
drawn. A whole overview of the Canadian Integrated ProgramAitimicrobial Resistance Surveillance
(CIPARS/PICRA) has been given to explain the national progof antimicrobial use in food animals and
surveillance system for antimicrobial resistance arisimogn food animal production. An update of PK/PD
analysis in antibiotics was very useful to highlight theerof the prudent use of antibiotics in preserving their
effectiveness and to clarify the objectives of the seedgutoA general idea of mathematical approaches used
to handle biological complexity has been given with emphasithe need for collaborative efforts between
mathematical sciences and experimental research. Theteypeakers have given their own ideas of possi-
ble collaborations with the MITACS team, in terms of thesearch interests/expertise and in complement to
the current MITACS project. Very interesting discussionekt place, always balanced between the different
areas of research. Presence of industrial researcher$fiiver Animal health in particular, allowed gaining

a clear idea of the pharmaceutical industry expectatiodgaactices.

e Financial support of the workshop

— MITACS
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— AFMnet

— MSRI

— CRM

— Pfizer Animal Health

— Scheringer-Plough Animal Health
— Avantis

e Organizing Committee

— Chair, Fahima Nekka, Université de Montréal
— Jérdme del Castillo, Université de Montral

— Renée Bergeron, Université Laval

— Jacques Bélair, Université de Montréal

— Jun Li, Université de Montréal

— Don Schaffner, Rutgers University

— Heidi Shraft, Lakehead University/AFMnet

— Claude Miville, FPPQ

— Jeff Lucas, MITACS

e Minutes from the discussion about collaborations and matsges, October 22nd

Were present at this last day meeting researchers from ME&@m (F. Nekka, J. del Castillo, R. Berg-
eron, J. Bélair); from FPPQ (C. Miville); from AFMnet (A. Bson, M. McLaughlin, H. Schraft, L. Truel-
strup, H. Eberl, J. France); from Pfizer Animal Health (Br@eves). The objective was to identify potential
collaborations to be added to the current MITACS projecbantke it a joint MITACS-AFMnet project, to
identify additional funding sources and to address thelimroent of pharmaceutical companies.

1. Discussion on research avenues

The following questions have been suggested as being iangdd be addressed: o Is the veterinary use
of antibiotics (AB) appropriate? o How could we improve ABaus make it safer and more efficient: this
is the main aim of the seed project which is centred arounglitieious use of antibiotics. o0 How does the
risk of using the labelled dose compare with the risk of usinginapproved one? o It would be interesting
to model withdrawal time according to dosage. o Another aeds to compare the efficacy of alternatives to
AB versus AB efficacy. o The risk of using the approved dosetrhasveighed against the risk of using an
off-label dose. o One concern about risk assessment it timatyi lead to a ban on AB use.

Three main areas of research have been identified for therfoject o Impact of feeding behaviour
on dosage efficacy o Alternatives to AB and their assessm@islo analysis, including assessment, pol-
icy making and risk communication. Qualitative risk ratisigstems show major limitations (for example,
passing from high-dimensional information to low-dimemsil evaluation causes loss of information). Use
of more/new mathematical methods, including Rapid Riskrigatechnique, for quantitative human health
impact of continued animal use of antibiotics. ! With MITAGShding, we have to make sure that new
mathematics are being developed. In the seed project, fnermathematical point of view, we have used
dynamical systems (represented by the multi-compartrhapf@oach defined by systems of ODE) with
stochastic input. We analyzed the statistical propenti¢ésrims of stability and conservation of the dynamical
system. This approach is new in pharmacokinetics. Use sfapproach has to be widespread in biologi-
cal problems and include other sources of stochasticityaaadyse their impacts since the generally- used
assumption of determinism are questionable when consmlé¢iie randomness involved in biological real-
ity. We have also introduced competition mechanisms irectille behaviour which accounts for dynamical
interactions between individuals (the interaction betwieelividuals is incorporated in the evolution of the
group). The approach we have used to model competitiontisinghas to be put within the framework of
hierarchical nonlinear models used for repeated measuntafata.

2. Stakeholders and potential funding sources
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e \eterinary Drugs Directorate (VDD) Divisions

e Health Canada

e Public Health Agency of Canada (PHAC)

e Canadian Integrated Program for Antimicrobial ResistéBweveillance (CIPARS)
e Canadian Food Inspection Agency (CFIA)

e Agriculture and Agri-Food Canada (AAC)

e Pork producers associations (Alberta Pork, Sask Pork, tdlaaiPork, Ontario Pork, etc.).
e Fonds québécois de la recherche sur la nature et les tege®(FQRNT)

e Conseil des recherches en péche et en agroalimentaire@heQ(CORPAQ)

e Pharmaceutical industry

e Nutrition companies and integrators

e CIHR NSERC

e NSERC strategic

e AFMnet

e CVMA (Canadian Veterinary Medical Association)

e CAHI (Canadian Animal Health Institute)

3. Discussion regarding the involvement of pharmaceuticaipanies in the project

e The pharmaceutical industry is product oriented. Math@satre used in drug development, but not
much in resistance studies.

e Pharmaceutical companies work with approved products,raséarch using off-label dosage may
place them in an awkward position. They report to Health @arend must demonstrate that they
comply with their guidelines.

e Pharmaceutical companies may not be interested in fundingject that may benefit their competitors,
for instance, research that may eventually lead to appadvhk off- label dosage of a non-proprietary
drug. However, they may want to fund projects that would et the risk of using the approved dose
of a medication.

e Perhaps suppliers of CTC (the antibiotic used by MITACS té&athe seed project) would be willing
to getinvolved in our project, given that it may lead to theiaval of a higher dosage for their product.

e Muchresearch has been done on newer antibiotics. In fagtangbiotics are in general derivatives of
known families of drugs. Old antibiotics appear to be usedtiost and yet have not been documented
as much.

Invitations have been sent to US researchers. Unfortynateé to delays in reply of the first invited
researchers, tentative to reach other persons were natssiotfor different reasons (other meetings on
similar subjects at the same period in Europe in particular)
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Chapter 23

Probabilistic Combinatorics: Recent
Progress and New Frontiers (05w5054)

October 29 — November 3, 2005

Organizer(s): Noga Alon (Tel Aviv University), Bruce Reed (McGill Univeatg, CNRS),
Benny Sudakov (Princeton University), Van Vu (UniversifyGalifornia, San Diego)

Overview

Probabilistic Combinatorics is an interface between Podityaand Discrete Mathematics. Initiated by P.
Erdés over fifty years ago, it has now become one of the fad®&loping areas in all mathematics, with
fascinating applications to many other important areash s1s Theoretical Computer Science and Statistical
Physics. Roughly speaking, Probabilistic Combinator@®grises three main topics, for each of which we
give a short description. Naturally, there are considerakérlaps between these topics.

The first topic is the application of probability to solve doimatorial problems, and conversely the appli-
cation of combinatorial methods to prove results in prolitgttheory. Typical examples of the former are the
“existence” proofs of Erdds. In general, one wants to shHmsvexistence of certain objects by generating an
appropriate probabilistic space and proving that the ddsibject has positive measure in this space. The last
twenty years or so have witnessed significant progress sragiyoroach. The development of new and pow-
erful techniques, such as the semi-random method and astarp concentration inequalities, has enabled
researchers to attack many famous open problems, condiairactable not so long ago, with considerable
success. Furthermore, many new ideas discovered in thiggsdiave turned out to be useful for problems
from different areas. For instance, the recent Galvin-K@&isalt on Gibb’s measures has its roots in an earlier
graph colouring result of Kahn. For an example of combinesdoeing used in the field of probability, one
can look at some recent work of Louigi Addario-Berry and BriReed, which uses combinatorial techniques
to bound the point at which a random walk first returns to zero.

The second topic is the study of random combinatorial stirest such as random graphs. The typical
guestion here is to show that at a given density, a randonhdrap a desired property with very high proba-
bility. The study of random graphs has recently received @nimost from industry. It has been discovered
that various important real-life graphs (such as the I@groan be modeled as a random graph of a special
type. If one can analyze these graphs, then one can makefwadiabout the evolution of the real-life
networks.

The third topic is the study of randomized algorithms. Héeerhain question is either to design random-
ized algorithms for a certain goal or to analyze natural @ligms given special inputs. While this topic can
also be considered as a topic in Computer Science, it hasdwut quite recently that it also has much to
do with Statistical Physics. For instance, there is a nhtdgarithm (motivated by problems from statistical
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physics) for generating a random colouring of a graph. Aaigihg question is to know when this algorithm
runs in polynomial time, and a proper bound would have anggzamsequences in Physics.

The focus of the workshop lay specifically in the above threa@mesearch topics of Probabilistic Combi-
natorics. One aim of the workshop was simply to foster irtéoa and collaboration between researchers in
these fields, and to discuss recent progress and communaateesults and ideas. To mention an example,
the following conjecture of Louigi Addario-Berry (see [1Hommunicated during an open problem session,
was solved at the workshop by Jacques Verstraete usingaheitgie of combinatorial nullstellensatz:

Theorem 23.0.62Given a graphG = (V, E) and, for every € V, alist D, C {0,1,...,d(v)} satisfying
|Dy| > [d(v)/2], there is a spanning subgragi C G such that for allv, dg (v) € D,,.

Additionally, this forum was an opportunity to make stafettee-art probabilistic techniques available to a
broader audience, in particular graduate students.

With the rapid development in recent years of probabilizhniques and their applications to various
mathematical disciplines, the workshop was a key oppdstiiaibring together researchers representing the
entire spectrum of Probabilistic Combinatorics, so as tesotidate our knowledge at present and set new
horizons for future discoveries.

In the remainder of the report we describe in detail some@#ativances presented at the workshop.

The Erd6s-Renyi Random Graph

Joel Spencer- Connectedness 6}(n, p)

| gave a talk on The Probability of Connectedness, the résity an asymptotic formula for the proba-
bility that the random grapt¥n, p is connected, for the entire rangeof The key to it is a new analysis of
breadth first search over the random gréph p. This is an idea | have been working on for a year or so but
it really came together during the workshop. | have givekstain this general topic before, most recently at
the CMS Annual Meeting in Waterloo in June, but at this wodgsthe ideas were clearer than before.

The asymptotic probability off(n, p) being connected id; A, with

A=A (n,p)=1-1-p™) !

1 for pgn—1
1—(c+1)e ¢ forp~cn?!
Ag = Asx(n,p) ~ %62 forp~en~landn=2 < e = o(1)
complicated fop ~ cn=3/2
n! for0 < p < n=3/?

(Note that the probability that there are no isolated vesii€ the events of being isolated were independent
would be(1 — (1 — p)”~1)™ which is quite close.)

Whenp < n~3/2 it is simpler to write that the probability of/(n, p) being connected is roughly the
probability thatG(n, p) is precisely a tree, which is"~2p"~1(1 — p)™~ (=Y with m = (}).

Whenp ~ cn=3/? let B be the probabilityG(n, p) is precisely a tree. The@(n, p) is a tree plug edges
with probability Be¢;c¢?/? where the; are the “Wright constants”. Convergence occurs and thegtitity
thatG (n,p) is atree isB > ;0 c;c3/2.

The arrangements were excellent, giving myself and thestilenty of time to “prove and conjecture.”

Louigi Addario-Berry - The Diameter of the Minimum Weight Spanning Tree
Given a connected grafhi = (V, E), E = {e, ..., ¢ g}, together with edge weightd” = {w(e)|e €
E}, a minimum weight spanning tree 6fis a spanning tre@& = (V, E’) that minimizes
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If the edge weights are distinct then this tree is uniquehis tase we denote it by MWS$@). Minimum
spanning trees are at the heart of many combinatorial opaition problems. In particular, they are easy to
compute, and may be used to approximate hard problems sutble asinimum weight traveling salesman
tour. As a consequence, much attention has been given tgirsgutheir structure, especially in random
settings and under various models of randomness. For test&neze determined the weight of a the MWST
of a complete graph whose edges have been weighted by indiepteand identically distributed (i.i.d[), 1]-
random variables. This result has been reproved and g&estdly Frieze and McDiarmid [8] and Aldous
[2]. Under the same model, Aldous derived the degree digidb of the MWST. Both these results rely on
local properties of minimum spanning trees. We are inteckist their global structure.

Thedistancebetween vertices andy in a graphH is the length of the shortest path framto . The
diameterdiam(H) of a connected grapH is the greatest distance between any two verticds.ilNe are
interested in the diameters of the minimum weight spannmiegstof a cliquey,, onn vertices whose edges
have been assigned i.i.d. real weights. We w$e) to denote the weight of. In Banff we presented our
proof of the following theorem, answering a question of Egiand McDiarmid [9].

Theorem 23.0.63LetK,, = (V, F) be the complete graph onvertices, and le{ X.|e € E} be independent
identically distributed edge-weights. Then conditionpbn the event that for all # f, X. # Xy, itis the
case that the expected value of the diameter of MESTis O (n!/?).

Benny Sudakov- Embedding Nearly-Spanning Bounded Degree Trees

In this talk we describe a sufficient condition for a spars&pfr to contain a copy of every nearly-
spanning tred” of bounded maximum degree, in terms of the expansion priegartGG. The restriction on
the degree of" comes naturally from the fact that we consider graphs of temiglegree. Two important
examples where our condition applies are random graphsrapthg with a large spectral gap.

The problem of existence of large trees with specified shapgidom graphs has a long history starting
with conjecture of Erd8s that a random gra@n, ¢/n) almost surely contains a path of length at least
(1 — a(c))n, wherea(c) is a constant smaller than one for all> 1 andlim._,., a(c) = 0. The question
of existence of large trees of bounded degree other thars ratbparse random graphs was studied by de
la Vega. He proved that for sufficiently largeone can almost surely embed @(n, ¢/n) any tree with
maximum degree at mosdtthat occupies a small constant proportion of the randomhgr&ur first result
improves the result of Fernandez de la Vega and generakxesas results on the existence of long paths.
It shows that the sparse random graph contains almost sewety nearly-spanning tree of bounded degree,
i.e., tree of sizél — e)n.

For a graphG let Ay > X\ > ... > )\, be the eigenvalues of its adjacency matrix. The quantity
M G) = max;>2 |\ is called thesecond eigenvalugf G. A graphG = (V, E) is called an(n, D, \)-graph
if it is D-regular, has: vertices and the second eigenvalugCbfs at mosth. It is well known that if\ is
much smaller than the degré® thenG has strong expansion properties, so the ratjo\ could serve as
some kind of measure of expansion@f Our second result shows that &m, D, \)-graphG with large
enough spectral gap /) contains a copy of every nearly-spanning tree with bouneégde®. This extends a
result of Friedman and Pippenger [7].

Regular Graphs

Nicholas Wormald - Large Independent Sets in Regular Graphs of Large Girth

An independent sdt of a graph(z is a subset of the vertices 6fsuch that no two vertices dfare joined
by an edge. Thandependence numbef G is the cardinality of a maximum independent set, and is dmhot
by a(G). Thegirth of G is the length of its shortest cycle.

In 1991, Shearer gave the best known lower bounds(6¥) for G with given maximum degree and large
girth. For instance, it7 is 3-regular withn vertices, Shearer’s results imply thatG) > %n provided the
girth is sufficiently large, and he gave other results fopgsaof maximum degreéin terms of f(d) where
the functionf is defined iteratively.

Itis known that looking at graphs with maximum degeder such problems is equivalent to lookingdat
regular graphs. In 1995, the speaker analyzed two greedyitlons which give rise to large independent sets
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in random regular graphs, one simple and one more sophéestic&Vith Joe Lauer, we recently studied the
simple greedy algorithm, applied to large girth graphs, estdblished a result for all regular graphs of large
girth, that coincides with the corresponding result fordam graphs. We use a “nibble”-type approach but
require none of the sophistication of the usual nibble mgtrguments, using only linearity of expectation.
We obtained the following result.

Theorem 23.0.64For all d > 3, the independence number of a graph witlertices, maximum degreke
and girthg is at least

(1-<9) 3 (1 (@ p2/e2),

wheres(g) — 0 asg — cc.

This improves Shearer’s result for @ll> 7.

More recently, with Mohammad Salavatipour, we have analyze more sophisticated greedy algorithm
mentioned above. The results are stronger but are givenrimstef the solutions of differential equations
which have only been solved numerically. With Carlos Hoppenhave examined algorithms for finding
large induced forests in graphs with bounded degree and lirth. It is believed that, in all cases, the
constants obtained for regular graphs of large girth cdmevith those already known for random regular
graphs.

It was known that, given such a bound for regular graphs dafrarily large girth, the same bound carries
over to an asymptotic bound for random regular graphs. Thewctwork indicates that for many problems
with results on random regular graphs obtained by analygiegdy algorithms the results can be “explained”
in this way, despite the fact that they were first proved diyeo the random case. It is not known to what
extent this is a general phenomenon. In particular, it iskmatwn if all 4-regular graphs with sufficiently
large girth are 3-colourable.

Angelika Steger- A Probabilistic Counting Lemma for Sparse Regular Graphs

This is joint work with S. Gerke and M. Marciniszyn.

Over the last decades Szemerédi's regularity lemma [18phaven to be a very powerful tool in modern
graph theory. Unfortunately, in its original setting it prgives nontrivial results for dense graphs, that is
graphs with©(n?) edges. In 1996 Kohayakawa [14] and independently Rodbdhtced a variant which
holds for sparse graphs, provided they satisfy some addit&iructural conditions (which essentially mean
that the graph does not contain regions that are too densaheVr, using this sparse regularity lemma
to prove e.g. extremal and Ramsey type results similar tdttoevn results in the dense case requires as
an additional step: the existence of appropriate embedalir@punting lemmas. For the sparse case this
missing step has been formulated as a conjecture by Kohagakaiczak and Rodl [15]. For a gragh, let
G(H,n,m) be the family of graphs on vertex set= UweV(H) V.., where the set¥,, are pairwise disjoint
sets of vertices of size, and edge selr = U{W}eE(H) E.,, whereE,, C V, x V, and|E,,| = m.
LetG(H,n,m,e) C G(H,n, m) denote the set of graphs i H, n, m) satisfying that eackV, U V,, E,,)
is an(e)-regular graph.

Conjecture 23.0.65 (KLR Conjecture [15]) Let H be a fixed graph and define
F(H,n,m)={G € G(H,n,m) : H is not a subgraph ofz}.

For any 3 > 0, there exist constants) > 0, C' > 0, ng > 0 such that for allm > Cn?=1/4H) n > pg,
and0 < e < g,

n2\ 1 EE)
F(H,n,m)ﬂg(H,n,m,EHSﬁm(m> ,

wheredy(H) = max{l‘ggg{:é tFCH|V(F)| > 3}-

One of the key difficulties in the proof of the KLR Conjectusetie fact that forn = o(n?) the size of
a neighbourhood of a vertex is on average). The definition of regularity, however, only deals with lare
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sized subsets and thus regularity seems not to be inhegtsdligraphs induced on the neighbourhoods of
some vertices. In a joint paper [10] with Gerke, Kohayakaavel Rodl we were recently able to prove that
nevertheless in the sparse case a hereditary version toldslh at least in the probabilistic setting. This
result readily implies much shorter and more elegant probfihe results known so far, namely the case
of cyclesCy, for all K > 3 and forH = K, and K5. In this talk we show that in fact a much stronger
property holds. Namely, small sets not only inherit withthfiyobability the regularity property, but they also
satisfy with high probability all properties that regulaptes satisfy with high probability. This allows us
to show that the KLR Conjecture holds for all complete grafohnslightly larger number of edges than the
conjectured value. In return, we can show the existence ofyroapies instead of just one copy. That is, we
get a so-called counting lemma.

Theorem 23.0.66 ([11])For all £ > 3, > 0, and > 0, there exist constants, € N, C' > 0, ande > 0
such that
n2 (2)
|F(K¢,n,m,0)NG(Ke,n,m,e)| <™ - (m>

provided thatm > Cn?~ /(=1 n > ng, and0 < e < g9 and whereF (K, n, m, §) denotes the family of
graphs inG (K, n,m) that contain less thafl — &)n!V (1 (2) B copies ofH.

Graph Colouring

Andrew King - Advances Towards Reed’s Conjecture

My current research includes several problems: partialli®$owards Reed’s Conjecture, probabilistic
colouring work to similar ends, and the reconciliation oblpabilistic models via rapidly-mixing Markov
chains.

Reed’s Conjecture states that for any graphy(G) < [(1/2)(A(G) + 1 + w(G))] [19]. Generally
speaking, there are two ways to work towards this result. fireeinvolves proving it outright for certain
classes of graphs, and the second involves proving thahdtifar from the truth. That isy(G) < [(1/2 +
o(1))(A(GQ) + 1 + w(G))], meaning thak (G) < [(1/2+ f(A(G)))(A(G) + 1+ w(G))] wheref tends
to 0 asA tends to infinity. There are partial results of this flavomd &am working towards broadening this
body of work as well as finding ways to colour graphs with fewooeos in polynomial time.

Since the workshop, Bruce Reed and | have proved that Reedig€ure holds for quasi-line graphs,
improving upon a result of Chudnovsky and Ovetsky [3]. Ferthore, for these graphs a colouring using at
most[(1/2)(A(G) + 1 + w(G))] colours can be found in polynomial time.

Pseudorandom Graphs

Yoshiharu Kohayakawa - Turan’s Theorem for Pseudorandom Graphs

This is joint work with V. Rodl (Emory University), M. Schat(Humboldt-Universitat zu Berlin), P. Sis-
sokho (lllinois State University), and J. Skokan (Univdesie de Sao Paulo).

The generalized Tuan number &G, H) of two graphsG and H is the maximal number of edges in a
subgraph ofZ not containingH. If G is the complete grapk’,, onn vertices, then, by the Erd6s—Stone—

Simonovits theorem, we have @x,,, H) = (1 —1/(x(H) = 1) + 0(1)) (%), whereo(1) — 0 asn — oc.
We give an analogous result for triangle-free graphs&nd pseudorandom graphs Our concept of

pseudorandomness is inspired by flnabledgraphs introduced by A. Thomason. We say that a gG@ijh
(g, @)-bijumbledif

[ec(X.¥) — alX[|Y]| < a/[X]Y]

for every pair of setsX, Y C V(G), wherees(X,Y) denotes the number of paifs,y) € X x Y with
xy € E(G).

For simplicity, here we only state a consequence of our masult: for any triangle-free grapH
with maximum degree\ and for anyd > 0, there existsy > 0 such that any large enoughvertex,
(q,v¢”*/?n)-bijumbled graphG satisfies
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ex(G, H) < (1 - + 5) |E(G)].

v
X(H) -1

Jan Vondrak - 2-Colourability of Randomly Perturbed Hypergraphs

This is joint work with Benny Sudakov.

In the classical Erd6s-Rényi model, a random graph is igeee by starting from an empty graph and
then adding a certain number of random edges. More rec&atynan, Frieze and Martin considered a gen-
eralized model where one starts with a fixed grépk- (V, E) and then inserts a collectidi of additional
random edges. We denote the resulting random gragh-by?. The initial graphZ can be regarded as given
by an adversary, while the random perturbatidnepresents noise or uncertainty, independent of the linitia
choice. This scenario is analogous to #meoothed analysisf algorithms proposed by Spielman and Teng,
where an algorithm is assumed to run on the worst-case inpdified by a small random perturbation.

In subsequent work, Krivelevich, Sudakov and Tetali [16hsidered random formulas obtained by
adding randonk-clauses (disjunctions of literals) to a fixedk-SAT formula. They proved that for any
formula with at least.*~< k-clauses, adding/(n*<) random clauses of size makes the formula almost
surely unsatisfiable. This is tight, since there i5-8AT formula withn*—¢ clauses which almost surely
remains satisfiable after adding:*<) random clauses. A related question, which was raised irptier,
is to find a threshold for nof-colourability of a random hypergraph obtained by addinglam edges to a
large hypergraph of a given density.

While 2-colourability of graphs is well understood, being equévilto non-existence of odd cycles,
for k-uniform hypergraphs withk > 3 it is already N P-complete to decide whetherZcolouring ex-
ists. Consequently, there is no efficient characterizatio?-colourable hypergraphs. The problemf
colourability of randonk-uniform hypergraphs fok > 3 was first studied by Alon and Spencer. Recently,
the threshold foR-colourability has been determined very precisely. Aghtés and Moore proved that
the number of edges for which a randé@runiform hypergraph becomes almost surely 2ecelourable is
(2¥=11In2 — O(1))n. Interestingly, the threshold for ndheolourability is roughly one half of the threshold
for k-SAT. Achlioptas and Peres proved that a formula witlhandomk-clauses becomes almost surely un-
satisfiable forn = (2¥In2 — O(k))n. The two problems seem to be intimately related and it ismahto
ask what is their relationship in the case of a random peatiob of a fixed instance.

The proof of Krivelevich et al. (for randomly perturb&eSAT) also yields that for ang-uniform hyper-
graphH with n*—< edges, adding (n*<) random edges destrogscolourability aimost surely. Nonetheless,
it turns out that this is not the right answer. It is enoughde substantially fewer random edges to destroy
2-colourability: roughly a square root of the number of ramdcauses necessary to destroy satisfiability.
Our main result is that for ang-uniform hypergraph witf2(n*~<) edges, adding:(n*</?) random edges
makes it almost surely no-colourable. This is almost tight in the sense that adding/?) random edges
is not sufficient in general.

First Order Graph Properties

Oleg Pikhurko - First Order Graph Properties

Graph properties expressible in first order logic were sidi The vocabulary consists of variables,
connectives\, A and—), quantifiers f§§ andv), and two binary relations: the equality and the graph axtjag
(= and~ respectively). The variables denote vertices only so wenatallowed to quantify over sets or
relations. The notatiod? = A means that a grap@ is a model for asentenced (a first order formula
without free variables); in other wordd, is true for the grapld-.

A first order sentencel definesG if G is the unique (up to an isomorphism) finite model #or The
quantifier depthor simplydepth) D(A) is the largest number of nested quantifierslinThis parameter is
closely related to the complexity of checking whetliel= A. Let D(G) be the smallest quantifier depth of
a first order formula definingr.

In a sense, a defining formulacan be viewed as the canonical form @except thatd is not unique):
in order to check whetheF = H it suffices to check whethdd = A. Unfortunately this approach does
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not seem to lead to better isomorphism algorithms, but thi®n, being on the borderline of combinatorics,
logic and computer science, is interesting on its own andiniggld unforeseen applications.

Recently, various results on the valuesiofG) for ordern graphs appeared. The paper of Pikhurko,
Veith and Verbitsky studied the maximum &f(G) (the ‘worst’ case). The ‘best’ case is considered by
Pikhurko, Spencer, and Verbitsky, while Kim, Pikhurko, 8Bper and Verbitsky obtained various results for
the random grapti(n, p).

Pikhurko presented new results for random sparse strictbgained jointly with Bohman, Frieze,
tuczak, Smyth, Spencer, and Verbitsky. Specifically, it wassed that almost surely

e D(G) = ©($22-), whereG is the giant component of a random gra@tn, <) with constant > 1;

Inlnn

e D(T) = (1+0(1))22 whereT is a random tree of order.

Inlnn

These results rely on computing the maximumi(fl’) for a treeT" of ordern and maximum degrek so
this problem was studied as well.

Combinatorial Games

Thomas Bohman- Making and Breaking the Giant Component

| presented the following results at the workshop. We carsidgame that can be viewed as a random
graph process. The game has two players and begins with thty gnaph on a set of n vertices. During each
turn a pair of random edges is generated and one of the plelyeoses one of these edges to be an edge in the
graph. Thus the players guide the evolution of the grapheagdime is played. One player controls the even
rounds with the goal of creating a so-called giant compoasuickly as possible. The other player controls
the odd rounds and has the goal of keeping the giant from fagrfur as long as possible. We show that
the product rule is an asymptotically optimal strategy fottbplayers. (The product rule chooses between
two edges by comparing the products of the sizes of the coemisijoined. For example, the player who
is trying to create a giant component would choose the edgjentiaximized the product of the sizes of the
components joined.)

Geometric Problems

Imre Barany - On the Randomized Integer Convex Hull

This is joint work with J. MatouSek.

AssumeK C R?is a convex body. Its integer convex hull is, by definitiore tonvex hull ofK N Z¢
whereZ4 is the usual integer lattice. Notatioh¢ /() = con( K N Z%). The integer convex hull is of central
interestin integer programming. Define the lattige, = p(Z¢+t) wheret € [0, 1)P andp € SO(d), which
is an isometric copy of?. The set of lattice = {L, .} is a probability space with probability measure
equal to the product of the Lebesgue measur@oh)¢ and the Haar measure &0 (d). The randomized
integer convex hull id, (K) = con K N L), whereL is a random element d. I, (K) is a polytope.

Motivated by integer programming, we estimate the expentadber of vertices of ,(K), and also
the expected missed volume, that is, the expectation ¢fval I;,(K)). One of our results says that the
expected number of vertices 6f (K) is of order(vol(K))(@=1/(4+1) when K is smooth, and is of order
(log vol(K))4~! whenK is a polytope. The expected missed volume problem leadetotowing question
which is a distant relative of Buffon’s needle problem. Giveconvex bodys ¢ R?, what is the probability
that a randomly chosen congruent copyofs lattice point free? We show that this probability (1) iways
smaller thar; /vol(K) for ¢; constant, and (2) is larger thag/vol(K) for ¢ constant if the width of is
small enough. The constants depend only on dimension.

Ross M. Richardson- Random Inscribing Polytopes
This is joint work with Van Vu and Lei Wu.
Let K be a compact convex body R?. Choosen points uniformly inK. The convex hull of these
n points is referred to as @ndom polytope The study of random polytopes is the study of certain key
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functionals of these polytopes; the volume of the randomtppk and the number @f-dimensional faces
are the most studied. There has been much recent progrdssirircharacterization, and a broad range of
techniques have arisen out of the intersection of geonyatopability, and combinatorics. A comprehensive
survey by I. Barany will soon appear in the volu®®chastic Geometry

Now restrict K’ to have smooth boundary and everywhere positive Gaussiaatave. We define a new
model of random polytopes where we now choose points on thedaryo K according to some positive
continuous distribution. The convex hull ef points chosen in this manner is referred to asrdr@om
inscribing polytope

Our work focuses on determining the distribution of the wodufunctional, which we denote . We
prove a concentration result of the following form:

P (|Z —FEZ| > \/W) < 2exp(—A/4) + exp(—cen),

where here > alnn/n, V = 0(e4+3)/(4=1)) andc, o are constants. We can use this result to show that
the k" moment)M,, satisfies
My, = O(V*/?).

We can also prove better bounds, though with more compticatier terms.

In contrast to the integral geometric methods typically Eayed to study random polytopes, we rely on
the notion ofe—nets and VC-dimension to control the relevant geometry. d@acentration result employs
a special instance of a more general martingale concemtrtteorem due to Kim and Vu. In particular we
provide a quantitative notion of the volume added with thditioh of a new point to the random polytope
and show how this implies sharp concentration via the aferdgioned tools.

We also provide a lower bound on the variance of the volumetfanal as well as showing the volume
satisfies a central limit theorem.

Random Matrices

Van H. Wu - Singularity of Random Matrices

The study of random matrices is an important area of mathiesyatith strong connections to various
other fields. One of the main objects in this area is matridesse entries are i.i.d. random variables. We
focus on the basic model in whicll,, is ann by n matrix whose entries are i.i.d. variables with Bernoulli
distribution (taking values-1 and1 with probability1/2).

A famous problem is to estimate the probability thd} is singular. Let us denote by, this probability.
SinceM,, is singular if it has two identical rows, it is trivial thaf, > (1/2+ o(1))™. A notorious conjecture
in the field is that this bound is sharp:

Conijecture 23.0.67p,, = (1/2 + o(1))™.

The first result concerning singularity was obtained by Kasnih 1967, who proved, = o(1). Later,
he improved the bound t@(n~'/2). A significant progress was made in 1995, when Kahn, Komiis a
Szemerédi proved that, < .999™ (see [13] and the references therein).

Recently, T. Tao and | made progress by further improvingugyger bound td3/4 + o(1))" [20]. We
discovered a surprising connection between problems aorarmatrices and additive combinatorics. In
particular, the proof of the new bound uses various ingredierom additive combinatorics (in particular,
Freiman’s theorem).

The details are somewhat technical, but my feeling is thatoitimal bound1/2 + o(1))™ might be
within sight. In fact, | believe that any improvement upoa tlonstan8 /4 could perhaps lead to the solution
of the conjecture. Furthermore, our techniques can be umedtlier discrete distributions as well and in
certain cases we can obtain sharp results.

A closely related question is to estimate the probabilitgtth random symmetric matrix is singular.
Let @,, be the random symmetric by n matrix whose upper diagonal entries are i.i.d. Bernoulid@m
variables. Weiss conjectured in the 1980s thatis almost surely non-singular. Recently, Costello, Tao and
I confirmed this conjecture. Our proof again makes a detoadtbtive combinatorics, with the main lemma
being a quadratic version of the classical Littlewood-@df&rdés problem [5].
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There have been several further developments in the rdserandom matrices reported at BIRS:

(1) The singularity problem: Costello, Tao and | generalitge singularity result for random matrices
with arbitrary distribution. It seems that for any (diseetandom matrix with independent entries with
distributions not concentrated on one value, the prolighiiat the matrix is singular is exponentially small.

(2) Rank of random graphs: Costello reported a result shgttiat the threshold for singularity of (the
adjacency matrix of) a random graph(isgn)/n. (It is clear that below(logn)/n, the graph has isolated
vertices which correspond to all zero row; the main part isandle the other side of the threshold.) We have
extended this result to the following: For apy> (logn)/2n, the corank ofG(n,p) equals the number of
isolated vertices. As a corollary, it follows that the gianmponent has full rank.

(3) Richardson and Wu reported a result showing centrat timeiorems for random inscribing polytopes.
Barany and | extended these results for random polytopasred by points sampled from the Gaussian
distribution.

Sequential Growth Models

Graham Brightwell - Classical Sequential Growth Models

Graham Brightwell gave a talk entitled “Classical Sequar@rowth Models”, including a discussion of
joint work with Nicholas Georgiou.

Classical sequential growth models were introduced by &itdand Sorkin in 2000; they are of particular
interest as they are the only models satisfying some nalmwling conditions for discrete random models
of space-time.

A particular classical sequential growth model is defineclsgquence = (¢, t1, .. .) of non-negative
constants. The process starts with the partial ofgjewith one element labeled. At stagen = 1,2,.. .,
the element: is added toP,,_; and placed above all elements i»,, where D,, is a random subset of
{0,1,...,n—1}, the probability thaD,, is equal to a seb being proportional te, . The transitive closure
is taken to form the partial ordé?, .

One can either stop after stagend study the finite partial order, or continue to get a plastider on the
set of non-negative integers.

Special cases include random forests€ t; = 1, t; = 0 for ¢ > 2), and random binary orders,(is
the highest non-zero entry). Although random binary ordeesvery sparse, it is nevertheless the case that,
a.s., in the infinite partial order, every element is incorapée with finitely many others. In a recent paper,
Georgiou proves that, for any> 0, most elements are incomparable with at most*< other elements.

A random graph order, also known as a transitive percolgiifacess, is defined by taking a random
graphG(n,p) on the vertex sef0,...,n — 1}, and putting; below j if there is a path = i1,...,ip = j
in the graph withi; < ... < i. This is equivalent to a classical sequential growth mod#i v, = ¢,
t=p/(1—p).

In a later paper, Rideout and Sorkin provide computationiaemnce that suitably normalized sequences
of random graph orders have a “continuum limit”. Brightwaald Georgiou use results about the structure of
random graph orders to confirm that this is indeed the caskst@owed that the continuum limit is always a
semiordeyi.e., a partial order representable by unit intervals @lite, one below another if it lies entirely to
the left. Alternatively, a semiorder is a partial order @ning no induced copy of either of the two specific
partial orderdl + 3 and2 + 2.

It might be hoped that sequences of classical sequentialtignmodels can have more interesting con-
tinuum limits, in particular ones that bear a closer resamé¢ to 4-dimensional Minkowski space-time.
However, Brightwell and Georgiou show that classical saetjakgrowth models are all “almost” semiorders,
so that any continuum limit must also be very close to beingnaisrder.

To be more precise, Brightwell and Georgiou show that, for sequence P, }5,, where P, is a
classical sequential growth model stopped at stagthe proportion of 4-element subsets isomorphic to
eitherl + 3 or 2 + 2 tends to 0 a tends to infinity.

Markov Chain Mixing Times

Prasad Tetali- Analysis of Markov Chain Mixing Times
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Prasad Tetali gave a brief update on some recent progress analysis of Markov chain mixing times.
The update included the status of several long-standing ppeblems, as well as recent theoretical develop-
ments in the topic.

The update on the theoretical development focused on isop&ic and functional approaches to bound-
ing mixing times. It is well known that the spectral gap of arktay chain can be estimated in terms of
conductance, facilitating isoperimetric bounds on mixiinge. Observing that small sets often have large
conductance, Lovasz and Kannan refined this result by bogtide total variation mixing time for reversible
chains in terms of the “average conductance” taken overadetarious sizes. Morris and Peres introduced
the idea of evolving sets and strengthened the Lovasz-&aresult by extending the results to boundihe
mixing time. Side-stepping conductance (and using a maeeediunctional approach, along the lines of the
works on manifolds by Coulhon, Grigor'yan, and Pittet), Gdéontenegro, and Tetali recently introduced
the notion of “spectral profile” to bound> mixing time. Standard Cheeger-type inequalities showttiat
spectral profile bounds imply the conductance bounds. Eurtbre, the known estimates on mixing times
using Logarithmic Sobolev inequalities and Nash ineqieslitan also be derived easily with the spectral
profile approach.

The strength of the above isoperimetric and spectral prigfdeniques has further been demonstrated in
card-shuffling: A recent breakthrough result of Ben Morrieyides an upper bound af* on the mixing
time of the so-called Thorp shuffle on a card-deck of 8iZgesolving a long-standing conjecture. The result
of Morris has already been improvedd®’ using the new technique of spectral profile. Morris used tiogp
and evolving sets techniques to prove his result, while armesurvey-style article by Montenegro and Tetali
illustrates the derivation of th¢?® mixing time for the Thorp shuffle using each technique — spéptofile
as well as the evolving sets.

Tetali's report also mentioned that progress has been stowtloer problems, most notably (random)
sampling of contingency tables, which are of interest itistias. The same is true for acyclic orientations,
matroid bases, and Euler tours, all of which are of inte@sbimbinatorialists. The need for new techniques
in facilitating a tighter analysis of additional Markov ¢hs such as triangulations of regular polygons and
card-shuffling on general graphs has also been made clear.

List of Participants

Addario-Berry, Louigi (McGill University)

Barany, Imre (Renyi Institute)

Beck, Jozse{Rutgers University)

Bohman, Thomas(Carnegie Mellon University)
Brightwell, Graham (London School of Economics)
Broutin, Nicolas (McGill University)

Chattopadhyay, Arkadev (McGill University)

Costello, Kevin (University of California San Diego)
Devroye, Luc (McGill University)

Erin Leigh, McLeish (McGill University)

Haxell, Penny(University of Waterloo)

Kahn, Jeff (Rutgers University)

Keevash, Peter(California Institute of Technology)
Kim, Jeong Han (Microsoft Research)

King, Andrew (McGill University)

Kohayakawa, Yoshiharu (University of Sao Paulo)
Loh, Po-Shen(Princeton University)

Pikhurko, Oleg (Carnegie Mellon University)

Reed, Bruce(McGill University)

Richardson, RosgUniversity of California at San Diego)
Simonovits, Miklos (Hungarian Academy of Sciences)
Spencer, Joe[(Courant Institute)

Steger, Angelika(Eidgenossische Technische Hochschule Ziirich)



Probabilistic Combinatorics: Recent Progress and Newttaien 247

Sudakov, Benny(Princeton University)

Szemeredi, Endre(Rutgers, the State University of New Jersey)

Tetali, Prasad (Professor, Georgia Institute of Technology, Atlanta, GISA)
Verstraete, JacquegUniversity of Waterloo)

Vondrak, Jan (Microsoft Research)

Vu, Van (University of California, San Diego)

Wormald, Nick (University of Waterloo)

Wu, Lei (University of California at San Diego)



Bibliography

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B. Reed, and Athomason, Vertex-colouring edge-
weightings,Combinatoricato appear.

[2] D. Aldous, The random walk construction of uniform spargtrees and uniform labelled treedAM
J. Disc. Math.3 (1990), 450-465.

[3] M. Chudnovsky and A. Ovetsky, Coloring quasi-line grafgbiscrete Math, to appear.
[4] K. Costello, T. Tao and V. Vu, Random symmetric matricess@most surely singulaspubmitted
[5] P. Erdds, On alemma of Littlewood and Offoiijll. Amer. Math. So&1 (1945), 898-902.

[6] G.Freiman, Foundations of a structural theory of seftaitl Translated from the Russiafranslations
of Mathematical Monograph37, American Mathematical Society, Providence, 1973.

[7] J. Friedman and N. Pippenger, Expanding graphs contesmell trees,Combinatorica7 (1987), 71—
76.

[8] A. Frieze and C. McDiarmid, On random minimum length spiag trees,Combinatorica9 (1989),
363-374.

[9] A. Frieze and C. McDiarmid, Algorithmic theory of randayraphsRand. Struct. Algl0(1997), 5-42.

[10] S. Gerke, Y. Kohayakawa, V. Rodl, and A. Steger, Smatlisets inherit sparseregularity, Submitted
(2004).

[11] S. Gerke, M. Marciniszyn, and A. Steger, Probabili§ta@unting Lemma for Complete Graphs, Submit-
ted (2005).

[12] S.Janson, T. tuczak, and A. RucihsReandom Graphs]ohn Wiley & Sons, New York, 2000.

[13] J. Kahn, J. Komlbs, E. Szemerédi, On the probabiligtta randomt1 matrix is singularJ. Amer.
Math. Soc8 (1995), 223-240.

[14] Y. Kohayakawa, Szemerédi’s regularity lemma for sgagraphs. IFoundations of Computational
Mathematics, (Berlin, Heidelberg) (F. Cucker and M. Shutts.g Springer-Verlag, Heidelberg, 216—
230, 1997.

[15] Y. Kohayakawa, T. tuczak, and V. Rodl, Qi*-free subgraphs of random grap&mbinatorical7
(1997), 173-213.

[16] M. Krivelevich, B. Sudakov and P. Tetali, On smoothedlggis in dense graphs and formul&and.
Struct. Alg.29 (2006), 180-193.

[17] M. Mehta, Random matrices. Third edition. Pure and AggbMathematics (Amsterdam), 142. Else-
vier/Academic Press, Amsterdam, 2004.

[18] E. Szeméredi, Regular partitions of graphsPhoblemes Combinatoires et &brie des Graphe<ol-
logues Internationaux CNR&50, 399-452, 1978.

248



Probabilistic Combinatorics: Recent Progress and Newttaien 249

[19] B. Reedw, A, andy, J. Graph Th.31(1998), 177-212.
[20] T. Tao and V. Vu, On the singularity probability of rarmddBernoulli matricessubmitted



Chapter 24

Number Theory Inspired by
Cryptography (05w5021)

Nov 05 — Nov 10, 2005

Organizer(s): David Boyd (University of British Columbia), Carl Pomeran@®artmouth
College), Igor Shparlinski (Macquarie University), HughiN&ms (University of Calgary)

Introduction

Theobjective of this workshop was to bring together most active and prodeicesearchers, especially those
with expertise in computational number theory and who atlngito share their expertise and also open to
working on new topics.

Developments in both number theory and cryptography arearasquick. However, often lack of con-
tacts and communication between cryptographers and nuiméetists is an obstacle in achieving significant
advances on both sides. We hope that our workshop has beem@wsards bridging the gap and will foster
new links between both areas.

The program of the workshop contained a number of formaktal! talks were typically 45 minutes
long (some were 30 minutes long) with substantial breakidaglenty of time for questions and discussion.
Such discussions were of great use for both the speaker arditiience.

Besides the formal program with scheduled talks there wastybf time for informal discussions which
suit more exchange of ideas which are still in the “mid-aintlacannot be put on paper, but which could
eventually become very fruitful.

Speakers who presented their research all got very valfedxdbdack, plus some ideas for further work. In
the same time the people in the audience learned some naygtHihis also continued through the informal
conversations and gatherings after the end of the offici} deogram. Several attendees came from small
universities where they are the only computational/atharic number theorist, so any chance of personal
interaction with others in this area is vital for them. Thigeting has already led to many new concrete
results with probably many other effects which will res@iatthe future.

Although most of the people knew each other by name, not eeelyy met personally. So the meeting
has contributed to establishing a stronger and more divesgarch network, which is always valuable.

We believe that the workshop has provided a significant legrexperience and exposure to currentideas
and trends to younger researchers the early stages of #regrs.
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Overview of the Field

It is common knowledge that most of the constructions of joukéy cryptography, and many of the con-
structions of private key cryptography, are based on nurftegry. There is however a constantly extending
flow in the opposite direction, from cryptography to numbeedry. Namely many problems and results
of intrinsic interest for number theory have been motivdigdgossible cryptographic applications. These
include, but are not limited to smooth numbers, elliptic &aggerelliptic curves, lattices, exponential sums,
polynomials over finite fields and many others.

The aforementioned topics do not co-existindependentlysaparately but weave through each other and
lead to very exciting, and often completely unexpecte@dions of theoretic research with a great potential
for practical applications in the area of information teclogy.

A very impressive example of such interleaving betweerousrareas is given by recent activities stimu-
lated by the polynomial time primality testing algorithmlmf M. Agarwal, N. Saxena and N. Kayal. Follow
up works around this algorithm have lead to such importasulte as:

¢ an effective version of the Bombieri-Vinogradov theorem;
e anew algorithm for constructing irreducible polynomiaidinite fields;
e new lower bounds on the size of finitely generated groupsnitfan fields over a finite field;

and will probably lead to a number of other mathematicatipn explorations. Certainly these and many other
topics have been discussed at the workshop as well.

Recent Developments and Open Problems

The following topics have recently been actively studiedha literature and certainly also got a lot of
attention during the workshop:

e Studying the distribution of smooth numbers. This is related to several important algorithms, such
as the integer factorization, primality testing and digetegarithm problems. Less know applications
involve attacks on padded RSA signature scheme and on thentdGcryptosystem. The topic has
been addressed in a talk of Jonathan Sorenson.

e Studying the structure of the groups of points on elliptic cuves. This is important for better un-
derstanding of the present and future potential of elliptioze cryptography. Same questions for class
groups of hyperelliptic curves are of great interest as.wekrtainly finding new classes of crypto-
graphically strong (or identifying new types of cryptoghégally weak) curves is of great importance
and interest. The topic has been addressed in talks of ledbethene, Florian Luca, Kumar Murty,
Takakazu Satoh, Renate Scheidler and Edlyn Teske.

e Fast calculations on elliptic curves and other algebraic stictures. This is important for better un-
derstanding of the present and future potential of elliptioze cryptography. Same questions for class
groups of hyperelliptic curves are of great interest as.w€krtainly finding new classes of crypto-
graphically strong (or identifying new types of cryptoghégally weak) curves is of great importance
and interest. The topic has been addressed in talks of Tamge.

e Studying the structure of class groups of algebraic number &lds. In particular, quadratic fields
provide very interesting structures when an analogue obiffee—Hellman protocol can be executed.
This area definitely requires more attention from both mathtécians and practical cryptographers.
The topic has been addressed in a talk of Allison Pacelli.

e Hash functions based on hard number theoretic problemsTraditionally hash functions are based
on various Boolean operations and whose design remindsaaet than anything else. Such functions
are usually very fast but have no proofs of security behimdnthwhich sometimes leads to such dra-
matic events of the recent collapse of MD5. Thus since récéiash functions which are based on
various algebraic structures have received a lot of atantSuch functions are usually much slower



252

Five-day Workshop Reports

but admit at least conditional security proofs. The topis baen addressed in talks of Qi Cheng and
Kristin Lauter

New subexponential attacks on the discrete logarithm prol@dm on elliptic and hyperelliptic curves
Although in generic settings still there are no viable appi®es to designing a subexponential algo-
rithm for these problems, in many special cases such attagks One of the very recent approaches
was discussed in a talk of Gerhard Frey and Nicolas Theriault

Studying smooth and other special values occurred among gup orders of various groups on
cryptographic interest. It is known that “smooth” group orders must be avoided, havdkie area
is lacking rigorous results confirming that this can be agde Group orders of elliptic curves over a
finite field of g elementd, which divideg® — 1 for some “small’k are of great interest too. They lead
to elliptic curves which are not suitable for standard Difiellman protocol but instead are of great
values for Weil and Tate pairing based cryptography. Thetbas been addressed in talks of Florian
Luca and Edlyn Teske.

Studying the distribution of various types of polynomials aer finite fields. In particular, this in-
volves obtaining sharp bounds on the number of smooth palyals is important for the discrete
logarithm problem. Certainly, the results of at least theadevel of precision as for the integers are
expected. Moreover, for polynomials over finite fields, te&brated Weil result provided a rigorous
version of the Riemann Hypothesis and thus one can actudilyigate stronger results. The topic has
been addressed in talks of Omran Ahmadi and Qi Cheng.

Computational challenges arising in algorithmic number theory and cryptography. There is an
on-going quest for developing new and making already algms faster, more portable and better ad-
justed to already existing hardware and software. Paealition is a new trend in this area as well.
Recently there have been remarkable achievements in seem@hmark problems, such integer fac-
torization, primality testing, computing the number ofision elliptic curves and computing discrete
logarithms. The topic has been addressed in talks of DansB#m Pedro Berrizbeitia, Francois
Morain, Oliver Schirokauer and Samuel Wagstaff.

Bounds of new exponential sums involving functions of crymigraphic interest. Such bounds may
lead to a proving expected pseudorandomness propertiesiolis cryptographic primitives, which
can be reformulated in terms of statistical distance, aeceip cryptology. Very often such exponen-
tial sums appear as eigenvalues of certain transformasiocryptographic interest and thus obtaining
sharp upper bounds on their magnitude becomes the of prmmrtance. The topic has been ad-
dressed in talks of Kristin Lauter and Kumar Murty.

Extending the scope on applications of computational numbretheory. Finding new surprising
areas of applications is always a welcome task. One of sustaneas has been outlined in a talk of
Denis Charles.

Studying multidimensional geometric lattices associatetb cryptographic constructions. Typi-
cally it is expected that such lattices behave as a “randattités and thus this argument is used to
justify the success of the LLL algorithm when applied to slattices. The underlying philosophy is:
“the vector which we want to find is much shorter than it is Uguexpected for a lattice of this volume,
thus it is very unlikely that there is another nonparallettgs of similar length, thus LLL should find
the desired vector” Rigorous justification of this principle typically leads new interesting number
theoretic questions and studying system of equations itefiirigs and fields. Although there has not
been any specialised talk on this topic its main underlyiogiivould be seen through many workshop
talks.

Scientific Progress Made

Most of the participants notice in their emails that this \wagery useful workshop with an atmosphere very
conducive to advancing research. Also the program wasdjastanulating and interesting, the best part of
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the meeting was the time we had available for discussions.niéeting happened just a few months before
the submission deadline for ANTS-7 (Algorithmic Number ©heSymposium, Berlin, July 2006), which
is a major event in the area of computational number theodycayptography. Many participants got new
ideas during this workshop which advanced and improved folow-up submission to ANTS, for example,
see [6, 7, 8, 10].

Besides general discussions which have created a verylatingienvironment and generated many new
productive ideas (as well as helped to clarify and weed a# \able approaches), the following concrete
results have been achieved (this account is based on paoksivap email exachange with the participants).

e William Banks, John Friedlander, Florian Luca and Igor Stipski discussed and found an improve-
ment to their joint work with F. Pappalardi [2], which has@nthen been accepted for Acta Arith-
metica. The paper studies the distribution of values of therichael function which apprears in
context in computational number theory and cryptographyiny these discussions an idea to use our
result to denominators of Bernoulli numbers was born andttirors hope to explore this idea in the
future.

e William Banks, John Friedlander and Florian Luca worked amtle some significant progress on
their project on numbens < 2 without a divisor in a fixed arithmetic progression. This qgdement a
series of results (of various authors) about integers wiivigor in a given interval. The fact that all
three co-authors were together for the first time in a londentelped to achieve a breakthrough in that
work. In particular, during the meeting one of the very diffiéssues in that paper was sorted out. That
paper has been finished since then and submitted a couplerdhsnago. This paper, as many other
papers initiated directly or indirectly by this meetingntains the corresponding acknowledgment of
the BIRS hospitality and support.

e lan Blake and Kristin Lauter had several discussions abasit functions based on elliptic curves and
found some interesting possibilities for further colladtown on this topic.

e Motivated by several workshop talks on hash functions baseddvanced mathematical structures,
lan Blake and Igor Shparlinski started a joint project inigegting the VHS (“Very Smooth Hash”)
proposed in 2005 by S. Contini, A. K. Lenstra and R. Steinfattd which was frequently mentioned
at the workshop. Since then Igor Shparlinski visited larkBlia Toronto where they continued to work
on the VHS. The preliminary version of their results is nowitable [3].

e Florian Luca and Allison Pacelli started a couple of prgjesbout divisibilities of class numbers of
function fields and algebraic number fields. Since then &fokiuca got a visiting position at Williams
College for the next academic year (to work with Allison Ricdn turn, Allison Pacelli got an AWM
travelling grant to visit Florian Luca in Montreal and MegicThey have worked on these projects and
already have an almost final preprint of about 15 pages whigphthope to finish soon.

e Florian Luca and Igor Shparlinski discussed the problemstifrating the square free part of linear
recurrence sequences. This is also related to estimatingumber of quadratic fields generated by
square roots of elements of linear recurrence sequencésh wbuld be an analogue of some results
of [5]. This project is now in progress and hopefully will bedlised in 2006.

e John Friedlander and Florian Luca discussed a conjectone[ft] related to some combinatorial num-
ber theory problem. Florian Luca made some initial progmssheir conjecture in Banff and since
then he settled this conjecture and submitted the paper.

e Andreas Stein and Hugh Williams had very useful discussionserning a new method of determining
rapidly large scalar multiples of divisors in the Jacobi&radyperelliptic curve. It was particulary
interesting because of possible applications of this ntetbahe problem of fast exponentiation of
ideals in real quadratic number fields, a problem of inteir@stmplementing certain cryptographic
key exchange protocols. The problems are similar, but amohyeans the same; nevertheless, Hugh
Williams was able after some time to apply Andreas Steirésitb an old problem in this area.
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Tanja Lange and Igor Shparlinski finished [9] where sevezal hounds of exponential sums are given.
These bounds imply the uniformity of distribution of somg@ences of points on elliptic curves (and in
particular can be of interest for pseudorandom number g¢inarand for elliptic curve cryptography).
It has already been accepted for the J. of Mathematical Glygy.

Gerhard Frey and Tanja Lange finished the paper [8] which &as bccepted for presentation at (and
publication in the proceedings of) ANTS 2006. The resulthif paper have very strong cryptographic
motivation and can be used to accelerate several cryptbigrpmtocols.

After several conversations at the meeting Allison Paeglti Andreas Stein started a joint research
project. Allison Pacelli has been invited by Andreas Steilllyoming to give a talk.

For primality proving for numbers of a certain type, the caitgtion ofa™ (mod v) is required, where
«is an element of a ring of integers of a number field or simplihefnumber fieldy is the number to

be tested and an ideal of the ring of integers, lying ovaer The computation is interesting for other
problems too. During the Banff meeting, in conversationthwiilice Silverberg, Pedro Berrizbeitia
learned about some progress that has been done in that arexdgmple, in the context of the XTR
cryptosystem) and, as a consequence, he has looked agedbktp that he had considered some years
ago, which is to look at that precise equation for a ratheci§padeal v in a cyclotomic field. Pedro
Berrizbeitia is hopping to conclude his work and to preseit the meeting in the Fields Institute,
from October 31 to November 3 2006.

Pedro Berrizbeitia and Hugh Williams had very useful distarss concerning the problem of very fast
primality testing for numbers that are of cryptographiditytin fast cryptographic signature verifica-
tion. They have started a joint project on pseudosquaresidasubes, and pseudorth-powers. Hugh
Williams now has a PhD student doing his thesis on this.

During the Banff meeting Pedro Berrizbeitia and Florian &uexchanged some ideas, as a conse-
guence of this, Florian Luca, will be visiting Pedro Beretia at the University Simon Bolivar, at
Caracas, Venezuela from June 24 to July 9, 2006 to teach aouiisie. Pedro Berrizbeitia and Florian
Luca also hope to be able to collaborate on some specific matial problem during this visit, and
beyond.

Collaborative efforts between Michael Jacobson, Renateifiter and Andreas Stein on cryptosystems
based on real hyperelliptic curves has resulted in a paperefatly in preparation) be submitted to a
new journal called “Advances in Mathematics of Communumagi’.

Collaboration between Michael Jacobson, Yoonjin Lee, ReSzheidler and Hugh Williams on a
function field generalization the CUFFQI algorithm of Shafér enumerating non-isomorphic cubic
fields using infrastructure of real quadratic fieldshasltedun a paper (currently in preparation) be
submitted to Mathematics of Computation in the near future.

Takakazu Satoh has discovered a gap in his arguments dusrglk (which was unscheduled and
given on the first day) but he could fix it during the conferenités quite certain that it would take
several weeks if he was not attending the workshop.

Denis Charles and Kristin Lauter had several very prodeatigcussions with Francois Morain about
their computing modular polynomials algorithm [4]. Fraischorain asked about some details and
pointed out a variation on that algorithm. He intended tolement this algorithm to test its perfor-
mance against the approach his student has been using.

Denis Charles and Kristin Lauter also had useful conversativith Kumar Murty.

Denis Charles had several illuminating discussions withrieh Lucan and Edelyn Teske regarding
embedding degrees of elliptic curves over finite fields.

Kristin Lauter had several discussions with Gerhard Freicwivere very useful to her in advancing
another project which is now finished and is to appear in ANAISyear [7].
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e Kristin Lauter and Oliver Schirokauer have started a joirgjgct on attacking the ECDLP (Elliptic
Curve Discrete Logarithm Problem).

e Alf van der Poorten has learned from conversations with &@Berrizbeita about recent work of Pedro
colleague Tom Berry, which is ofimmediate relevance to Alfider Poorten’s current research activity.

e During a lecture of Renate Scheidler, Alf van der Poortendiasovered that her work had strong
interaction with his and thus he was able to give her usefakmation and insights.

e Gary Walsh posed an interesting problem to Alf van der Poddevhich he hope to be able to make
a contribution.

e Francois Morain finished the writing of a joint paper with Ru@ry, "Fast algorithms for computing the
eigenvalue in the Schoof-Elkies-Atkin algorithm”, whichihvappear in the Proceedings of ISSAC’06.

e After a series of discussions, Pedro Berrizbeitia inviggar IShparlinski to give a mini-course on expo-
nential sums at the University Simon Bolivar, at Caracasieeiela in 2007 and establish a research
program in this direction.
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Flavors of Groups (05w5105)

November 17 — November 22, 2005

Organizer(s): Mladen Bestvina (University of Utah), Jeff Brock (Brown Warsity), Jon
Carlson (University of Georgia), Persi Diaconis (Stanforlversity), Hugo Rossi (Math-
ematical Sciences Research Institute)

Overview of the Field

This workshop brought together researchers working onbatge, analytic, combinatoric, geometric and
topological aspects of group theory in order to exchandaigties and ideas in preparation for the full year
emphasis at MSRI in the academic year 2007-2008 on all tregmects of groups. The four particular topics
present (representing the four individual semester progra MSRI) were:

Geometric Group Theory

This is a relatively young field, with older and deeper rootshie study of groups from combinatorial and

topological perspectives. In the mid 1980s, spurred bysadaCannon and Gromov, group theorists began
to pay attention to the geometric structures which cell cexeg can carry. This attention shed light on

the earlier combinatorial and topological investigatioasd stimulated innovative ideas which have been
developing at a rapid pace: Gromov hyperbolicity, BestBnady Morse theory, splittings and actions on

trees, rapid decay and the Baum-Connes conjecture.

Kleinian Groups

The study and application of recent advances in the claadit of hyperbolic 3-manifolds (the solution of
the tameness and ending lamination conjectures of Mardémtaurston) can lead to a better understanding of
the geometry of closed hyperbolic 3-manifolds. This wodoabuches on Teichmuller theory, and questions
concerning billiards and flows on Moduli space. Many of thagenues are potentially very fruitful for
further research and synthesis between, up to now, larggharhte fields.

Combinatorial Representation Theory
There is a productive interplay between combinatoricsnggoy, finite groups, Lie theory and hyperplane

arrangements in the applications to representation th&xgmples are: (1) the use of symmetric functions
and Hecke algebras in the modular representation theoryitd fyroups of Lie type, (2) the use of braid
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groups and finite dimensional algebras in the study of caiegmf highest weight modules and (3) the
use of tableaux, crystals, and the path model in the studemfesentations of algebras with triangular
decomposition.

Representation Theory of Finite Groups

Current research centers on many open questions, parlcrdgarding representations over the integers or
rings of positive characteristic. Brauer developed bldaoty to better understand such representations, and
in the last few years there have been many exciting new camgcconcerning correspondence of characters
and derived equivalences of blocks. Topics such as p-lacalps, group actions on finite complexes and
homotpy representations blend algebra and topology inl@mdeproductive ways.

With four talks a day there was plenty of time for informalalission and interaction among the various
areas of interest. On Sunday evening there was a meeting ®i8RI program organizers, initiating inte-
grated planning for the MSRI intensive year. In all, thereen@2 participants, of whom 7 were women. The
participants (speakers are asterisked), with their &fbilies were:
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Regulators Il (05w5032)

December 10 — December 15, 2005

Organizer(s): James Lewis (University of Alberta), Victor Snaith (Unisiy of Sheffield)

History of the subject

A regulator is a generalization of the logarithm. Dirichlsied the logarithm to define a map from the mul-
tiplicative group of a ring of algebraic integers to a reattee space. Then Dirichlet proved the celebrated
analytic class number formula which relates all the impanteumber theoretic invariants of the number field
to the covolume of the Dirichlet regulator. Since the 19@lischlet’s fundamental discovery has been found
potentially to occur elsewhere in number theory, in algiebgaometry, in class field theory, in algebraic K-
theory, in the theory of algebraic cycles and motives, artdiddge theory. Regulators come in many different
forms, according to the context.

For instance, the Borel regulator is the higher-dimendianalogue of the Dirichlet regulator, considered
as a map on algebraic K-theory in dimension one. On the otlred ,Hin Riemann surface theory, the regu-
lators might involve abelian integrals and Jacobians reditey the ideas of the 19th century analytic number
theorists and geometers. Generally speaking, in its cuimearnation, a regulator is a map from the alge-
braic K-theory of an algebraic variety to a suitable cohamggltheory such as étale cohomology or Deligne
cohomology.

The subject of regulators is a highly intricate field thategiand takes from a number of core fields in
mathematics, such as algebraic and analytic geometry réghthatic geometry, Hodge theory, mathematical
physics, algebraic and analytic number theory, algebraitd6ry, and so on. For instance, one of the simplest
examples of a regulator complex projective geometry isdhtite cycle class map from the so-called group of
analytic subvarieties of a given dimension to standardidarggohomology. The celebrated Hodge conjecture
is a statement about the image of this cycle class map.

Purpose of this meeting

A meeting of this type allowed the various groups of expeitsving the subject of regulators either arith-
metically, topologically (as in Voevodsky’s work, or as Wwas$ in terms of Lawson’s homology), or transcen-
dentally (i.e. Hodge theory) to compare notes. For thisaeaise topic of Regulators was particular ripe for
a conference at that time. In May 1998 there was an Oberwolifeeting on regulators (organised by Bloch,
Kolster, Schneider and Snaith) which resulted in some o&thencements mentioned above. The Oberwol-
fach workshop was generally regarded as a real successaundrtent organisers felt that this meeting was
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an appropriate sequel.

Relevancy, objectives and recent developments in the sulofe

The recentwork by Voevodsky in constructing the “motivibhomology” theory as suggested by Grothendieck,
and the resulting homological machinery associated togpsaach, and its subsequent use to solve the long-
standing Milnor conjecture, resulted in his winning thel@emedal in 2002. This provides an infusion of
new and powerful ideas in the study of regulators. Indeed/ddgky proved that his definition of motivic
cohomology agrees with two other versions already usedjulaor theory. Thus one can arguably make the
case that regulators are maps (sometimes called “realiwd)ifrom Voevodsky motivic cohomology, albeit
still hard to compute, to the “more computable” cohomoldugdries (Deligne, étale, absolute Hodge, etc.).
It is often the case that regulator maps can have highly iMaltkernels and images, which leads to higher
order invariants associated motivic cohnomology groupss iBrgenerally the case if one works with varieties
over the complex numbers, or even function fields of tranderoe degree 1 over the rational numbers.

A case at point is the conjectured “Bloch-Beilinson” filtoat, and the resulting “higher regulators” that
are associated to this filtration. Working over number fietdee expects a rather different situation when it
comes to the kernels of regulator maps. Another case at isgdim Bloch-Beilinson conjecture on the injec-
tivity (modulo torsion) of the Abel-Jacobi map for smoothieties over number fields. What is the status of
the conjectures related to the images and kernels of regslfar varietes over number fields, as well as over
the complex numbers?

There are the camps of arithmetists, “K-theory/motivicdtiogists” and transcendental algebraic geome-
ters who study these problems from different angles. Ittisrothe case that real progress in one camp is not
fully understood in the other camp. Two examples of relat@dhiems that involve the various camps are the
celebrated Hodge and Tate conjectures. A consequence effsoitfiul interactions between the arithmetists
and transcendental geometers on regulators on algebrééties has led to the fascinating development of
“arithmetical variations of Hodge structures” (P. Grif6{iM. Green, S. Saito, M. Saito, et al). A case at point
is the highly successful NATO Advanced Study Institute om Arithmetic and Geometry of Algebraic Cy-
cles, in Banff (1998), where these issues among the varammgs became transparent. This led to a sequel 3
week conference on The Arithmetic, Geometry and Topologhlgébraic Cycles, held in Morelia Mexico,
in the summer of 2003. At that time, V. Voevodsky’s recentgiraf the Milnor conjecture, as well as the
Bloch-Kato conjecture, was being discussed. This was amajestone, which eventually led to Voevodsky
receiving the Fields medal.

Organizational details and the Banff setting

Except for a scheduled free afternoon, noon departure dinédelay, and an extra lecture at night, all lectures
were planned during the day (a total of 5 daytime 1 hour takkg)ys to encourage research collaboration at
night. It is fair to say that this conference was an enormaogsess. The atmosphere was “electric”, with a
lot of interaction between speakers and audience, as wélligfsil discussions during coffee breaks and at
nights. The quiet scenic Banff backdrop provided the pédetting for research. Many of the participants at
this workshop are familiar with the European counterpa@lerwolfach Germany. The general concensus is
that BIRS facility is superior, not only in the capacity ofering better computerized facilities, with printer
and electronic library, but with a nicer scenic backdrop arulstling town within walking distance. The
support staff at BIRS performed their duties very professily.

Scientific merit of the talks

The talks can be broken down into a number of distinct aredsuhe umbrella of “regulators”.
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(i) Motives. As K-theory is central to the subject of regulators, it pgsman interpretation of everything
in terms of motives. Several outstanding talks in this dicecwere presented by S. Bloch, H. Esnault and
M. Hanamura.

(ii) Topological A natural cohomology theory associated to “equivariarto@ groups is the notion of
Bredon cohomology. This video taped lecture was presentd®hiblo Lima-Filho. Bredon cohomology is
considered more sensitive than ordinary singular cohogylB®ecently, this has led to a development of a
“Bredon” version of Deligne cohomology for real varieties.

(i) Polylogarithms Based on joint work with A. Goncharov and A. Levin, and cacted to the work of
D. Zagier, H. Gangl presented recent developments on theduf multiple polylogarithms associated to
algebraic cycles.

(iv) Transendental method$Jsing the techniques of Hodge theory, were several talkherollowing.
M. Asakura presented his results for elliptic surfaces,upport of a conjecture of Beilinson that general-
izes the classical Hodge conjecture. P. Brosnan, in hig jpork with G. Pearstein, presented results on
the asymptotic nature of a variational height pairing, imme of degenerating Hodge structures. J. Lewis
presented a normal function interpretation of a candidételBBeilinson filtration on higher Chow groups.
From a different perspective, there was the talk given by Kdta. H. Gillet presented his results towards a
sheaf theoretic construction of arithmetic Chow groups.

(v) Number theory That part of the subject of regulators connected to nuntimory, p-adic methods
and L-functions, connections to the Borel regulator andkStaonjecture was presented by R. de Jeu, W.
Raskind, Z. Wojtkowiak, V. Maillot and V. Snaith.

(vi) Arithmetic methods Those methods in the subject of regulators dealing witla@it cohomology,
rigidity, varieties over finite fields, were presented by Eisser, A. Langer, A. Rosenschon, and S. Saito.

Summary

The subject of Regulators is a highly evolved and intrintibjsect, involving some of the finest minds in the
world of mathematics, including many Fields medalists.slaisubject that is expanding at an accelerated
rate, and has attracted and inspired a new generation ofi@irmpnyoung researchers.

By any reasonable measure, this conference, being a secquel@berwolfach conference on Regulators
held in 1998, was an outstanding success. There is certaidlsire and need for another sequel to this
conference, most likely entitled, “Regulators I1”, to belth sometime and place in the not too distant future.
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Chapter 27

Second Northwest Functional Analysis
Symposium (05w2089)

March 17-19, 2005

Organizer(s): Douglas R. Farenick (University of Regina), Marcelo Lacaiférsity of
Victoria), Michael Lamoureux (University of Calgary), \W@r Runde (University of Al-
berta)

Functional analysis grew out of attempts—in the first halthaf twentieth century—to find a conceptual
framework for a wide range of analytic phenomena conceralggbraic systems of functions, such as ex-
istence and uniqueness of solutions to differential anepiratl equations. The discipline is well established
at universities in Western Canada, with two large groupkimgrat the Universities of Alberta and Victoria,
respectively, and smaller groups elsewhere (Calgary agthRgfor instance).

Research in functional analysis in Western Canada is ckotiein the following areas:

e Abstract harmonic analysis (Tony Lau and Volker Runde, lavthlberta);

e Banach space theory and geometric functional analysihéSaisvak, Nicole Tomczak-Jaegermann,
and Vaclav Zizler, all at Alberta);

e Operator algebras (Marcelo Laca, John Phillips, and landt all at Victoria, Berndt Brenken and
Mike Lamoureux, at Calgary, and Martin Argerami and Juli&nigman, both at Regina);

e Operator theory (Doug Farenick at Regina, Ahmed Sourouicbhia, and Vladimir Troitsky at Al-
berta).

The aims of the workshop were twofold: firstly, to enable aeshers from a large geographical area
to stay in touch with developments in the general field, buside their respective areas of specialization,
and secondly, to provide a forum for young researchers-effaculty, postdocs, and graduate students—to
present their results to a wider audience. For the secorsbmedive of the 14 talks at the workshop were
given by graduate students, and four by postdocs.

Besides researchers in functional analysis from Westenada there were also participants whose re-
search was not really in functional analysis, but in an atgficgently close. For instance, Karoly Bezdek
(Calgary) spoke about a topic in convex geometry, which lwemmections with geometric functional anal-
ysis, Bahram Rangipour (Victoria) presented results inroommutative geometry, a discipline with many
connections to operator algebras, and Alex Brudnyi wasimtgavith Lipschitz functions between metric
spaces. As there turned out to be sufficient space at BIR®iarttl, we were also able to invite people from
Manitoba, and Ebrahim Samei (Manitoba) presented his teesnl hyper-Tauberian Banach algebras from
his (soon to be defended) PhD thesis.
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As indicated by the title of the workshop, there was a Firstthlwest Functional Analysis Symposium.
It was held at BIRS in 2003 and organized by Tony Lau, Mike Laneax, lan Putnam, Nicole Tomczak-
Jaegermann. At the present workshop, the possibility ofrd theeting in the series was discussed, and the
general attitude was positive. A successor meeting nextweald probably be premature, but two years
should generated enough new results and sufficient turniotke postdoc and graduate student population
to justify a Third Northwest Functional Analysis Symposium
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BIRS 2005 Math Fair Workshop
(05w2608)

April 21-23, 2005
Organizer(s): Ted Lewis (University of Alberta), Andy Liu (University of Iderta)

This was the third BIRS Math Fair, previous ones being heldhii spring of 2003 and 2004. The
focus of these workshops was Mathematics Education, angdhecipants were teachers and educators
elementary schools, junior high schools, colleges andausities, and also people from other institutions and
organizations that have a deep interest in Mathematicsdfidunc

As with the two previous workshops, the purpose of this whdgswas to help teachers learn how to
run a successful math fair, to exchange information abodt fizgérs, and to put the members of this diverse
group in contact with each other. The deeper purpose is togehlne mathematical culture in the classroom,
and we believe that this is beginning to happen. For the maost fhe math fairs have been held in Alberta.
The BIRS math fair workshops have helped in spreading thelabout the success of our type of math fair
(which is radically different from a traditional sciencerjeand now such math fairs have been held several
provinces in Canada, in some states in the US, in Sweden,eqdts have been received that a math fair
based on our principles has been held in Africa.

As just one example of the local effect of this year’s BIRS mfair workshop, the Edmonton Catholic
School Board is involving a large number of schools in préegrmmath fairs in the 2005/2006 school year.
Schools in other districts are doing similar things, andheas have reported evidence that the math fair
has changed classroom attitudes to the extent that stidentess rates in mathematics have dramatically
increased.
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Dark Side of Extra Dimensions
(05w2041)

May 12—-14, 2005
Organizer(s): Valeri P. Frolov (University of Alberta)

The idea that the spacetime may have more than four dimengorery old. Starting with works of
Kaluza [1] and Klein [2], higher dimensional models weredige unify gravity with other fields. In more
recent time, it was demonstrated that the string theorychwis often called a theory of everything, requires
higher dimensions for its consistency. Models with the sfia@ with large extra dimensions were recently
proposed in order to solve the hierarchy problem, that ixjpdeén why the gravitational coupling constant is
much smaller than the coupling constants of other physintatactions. In such models, our 4-dimensional
spacetime is described by a 4-dimensional brane (submé@n@mbedded into a higher dimensional (bulk)
space. Particles and fields (except gravity) propagatemitie brane, while the gravity can propagate in the
bulk space. These new concepts of higher dimensional phisice a number of interesting applications in
modern cosmology and theory of gravity. At the same time tiegyire developments of the theoretical and
mathematical tools to address many new important questfritie "Dark Side” workshop new results and
open questions in this fast developing field were discussed.

One of the most important questions is to analyze how thatgtanal theory is modified in the presence
of extra dimensions. In the study of the Einstein equatiarthé 4-dimensional spacetime several powerful
mathematical tools were developed, based on the spacefinraetry, algebraical structure of spacetime,
internal symmetry and solution generation technique,@labalysis, and so on. At our workshop there was
discussion and concrete proposal, how to develop some s thethods to higher dimensional spacetime.

Many exact solutions of the Einstein equations in 4-dimemel case were obtained by algebraic methods
based on the Petrov classification. At the workshop it wap@sed and discussed the generalization of
the Petrov classification to higher dimensional case. It demonstrated that the robust classification into
Petrov classes can be done in arbitrary number of dimenglpnAat the same time, the number of different
degenerate subclasses within each of the Petrov classdieparthe number of spacetime dimensions. To
classify these subclasses in higher dimensions is much saopieisticated problem than in 4-dimensional
case.

Another problem which was discussed at the workshop is atemde and properties of different "black
objects” in higher dimensions. These objects are genataliz of 4-dimensional black hole solutions. Ac-
cording to the definition, a black hole is an (asymptoticélly) spacetime with non-trivial causal structure.
Black hole boundary is an event horizon, a 3-dimensiondasarwhich separates a spacetime region which
can be "seen” from infinity from an "invisible” region. Undehysically reasonable conditions, in 4 di-
mensions the horizon has the topology%3f x R!. Moreover, "uniqueness theorems” were proved, which
guarantee that for given value of global parameters (mamggjlar momentum, and charge) the stationary
solutions describing black holes are unique. Recently & demonstrated that the uniqueness theorems are
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not valid if the number of spacetime dimensions is greatan t#h [4]. Higher dimensions open room for
a variety of dark objects, which are natural generalizatioh4-dimensional black holes. Main difference
between these dark objects is the topology of their horizons

One of the problems which was discussed at the workshophgistaf higher dimensional dark objects
and possible transitions between them. Gregory and Laflafhuescribed a particular mechanism of the
instability of higher dimensional string, but what is a fistdte of a decaying dark string is still an open ques-
tion. At the workshop there were presented results of theanioal simulations of decaying dark strings [7].
Unfortunately these results do not allow one to resolve dyna and final state of this process. There exist
evidences in favor that the black-string—black-hoolegitons may be similar to critical phenomena and the
very transition from a black string to a black hole phase mayehsimilarity with the critical gravitational
collapse phenomena [8]. Another important connected probvhich was discussed at the workshop is pos-
sible instability of rapidly rotating black holes and blaikgs [5]. This area (stability of higher dimensional
dark objects and possible transitions between them) islaleivg very fast and for its progress developed
mathematical tools are required.

Another subject which was in the focus of the workshop wadystf exact solutions of higher dimen-
sional Einstein equations. Two new families of solutionseyaresented and discussed at the workshop. One
of them is a generalization of Mayers-Perry metrics for bigimensional black holes to the case when there
a non-vanishing cosmological constant [9]. Another newo$ablutions describes the gravitational field of
spinning relativistic objects (gyratons) in a spacetimgnarbitrary number of dimensions [10]. An interest-
ing property of the latter solutions, that the non-lineasteyn of Einstein equations is effectively reduces to
two linear set of equations in a flat spacetime. By solving¢himear equations, one can generate a solutions
of the non-linear problem.

One of the reasons why the higher dimensional theories bessmpopular recently is a possibility that
in the presence of extra dimensions one can expect credtinimbblack holes in future collider and cosmic
ray experiments. At the workshop there was given a detailedview of the corresponding results and were
formulated concrete physical problems which are to be sbfaee better understanding of such processes
[11].

To summarize, the workshop gave very nice view of the stasetah the higher dimensions physics and
mathematics of dark objects. It has very enthusiastic stijgmal many of participants proposed to organize
again a workshop on a similar subject in future.
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Chapter 30

Convex and Abstract Polytopes
(05w2037)

May 19-21, 2005

Organizer(s): Ted Bisztriczky (University of Calgary), Egon Schulte (Kwrastern Uni-
versity), Asia Ilvic Weiss (York University)

The rapid development of polytope theory in the past thiggng has resulted in a rich theory featuring
an attractive interplay of several mathematical discgdinThe 2-day Workshop was evidence that polytope
theory is very much alive and is the unifying theme of a lotexfearch activity.

The Workshop provided a much desired opportunity to shazentedevelopments and emerging direc-
tions on geometric, combinatorial, and abstract aspecfzobfope theory. We had twenty-nine official
participants (among them seven women, two graduate staidend many junior faculty), plus a number
of graduate student participants not officially register@dth few exceptions, the participants came from
North-America. It is noteworthy that the last major meetimgconvex and abstract polytopes was the NATO
Advanced Study Institute on "Polytopes - Abstract, Conved &omputational” in 1993 at Scarborough,
Ontario.

The Workshop focused on two overlapping directions of resea

e the classical theory of convex polytopes (see [2, 4, 5]), and

e the more recent theory of abstract polytopes (see [1, 3]).

The program featured three invited 50-minute lectures an®0-minute talks. For convex polytopes, there
was an attractive mix of talks about the combinatorial thgooncerning the numbers of faces of different
dimensions, the relations among various facial struciumesl generalizations such as matroids, oriented
matroids, and posets), and the metrical theory (the cogeexnetric study of volumes, surface areas, mixed
volumes, angles, and projections and sections). One of #jeritihemes to crystallize during the Workshop
was the necessity and importance of constructing new dasfspolytopes. For abstract polytopes, most
talks focused on polytopes with various degrees of comobirator geometric symmetry (regular, chiral, or
equivelar polytopes, and their geometric realization thg@s well as the structure of their symmetry groups
or automorphism groups (reflection groups, Coxeter groaps C-groups, and their representation theory).

The 2-day Workshop at BIRS was followed byPalytopes Day in Calgargt the University of Calgary
on Sunday, May 22, 2005, with two invited 50-minute lectuard five 20-minute talks, as well as two state
of the art discussions (problem sessions), one on convgxgpas and one on abstract polytopes.

Both Workshops were very favorably received by the pardiotg and were viewed as a success. In
particular, they prompted collaboration among partictpavith several papers as outcome.
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Chapter 31

Computer Science Chairs Meeting
(05w2602)

June 9 —-11, 2005

Organizer(s): Gord McCalla (University of Saskatchewan), Ken Barker {&nsity of
Calgary)

The Department Heads/Chairs of Computer Science meet Bytaushare ideas, discuss problems facing
the community, and set directions that are in the best oféstef all Computer Science Departments across
the country. Each year the venue changes to encourage tfumsevérious regions to attend the meeting
even if they are challenged financially. The 2005 meetinghweested by the University of Calgary and BIRS
generously offered to host the meeting as a part of theiesariBanff.

Unlike other BIRS workshops the purpose of this meeting wamarily administrative rather than being
focused on addressing a particular research question., Thigageport is intended to provide a very brief
indication of the kinds of discussions undertaken at thetimgeAs a result of the administrative nature of
the meeting, some of the discussions were also somewhatleatiéil and we are unable to report details of
the actual discussions undertaken.

The meeting consisted of a wide range of topics including:

e A Survey of the various Departments

e Research Challenges facing the discipline

Graduate student funding and education

NSERC grants and funding issues

Software Engineering

Computer Science Department Accreditation
e Establishing Awards for top ranked students

e Development of committees to initialize various initiats/

The details of each of these discussions are not includesltherif more detail about the meetings is
required interested reader can contact Gord McCalla or KekeB.
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Cascade Topology Seminar Meeting
Spring 2005 (05w2612)

July 14 — 16, 2005
Organizer(s): George Peschke (University of Alberta), Laura Scull (UBC)

This workshop was a meeting of the Cascade Topology Seniiiés.is a semi-annual gathering of the
region’s topologists which began in 1987, overseen by SBie#er (Portland State University) and Dale
Rolfsen (UBC). It is designed to foster contacts betweerkeis; as well as graduate students, in similar
fields across the region. It provides a venue for local togists to showcase their own work, and also an
opportunity to bring in speakers from outside the regioping local topologists to keep abreast of recent
developments.

In all these respects, the BIRS meeting of the Cascade Tgp@eminar was a great success. This
meeting had 25 participants from various schools in wesanada and the Pacific Northwestern US; a
few participants also came from the east (Ontario and thevestern US). The group included established
researchers, early career mathematicians and quite a ésluate students from various schools.

There were 6 one-hour lectures given during the meetinge forwhe spirit of the Seminar, the speakers
included a mix of established mathematicians (Ralph Cos¢anford U; Tony Elmendorf, Purdue U at
Calumet; and John Palmieri, U Washington) and early cammoldgists (Ryan Budney, U Oregon; Keir
Lockridge, U Washington; and Jens von Bergmann, U Calgafiyje talks ranged from pure homotopy
theory (stable homotopy and. algebras) to more geometric topology (spaces of graphs aatskand
symplectic geometry (contact homology). Details on tHegiand abstracts for individual talks can be found
at

http://www.pims.math.ca/birs/workshops/2005/05w2&thedule05w2612. pdf

In addition to displaying the range of recent work being dbype¢he region’s topologists, the workshop
was also a valuable opportunity for personal contact betwlee members of our various departments. In the
times provided for informal discussion, current reseanaljgets were discussed, and recent advances such
as the new book by Dave Morris (University of Lethbridge) avadvertised. PIMS and NSF funding was
extended to a number of graduate students to attend the, @rahthey had the opportunity to meet both
each other and the more senior topologists. In additiomsplar upcoming area topology events such as
expected visitors to the area and the special Topolgy sessiothe AMS meeting in Oregon and the CMS
winter meeting in Victoria were discussed. Overall, theapynity for the region’s topologists to meet and
discuss items of mutual interest face-to-face contribtaettie sense of community which is so valuable for
its members’ research.

The BIRS setting provided a beautiful and congenial envirent for this workshop, and the organizers
wish to thank PIMS for giving us this opportunity.
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Connecting Women in Mathematics
Across Canada Il (05w2010)

Jul 21 — Jul 23, 2005

Organizer(s): Malgorzata Dubiel (Simon Fraser University), Rachel Ku@isiversity of
British Columbia), Barbara Keyfitz (Fields Institute foetMathematical Sciences), Judith
J McDonald (Washington State University), Leah Keshet {drsity of British Columbia),
Ortrud Oellermann, (University of Winnipeg), Gerda de ri@niversity of Alberta),
Mateja Sajna (University of Ottawa)

Conference Activities

The participation in the conference was by invitation: thpleants had to submit a statement of interest, a
titte and abstract of a talk about their work and/or researtgrests, and a letter of support from their super-
visor. Twenty six women graduate students in mathematies finiversities across Canada were selected to
attend. They spend two intensive and exciting days, atten@ilks and presentations, and sharing experi-
ences with ten women faculty members, speakers and mentbes@nference. The graduate students each
gave a 20 min presentation or a poster on their work. The meotwmrdinating these sessions insured that the
women presented their work in a friendly, supportive enwinent and interacted with their peers and senior
women in the frbara Keyfitz, Director of the Fields Institta@d Neeza Thandi, Actuary for Liberty Mutual,
gave the two plenary talks. They spoke about their work are$ethey are involved in, and their careers.

The program included two panel discussions: Launching a&an Mathematics, and Changing Envi-
ronments in Mathematics and Academia. Both were followedrbgll group discussions involving students
and mentors. These discussions focused on giving pantitsjghe opportunity to discuss the hurdles they
have faced or may face in their studies and future careetih@m to overcome them.

For more information and the schedule of the workshop, see
http://www.cms.math.ca/bulletins/2005/cwimac05.tmdmenu=1

Assessment of Benefits

Connecting Women in Mathematics Across Canada Programédesduccessful in many ways. The work-
shop provided a venue for covering important topics relet@pursuing a mathematical career. It brought
together different viewpoints on options for career patits different routes to reach career goals.
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Young mathematicians received advice on practical issuels as applications, reviewing of files, net-
working, and interviewing. They also had a chance to voiablgms they may be experiencing, get some
new perspectives on their successes and concerns, and émeimlork connections, which they can use now
and in the future as their careers develop.

Timely issues such as the changing the culture of scienseusied in an environment with a mix of
viewpoints of the experienced and junior researchers, wasenlightening and motivating for all involved.
In particular it has been a pleasure to see a growing numb&owofen participating in our workshops that
continue to come to CMS meetings and are getting tenure frasiions at universities across Canada.

Future Plans

This workshop and the previous CWIMAC workshop have beerbtss for an upcoming series of work-
shops to be held at BIRS in the coming years. These workshitifeeus on examining recent advances and
barriers for increasing diversity in mathematics, seekiags to get the larger community involved.

In September 2006, BIRS workshop 06w5504 will bring togethemen and men mathematicians from
Canada, US and Mexico to examine what the institutes an@gsafnal organizations are doing now to sup-
port women, and what other initiatives can be undertakereyWill develop recommendations for future
collaboration and for activities in support of women in naattatics. In December 2006, Fields Institute will
sponsor the third workshop for women graduate students.

In Summer 2007 we will reconvene for a short workshop to me\ttee progress on the initiatives devel-
oped in 2006, and also to increase international connextigYe will also collaborate with another BIRS
workshop on Women in Engineering.
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West Coast Operator Algebras Seminar
2005 (05w2610)

Sep 15-Sep 17, 2005

Organizer(s): Anthony To-Ming Lau (University of Alberta), Volker Rund&fiversity of
Alberta)

The theory of operator algebras originated with the work .od.FMurray and J. von Neumann in the
1930s and 1940s. It has been an active—and still expandinga-efresearch ever since, which has manifold
interactions with other areas of mathematics such as mattieahphysics, algebraic topology, differential
geometry, and even (quantum) computing.

The area is very well represented throughtout the North AcaerWest Coast. Berkeley—with Arve-
son, Jones, Rieffel, Voiculescu—and UCLA—with Effros, @aa Popa, Shlyakhtenko—are probably the
best known centers of high level research in operator atgeldn Canada, a strong group—Laca, Phillips,
Putnam—exists at the university of Victoria. There are mawaye, albeit smaller, groups working on opera-
tor algebras throughout Western Canada and the Westerad Biiates.

The series of conferences now known as the West Coast Opaéidgbras Seminar (WCOAS) started
with a meeting at UCLA in 1991, and has been held almost eveay gince. It was held in Canada for the
first time in 1996 (UNBC), then again in 1999 (Victoria), anddafily twice at BIRS (2003 and 2005). In
the years since its inception, the WCOAS has become a rebilgirkaccessful forum for the interaction of
researchers that are spread out over a vast geographiaarad®therwise have little opportunity to exchange
ideas. In particular, it is of considerable value to gradwsatidents and young researchers in the area.

The 2005 meeting in the series was the second one at BIRSd Bhaarticipants, four of whom were
graduate students and three postdocs. With two excepadinmrticipants were affiliated with universities
in Western Canada or in the Western United States. The tweptons were George Elliot of Toronto and
Hiroki Matui of Chiba (Japan) and currently visiting at \Gcta.

The program consisted of twelve talks altogether. Thréestakre one hour long:

¢ J. Phillips,A survey of the analytic approach to spectral flow with som@ieations

e E. G. Effros,On the free analogues of Hopf algebras associated with tleedr&runo algebra, and
the Connes—Kreimer thegry

e D. BlecherDual operator algebras and non-commutati/é®.

Further talks of half hour length were given by D. R. Farenigk Floricel, K. Goodearl, A. Kumijan, H.
Matui, I. Nikolaev, N. C. Phillips, D. Sherman and A. Sourour

The talks were all of considerable mathematical quality eovkered a wide range of topics, showing
once again how diverse and lively the area of operator asgeieis become. Even though the tight timeframe
of a 2-day workshop did not leave as much time for interacismimay have been desirable, the workshop
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certainly accomplished its goal of bringing researchegstioer and providing a platform for the exchange of
new mathematical ideas.
The next WCOAS will be—in all likelihood—be held at the Unigéy of Hawaii in early 2007.
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Alberta Postsecondary Curriculum
Conference Il (05w2613)

Sep 29 - Oct 01, 2005

Organizer(s): Jack Macki (University of Alberta)

Decision 1: To form the group ACUPMS: Alberta Committee orddrgraduate Programs in the Mathe-
matical Sciences, with initial secretariat consisting @My Estabrooks (Red Deer College), Dave McLaugh-
lin (Grant McEwan), Jack Macki (PIMS), Joan Stelmach (U olgaay), and Pamini Thangarajah (Mt.
Royal). (Other names suggested: Math for the Millennium,aRd Alberta Advanced Curriculum Study
Group-this last has the great sounding acronym AACSG).

Decision 2: A new curriculum in Analysis will be prepared bgmup: Gary DeYoung (Kings College),
Bill Freed and Andreas Guelzow (Concordia), Bill Hackbofugustana), Tom Holloway (U of Alberta),
Dave McLaughlin (Grant McEwan), Viena Stastna (U of Calyaaynd Peter Zizler (Mt. Royal), chair Jack
Macki (PIMS). It will be Jack Mackis responsibility to pregsa detailed syllabus for each of these two se-
guences.

Decision 3. We will set up a website for the ACUPMS. It will ran a server based at an Alberta school,
and there will be a link to it from the PIMS website under Edigra

Decision 4. A group will investigate e-learning: Manny Hstaoks, Andreas Guelzow, Len Bos (U of
Calgary), Darius Holland (U of Calgary), Malcolm Robertslarom Holloway (U of Alberta). The group
will be examining, among other items, the quality and feiigitof: Webworks (U of Calgary), MACSYMA
(now called MAXIMA—-open source), Maple online, eGrade.

Decision 5. Form a visiting committee from PIMS. This contegtcould consist of college and univer-
sity mathematicians and non-academics with a scientifikgracind. The mandate would be to 1. Visit,
by invitation, college math departments and talk over issuéunding, failure rates (pressure to pass more
students), grade inflation, admission standards.

2. If requested by the department, ask to meet with uniweasiministrators and hear their concerns.

3. Meet with representatives of client departments andtiasuvho send their students to study math with
the department.

4. Take some time to discuss their findings among themsedwnelsprovide a formal report.

From Thursday evening until Saturday noon, the meeting mtesse and the participants hardworking

and looking for solutions rather than simply criticizingetBr Zwengrowski of the U of Calgary provided a
nice break in the intensity by describing his course Math@akExplorations, aimed primarily at Arts and
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Elementary Education students. To begin, Peter asked fmmmation on other courses aimed at these stu-
dents. Mt. Royal has The Beauty of Mathematics, Kings Cellegs Modern Applications of Mathematics
and Foundations of Mathematics, Concordia has Math Motifs.

A BRIEF SUMMARY OF DISCUSSIONS

1. The Social and Political Context: Colleges are expandimiyersity enroliment is increasing, and
these huge numbers of students are arriving with high eagiens (like Garrison Keillors Lake Wobegon,
where every child is above average). Among the studentsharsharks (e.g., highly aggressive pre-med
students). Many (too many) of entry level math courses arghtiby sessionals. The financial pressures on
the higher administrationat least as they see itare su¢hhéawant a high flow-through, which is adminis-
tratese for pass them. Students are not accustomed to mg¥epics at the rapid pace of university courses.
Do we need some sort of accreditation procedure to ensuoglinttory courses are being taught by qualified
instructors. Do we need remedial courses?

A sample of thoughts presented:
We may want to consider allowing students to write the finan®in a math course many times (e.g. three
times), during any exam period within say two years of thegkirig the course. This is a common practice in
Europe.

We should make every effort make our core compatible wittBt@ core curriculum.

We will need to distinguish carefully between curriculundgredagogy. This proposal is only about
curriculum (so far).

How does computation enter at each stage of our analysieseg®
Applications—which are relevant, how do we integrate them?
Evaluation can use a variety of techniques.

2. e-Learning, Blended Learning
Con Ferris at Red Deer College has been using eGrade for fars.y&ed Deer has a committee (Manny
Estabrooks is on it) which is evaluating Maple On-Line arftkoipossibilities. Andreas Guelzow is very en-
thusiastic about open-source MAXIMA. Atthe U of A, Maple sad for Engineering labs in year 1. Statistics
courses use a range of tools, including on-line exams. V&taatna reported that on-line lab quizzes for a
linear algebra course was not a success (actually, shetsaés ia mess). Gary DeYoung has just started a
project at Kings College, using LaTeX. Len Bos is running gangroject at the U of Calgary (WebWorks?)
with a $100,000 grant. Joan Stelmach (U of Calgary) pilotetbWorks with a discussion board. She was
amazed at the time students would spend trying to get a ¢@nsever, rather than studying and analyzing
the source of their difficulty. ePlus is better because ithiats that help avoid this problem. Peter Zwen-
growski (U of Calgary) reported that they stopped using Wetk&/for testing and grading in a four section
ode course—it was just too much hassle. Upside pointed osewsral: eLearning allows students to learn
on their schedule. Some students thrive with it. Downsidadé&nts dont learn to organize their homework
as a written presentation; they do not learn to be neat arghargd. Consensus: Thorough and long-term
evaluation of eLearning is needed.

List of Participants
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Chapter 36

Analysis, Computations, and
Experiments (05frg060)

March 12, 2005 - Mar 26, 2005

Organizer(s): Huaxiong Huang (York University), Robert M. Miura (New Jeydnstitute
of Technology), Demetrius Papageorgiou (New Jersey utstibf Technology), Michael
Siegel (New Jersey Institute of Technology)

Introduction

This Focussed Research Group brought together a criticed ofaesearchers to work on fundamental prob-
lems that involve the breakup of liquid jets and on fluid andtifjat problems that are motivated by industrial

applications. Recent theoretical advances in the undwtistg of the breakup of single fluid jets are ripe to

translate the control of breakup of jets. We also used comonathematical models to investigate utilizing

liquid jet phenomena in the manufacture of micro- and naradesstructures. Significant work remains to

be done in the modeling and analysis of jets with more coraf@itt geometries (e.g., compound jets) and
involving complex fluids, which are typically found in indugl applications.

The FRG included applied mathematicians involved in madgknd asymptotic analysis in fundamental
problems (Papageorgiou, Siegel, Howell, Young) as well aserapplied problems motivated by industrial
applications (Huang, Miura, Wylie), and a physicist withpexrtise in modelling and numerical simulation
(Zzhang). Many of the program participants are internatigrianown for their contributions to interfacial
fluid dynamics.

Microdroplet Formation in a Patterned Hele-Shaw Cell

Parallel submicroliter polymerase chain reactions (pexjehbeen utilized for DNA diagnostic applications
[14]. A lattice of wetting (hydrophilic) patches is pattedhon the interior faces of two (hydrophobic) glass
plates of a Hele-Shaw cell and the patterns are aligned. difirst fills up the cell, and then a second, im-
miscible fluid is used to displace the excess liquid betwkemtetting patches to form multiple microdroplet
liquid bridges between the plates. The droplets of liquidgethickness which is usually much smaller than
the characteristic lengths of the plates.

Preliminary studies that focused on the steady configuratiticate that the dynamic aspects of the filling
process may be important. For example, droplets would maot fothe filling speed is too fast. Furthermore,
the viscous forces between the displacing and the dropliefsflmay be important in the filling process.
Motivated by these important issues, during the BIRS FRGmueelled the dynamic filling process as a
pressure-driven, two-dimensional Hele-Shaw flow.

We started a preliminary investigation of solving the maztplations numerically using moving boundary
methods. The standard boundary integral method has bedrtaisenulate drop dynamics due to electro-
wetting in a Hele-Shaw cell [6]. However, this method canmatdle topological changes of the interface,

293



294 Focused Research Group Reports

such as during droplet formation as the interface is pudmedigh a wetting patch. Consequently, level set
methods are used to accurately capture droplet formatitmlitie artificial manipulation of the interface.
The problem also has been reformulated using a phase fietdagpwhere the sharp interface is replaced
by a thin layer characterized by an order parameter.

Influence of Surfactant on Contact Line Stability for Coating Flows

The coating of a surface is a process of obvious industripbitance and provides strength to the surface or
achieves some desired physical properties [12]. We condigdwo-dimensional coating flow of a moving
substrate in contact with a liquid bath (e.g., see Figur&&periments show that at sufficiently high coating
speed, there is an instability of the fluid-substrate cdtitae, whereby a filament of air is ejected downstream
into the liquid bath. This instability, which has been re¢etto as ‘tip-streaming’, is detrimental to the coating
process.

Air

Fluid L B

Figure 36.1: Geometry for the coating problem. The fluid s@agubstrate moving to the right with spdéd

At the BIRS FRG, we investigated the role of surfactant orstigaming and air entrainment during
coating flows. The presence of surfactant has been showntegzetant during tip-streaming for the related
problem of a bubble in an imposed extensional flow, see Figéré. Surfactant transport at a contact line
between a liquid and a moving solid substrate is a fundarhprgblem that has received scant attention.

Unfortunately, mathematical modelling is complicated hg presence of the contact line. It is well
known that imposing a dynamic contact angle other thagives rise to a discontinuous velocity field at
the contact line. This is accompanied by a nonintegrabésstsingularity at that point, which is physically
unrealistic. To avoid this difficulty, we can assume thatitherface is tangential to the solid at the attachment
point, i.e., the contact angle is. This has the advantage that, for single fluid systems, teeist local
solutions which are devoid of nonintegrable stress singigda.

In our analysis, we therefore assume that the (microscopiact angle equats Material points on the
free surface are prescribed to have spEethe speed of the solid, and the surface velocity is contisuad
the contact point. The interface then rolls onto the solidjlar to the rolling motion of a tank tread.

Influence of Soluble Surfactant on the Breakup of Two-Fluid Mscous Jets

Bubble and drop breakup is a fundamental process in fluidmjaga At this FRG workshop, our investigation
was to determine the influence of surfactant on the breakap ektended bubble immersed in a much more
viscous fluid.

Earlier studies [7] have shown that insoluble surfactantd@matically retard the pinch-off of the in-
terface. Instead, the interface develops a thin, quablestylindrical thread connected to nearly spherical
regions (i.e., a dumbbell shape). The local surfactanteotnation in the thread is large, owing to the rela-
tively small surface area. We therefore expect that in thebde case, there will be considerable surfactant
transport from the interface to the bulk, which will have gnsficant effect on the pinching dynamics.

A simple model was developed at the workshop to examine @msport of soluble surfactant for a cylin-
drical interface separating an inviscid inner fluid from acdus surrounding fluid. The interface location
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r = R(t) and velocityR are prescribed functions of time. After a series of transfations, the bulk sur-
factant concentration was found to satisfy an initial/bdeny value problem for the heat equation. This was
furthered transformed into a one-dimensional integralagiqn for the bulk surfactant concentration. The
solution of this equation was left for future work.

Drawing of Microstructured Optical Fibres

Microstructured optical fibres, consisting of a lattice offeles in a glass fibre, have many desirable optical
properties and offer exciting possibilities for novel apations. The first step in their manufacture is the
production of a preform, a few centimetres in diameter, amiig the desired distribution of holes. This may
be achieved, for example, by sintering together glassleapiubes. The preform then is heated and drawn
down to a typical diameter dfo0 ym. A drawn microstructured fibre is shown schematically in feg86.2,
which is not to scale and has fewer holes than in practiceZ88ynot necessarily circular).

Figure 36.2: Schematic of a microstructured optical fibre.

Much empirical progress has been made in constructing fibitesncreasingly complex microstructure.
However, attempts to model the process mathematicallytese limited to an axisymmetric fibre containing
a single circular hole [4, 5, 16], which discards some of itstimportant characteristic features. To improve
the flexibility and reliability of the process, several &ffe contributing to the evolution of the hole require
study, including the shrinking of the fibre cross-sectionmyidrawing and the flow exerted on each hole by
the other neighbouring holes. Surface tension may causedlies to shrink, potentially closing altogether,
thus pressurising the holes may need to be considered maticatty.

external
flow

3

Figure 36.3: Schematic of a single hole in an external flow.

At the FRG workshop, significant progress was made on fortimglahe problem in a mathematically
tractable way, yet retaining some physical reality. Usimgtyrbation methods, we transform the slender
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three-dimensional geometry to a sequence of weakly-cdupie-dimensional problems for each fibre cross-
section. This was achieved previously for a simply-coneedibre [2] and for a single bubble in an infinite
fluid [8]. Further analysis is required to apply these methiadfibres containing many holes which may be
pressurised.

A numerical method was devised by Kropinski [11], who depeld an integral-equation approach that
is spectrally accurate. However, it is necessary to diseretach fibre cross-section in this way, which is no
more efficient than a boundary-integral formulation of thkk three-dimensional Stokes flow problem.

We have begun to formulate an alternative approach to thielggrg similar to Crowdy’s [1] model for
two-dimensional elliptical pores. Each hole is considénddolation, subject to an external flow, as indicated
in figure 36.3. For linear and certain nonlinear external §i¢#8], exact solutions for the interface evolution
may be found in the form of a time-dependent conformal mam fitee unit disc. We propose to describe the
interface using a truncated polynomial conformal map.

This approach would allow each hole, and the fibre as a whwlee tharacterised by a small number of
scalar coefficients in a conformal map. The asymptotic aislgf the slender geometry then would allow
us to construct a system of partial differential equatiamsdil these parameters as functions of time and
axial position (as in [2]). Work has started on analysingtibke-scale and fibre-scale problems depicted in
figures 36.3 and 36.2. We anticipate that a working numeciodé will be completed and written up within
one year.

Thermal Instability in (Viscous) Glass Threads

Viscosity of glass varies rapidly with temperature. In thhawing of glass threads, heat transfer will play
an important role in the dynamics. A thread which cools tokjy will become viscous and require large
forces to stretch it, so it is natural to heat the thread astieing pulled. An important factor in the design of
glass pulling devices is that they easily achieve stablerabdst operating conditions.

The group has considered a thread that is heated while beifedpvith a constant force, following a
model proposed in [9]. Physically relevant simplificatidhen lead to a set of coupled nonlinear hyperbolic
equations. Analytical solutions to the steady state equatfor both uniformly and non-uniformly heated
threads are obtained. We show the surprising result thadgt&ates exist in which an increase in the pulling
force actually causes a decrease in the exit speed of thadtlatethe end of the device. This situation can
occur if the viscosity varies very abruptly with temperatand the heating rate is large enough. Assuming
that the viscosity varies exponentially with temperatifréhe heating is uniform, then such behavior does
not occur because changes in the viscosity are not fast enélayvever, if the heating is non-uniform, then
the device can exhibit this behaviour. By considering atiahvalue problem, we show that these types of
solutions are unstable, and if one operates the devicesmp#rameter regime, the thread will pinch.

We also show devices with fixed pulling speed can exhibitdngsic behavior that leads to rapid changes
in the pulling force as the pulling speed is slowly varied.

Pulling Glass Microelectrodes

From an applied point of the view, the group studied a glass filbawing problem related to the pulling of
glass microelectrodes. Glass microelectrodes play amgsismle in cell electrophysiology, where they are
used to inject electric current and dyes into cells and nreasiembrane electrical potentials. Laboratories
using these microelectrodes usually make them using coniatigravailable glass tubes and pullers that use
coil heaters to soften the glass during pulling. In [9], eafletl mathematical model was developed to predict
the stretching and breakup of the glass tube using a vepididr. The model is highly nonlinear and was
solved numerically. Useful insights were given, e.g., tffeat of heater temperature on the formation of
electrodes.

During the BIRS FRG, we simplified this model so that an anedytsolution can be obtained for a
simple case. It is desirable to identify the main factorg tieve direct influence on the electrode shape,
which is of critical importance. We concluded that the sewtradiation energy from the coil heater can be
approximated by a piecewise constant function. This siileglthe model and allows an analytical solution
under a constant pulling force, a feature of more advanceddrial pullers. Even for the vertical puller, a
semi-analytical solution can be obtained.

For an arbitrary heater strength variation, the simplifiextial allows the implementation of a more effi-
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cient Lagrangian-based numerical method. After the BIRSslwop, we have carried out detailed parameter
studies on the break-up of the glass tubes to form glass slextvodes. A paper [10] has been submitted for
publication.

One problem that we have not investigated is the detaileakiiemechanism. In the current work, we
used a phenomenological breaking stress formula. The bpeatkthe viscous thread here is different from
the surface tension induced instability. Instead, the karpas most likely caused by spontaneous fracture
due to surface damage during the extension process.

Core-Annular Flows

Core-annular flows are two-fluid flows in circular tubes andsist of a core flow occupying the central region
of the vessel surrounded by a lubricating annular fluid. Tikty of the annular fluid to ‘lubricate’ the core
fluid has potential applications in the oil and food indwesrie.g., a highly viscous fluid can be made to flow
efficiently with a given pressure gradient due to the sligpthat the annular fluid provides. In applications,
an interfacial instability can cause a breakup of the coid ftuproduce drops or slugs of the higher viscosity
fluid suspended in the lower viscosity one, or an emulsiorigit fiow rates.

This problem involves modelling and mathematical analpsised on the Navier-Stokes equations in a
three-dimensional axisymmetric geometry with a free baupdeparating the two fluids. Some attempts
have been made to attack this formidable problem with dsgotilations. When the annular fluid layer is
thin compared with the core fluid radius, rational asymptetipansions lead to an evolution equation for
the interface, which includes long wave instability and liveerarity. Of particular interest is the behaviour of
solutions with long wave periods and which become chaoti@reigenbaum period doubling cascade.

The group considered the problem when the core fluid has d sadals compared to the pipe radius and
has a viscosity that is small compared to that of the surrimgnituid. This fits nicely with the holey fiber
work considered by the group, since it has a finite geometeytdthe presence of the walls. Pressure-driven
flow also is different and the two problems are complementéng group considered the problem asymptoti-
cally in the case of a highly viscous annulus and an inviscie cA nonlinear evolution equation was derived
and was studied for nonlinear features, e.g., travellingasaThe equations need to be solved numerically,
which should suggest some more analysis, in order to proalgemblication. All these aspects are currently
being investigated.

Surface-Tension-Driven Breakup of an Air Bubble in a Viscous Liquid

If you invert a nearly-full jar of maple syrup, you will see air bubble form and rise upwards. If the air
bubble becomes sufficiently elongated during the rise, lit weak up into smaller bubbles. Recently, it
has been shown that this phenomenon exhibits exceptioeakbp dynamics [3], i.e., one which retains the
effects of boundary and initial conditions to the final pahbreakup. Previous examples of surface-tension
driven breakup have shown that the interface shape colams® a single, unique form after appropriate
dynamic rescaling of the coordinate axes. Such scaleianaglynamics is obtained when the behavior is
governed solely by the proximity of the breakup, with no degence on boundary and initial conditions.
The memory-preserving breakup dynamics was identified asuwltrof surface-tension driven breakup with
an essentially static interior, with evidence providedirexperiments, simulations, and theory [3]. Recent
numerical simulations [15] of a surface-tension driverakue of a cylindrical hollow inside a viscous jet
provided further confirmation of this unusual property assted with static-interior breakup.

A long-wavelength model for the time-evolution of the bubllrface [3] and static-interior breakup
process was derived to describe the breakup dynamics. Thremon breakup scenarios are analysed: the
detachment of a large bubble from a nozzle, the breakup offamtely long cylinder (see [15]), and the
breakup of a finite-sized bubble. Exact expressions for theble shape and interior pressure are derived
for the simpler limiting situations of infinite cylinder bakup and nozzle detachment. Our analytical results
show that the shape at breakup retains an imprint of bouratayinitial conditions. They also show that
the long-wavelength dynamics associated with a stat&rimt breakup cannot give rise to new minima in the
bubble shape.

As bubble breakup is approached, the solution of the longeileagth equation for surface evolution
approaches the same form regardless of initial and bourcdengitions. Since the collapse does not distort
the neck shape, this shape retains an imprint of initial andhidary conditions, as noted in [3].
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Figure 36.4: Geometry for the coating problem. The fluid s@agubstrate moving to the right with spdéd
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Figure 36.5: A bubble immersed in a viscous exterior liquid.

For an air bubble, the interior flow speed is always signifigaarger than the exterior flow speed, and
therefore, the breakup corresponds to surface-tensigerdbreakup with a static interior. Near breakup, the
bubble neck simply collapses inward at a uniform rate, sgarki36.5, in contrast to other situations where
the interior flow is significant and the breakup dynamicseestowards a scale-invariant form. The analysis
shows, in the long-wavelength limit, that the static-irdebreakup has the unusual property that all unstable
modes grow at the same rate, i.e., there is no fastest granaaig. As a consequence, the breakup dynamics
is highly sensitive to details of the initial shape.

In the long-wavelength limit, an initial shape with a minimphowever small, breaks up into two bub-
bles. An initial shape which is everywhere convex, howexégrded, rounds into a sphere.
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Local index theorem in noncommutative
geometry (05frg603)

April 16 — April 30, 2005

Organizer(s): John Phillips (University of Victoria, Canada), Alan Cai@ustralian
National University), Nigel Higson (Penn State)

Adam Rennie (University of Newcastle, Australia), Nuruaamov (Flinders University,
Australia)

There have been two new proofs of the Connes-Moscovici liockdx theorem [2] produced by some
of the organisers and described in [H] and [3] [4]. The lapfievof applies also to the situation where the
standard spectral triple [1] consisting of’& algebraA acting on Hilbert spacé/ and an unbounded self
adjoint operatorD with [D, a] bounded for alla in a dense subalgebra of is replaced by a semifinite
spectral triple. The latter meamsis affiliated to a semifinite von Neumann algefavhich contains4 and
the resolvent ofD is in the compact operators j«i.

The two week period was divided into three parts due to thetifead Alan Carey and Nigel Higson were
only able to come for one week each and only overlapped by tthegs. The organisers agreed that the main
focus of the fortnight would be on examples and applications

For the first three to four days the emphasis was on checkandetails of a preprint by Pask and Rennie
in which the semifinite local index theorem was applied tdaiargraphC*-algebras. The algebras studied
admit a natural action of the circle group and were constgioy the requirement that the algebra should
admit a trace. There were problems with the construction sfiitable trace and so considerable effort
went into understanding whether the trace was continuoas imppropriate sense. After much effort, these
problems were satisfactorily resolved.

After Carey and Azamov arrived talks were organised on arprepf Azamov, Dodds and Sukochev
in which the Krein spectral shift function was constructedhe semifinite von Neumann algebra setting.
The question of whether it is related to spectral flow wasexdhid-or a certain path of unbounded operators
equality of the two was verified in the case of finite von Neumalgebras. It was conjectured that in general
they are not directly related but that there might be a waystogapectral flow to ‘subtract’ discontinuities in
the spectral shift function. Azamov promised to report bankhe outcome of this idea after returning to
Adelaide.

Phillips contributed a number of missing results and preofa manuscript in preparation in which an
overview of the analytic approach to spectral flow in sentéinen Neumann algebras is given. The principle
objective was to outline the analytic definition of specftalv when one was in the situation of paths of
operators in a von Neumann algebra with non-trivial cenfersecondary objective was to answer some
natural questions which had arisen in the 10 years sincég3hilriginal paper on this subject. The ms also
contains many examples and the details of these were det.uEke ms is now nearing completion and will
be the first publication arising from the BIRS interaction.
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Upon Higson'’s arrival there were informal lectures orgadisn K K theory. The object was to under-
stand how to usé K theory to understand extensions of the Pask-Rennie pteprather settings. Higson
was able to clarify some of the constructiongddri theory that might be relevant in applications of the local
index theorem to graph algebras. Lectures were given by iRemthe Cuntz algebra arftl/,(2) as graph
algebras and conjectural applications of the semifinitalloalex theorem to them.

There were a number of small group research sessions igagst various questions related to these
potential applications. There were also informal disaussiof applications of the local index theorem in
other settings such as subelliptic operators.

After the departure of Carey and Higson, Azamov pursuedéhaion of the spectral shift function to
spectral flow, while Phillips and Rennie made significantgpess on the Cuntz algebra example and some
related problems. The progress centred around understatai/A’ K pairing being computed by the spectral
flow formula in the Cuntz algebra example. T$&,(2) example was examined again in light of the progress
on the Cuntz example, but little headway was made.
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Chapter 38

Influenza Dynamics: Models and Data
(05frg084)

May 28 — June 9, 2005

Organizer(s): Chris Bauch (University of Guelph), Jonathan Dushoff (Beton Univer-
sity), David Earn (McMaster University), Junling Ma (McMas University), Christina
Mills (Harvard University), Joshua Plotkin (Harvard Unisgy)

The recent workshop at BIRS offered us a fantastic oppdstdimi collaboration and focused, productive
research. The workshop exceeded our expectations in tefrtie doreadth of the academic subjects we
explored, and the collaborations we established.

A subset of our group has been collaborating for severalsyeale have used mathematical models to
study the spread and evolution of influenza viruses. Theqa#rpf this workshop was to attempt reconcil-
iation of our models with empirical data on influenza epidesnand to form a collaboration with Christina
Mills and Marc Lipsitch from the Harvard School of Public Hiba We have progress to report on both
of these goals. Perhaps most important is the strong colitiba we have formed with the Mills/Lipsitch
group, resulting in two completed manuscripts already. Siitestance of these studies, as well as others that
we initiated at Banff, are described below:

During our workshop at Banff, we completed a manuscript (M$ that uses empirical data from the
infamous 1918 “Spanish Flu” pandemic and highlights thicaepuzzle about influenza persistence. The
most basic, longstanding mathematical model of diseassrtission divides the population into three classes
(Susceptibles, Infectious, and Recovered/Immune indalg) and describes flow between these classes with
a system of three ordinary differential equations. Gives standard model of disease, and given the empir-
ical influenza epidemic curve and infection rates obseruatié United States in 1918, we have estimated
that a very large proportion of the population was infectead(thereafter immune) to the Spanish Flu of
1918. According to these estimates, only a very small pitiignoof the population remained susceptible to
influenza after the pandemic — too small to support the iotieof another epidemic the following season.
But the empirical data indicate that another influenza epidelid indeed occur in 1919, which raises a the-
oretical puzzle. Our manuscript describes this enigma dfiedsoseveral hypotheses for its resolution: the
virus may have evolved to such an extent in 1918 that couidfest individuals in 1919; or the virus could
have persisted in 1919 due to heterogeneities in the hostgidgn and “pockets” of remaining susceptibles;
or (perhaps most intriguing) the virus may have evolved atgreability to spread, allowing it to persist
despite the small number of susceptible hosts to suppdduit. manuscript does not attempt to resolve this
enigma, but rather to describe how the puzzle arises fromdh#ination of standard mathematical models
and empirical data from the 1918 influenza pandemic.

We have also drafted a second manuscript (MS #2) that arsllgeesffects of spatial aggregation of data
on the estimation of critical epidemiological parametsis;h as the initial rate of disease spread, used in
mathematical models. Measures of disease transmisgiilkt often estimated using data aggregated at a
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large spatial scale (e.g. city, state, country). Using lidfl8enza pandemic death data gathered at multiple
spatial scales, we have shown that aggregation in the dootesynchronous epidemics of variable size
tends to bias transmissibility estimates downward.

We also have begun a systematic analysis of methods usetinatesthe initial rate of disease spread
(a parameter calle®,) on the basis of epidemiological data. Data available igclfy either a time-series
of infected individuals, a time-series of mortality everdad/or data on the probability distribution of the
disease’s “serial interval” — that is the duration from ttfen to the end of infectiousness. Aside from several
standard curve-fitting methods, we developed a novel teclenfor estimating the rate of disease spread,
based on “serial interval” data. We are planning to write itkd, more theoretical paper (MS #3) in which
we simulate standard stochastic models of disease sprme@then apply a variety of techniques to estimate
the parameteR, used in those simulations. We expect that estimatdg ohay, unfortunately, depend upon
which estimation techniques are employed. We plan to iiy&tst and present these dependencies, thereby
informing the broader community of scientists and publialtieofficials who seek to infer underlying disease
parameters from epidemiological data.

Finally, in light of the three manuscripts discussed abwseare planning a fourth paper (MS #4) focused
on the empirical data from the 1918 influenza pandemic inaéklphia, which killed a staggering 12,162
people within two months. Our initial analyses of these dadicate that the epidemic time-series does not
conform to the standard mathematical model of diseasenaa®n, except during the initial few weeks
of expential growth. Instead, the Philadelphia data show@eaksion in the incidence rates after the first
several weeks —which may suggest that behavioral changgeoantine regulations had an important effect
on curbing Philadelphia’s epidemic. We intend to analyzeRthiladelphia epidemic curve in detail, using
methods described above, and to correlate our analysidwsitbrical documents on the timing and extent of
guarantine measures implemented in Philadelphia dured#i8 epidemic.
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Hyperplane Arrangements:
Cohomology and Rational Homotopy
(05frg090)

Jun 11 — Jun 18, 2005

Organizer(s): Graham Denham (University of Western Ontario), Alexandrai® (North-
eastern University)

The main focus was on the varieties of jumping loci for cohtogy with coefficients in rank one local
systems, and the related resonance varieties, arisingdoomplex hyperplane arrangements. These varieties
have emerged as central objects of study, providing deearmed information about the topology of the
complement of an arrangement.

Briefly, the jumping loci of a spac@/ are the sets of representatioAsof the fundamental group of
M for which the rank ofii? (M, A) is larger than a fixed integer. The representation variey cdmplex
hyperplane complement is a complex torus; thus the jumpngHere are just certain subvarieties of the
torus. The resonance varieties are tangent to the jumpangtohe trivial representation, and have proven to
be somewhat easier to understand.

Given the multifaceted nature of the topic, the meeting ghtiogether people with a variety of back-
grounds, including commutative algebra, topology, discgeometry, and singularity theory.

The seven participants spent the week alternating betweripgliscussion — mutual tutorials in recent
developments — and interrelated collaborations in grofips@or three.

Falk and Yuzvinsky continued their work on multinets, conmibg ideas fromP] with recent work of Falk
on resonance varieties. The result seems to be a completbjreatorial characterization of these varieties
in H' in terms of the existence of special pencils of curves, gdizémg the classical Hesse pencil.

From [?] and recent work of Alexander Varchenko on the Bethe anZjizljere arose some intuition
that resonance varieties and the critical set of a function

n
o= I
i=1

may be related, where eaah is a linear form (defining a complex hyperplane) and eack C*. We may
think of A as a point in the torus: i.e., as representation of the fureadahgroup of the complement. Then,
generically, the cohomology of the complement with respetiie local system vanishes, exceptin middle
dimension, where it has some rafikGenerically, the functio®, has/ isolated critical points. The papers
[?, ?] relate the two explicitly. Cohen, Denham, and Falk corgishtheir joint work with Varchenko on the
case of non-generik. Roughly, the critical set ob, may be positive dimensional, in a way that corresponds
somewhat explicitly to nonvanishing cohomology. This pmjbegan in Fall 2004 when the authors were
together at MSRI.
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Srikanth lyengar was able to join the group. He was new taongement theory and had not met the other
participants before. He was able to learn quite a bit ab@atba. At the same time, he was able to contribute
considerable technique in commutative algebra of a flavativated by rational homotopy theory. This was
extremely useful for Denham and Suciu, in view of their relyecompleted project?]. This relationship
that began at BIRS continues fruitfully: Denham is due tdt W&ngar in March 2006, and these discussions
helped motivate Denham’s subsequent project with Sigi(which began at BIRS).

In somewhat more detail, the rational homotopy theory ofgngfane complements has been shown to sit
in a position where commutative algebra and rational homotbeory overlap, in the sense of the “looking
glass dictionary” of Avramov and Halperin in the 80’s. Thasens for this aren’t quite clear, but the precision
of what is generally a somewhat vague correspondence sedmgjuite profitable.

Schenck was able to continue discussions with Yuzvinskylertham that also began at MSRI.

Several of the research themes developed in Banff werestisduand pursued at a PIMS workshop in
Vancouver in August. The idea of writing a book on arrangeimensucceed?] was discussed at length (on
a hike up to the Stanley Glacier.) This project has been gaksand the book is now underway.

On behalf of the focussed research group, | would like tokiRIMS for a very productive and enjoyable
meeting.
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Topological Methods for Aperiodic
Tilings (05frg069)

Jul 16 — Jul 30, 2005

Organizer(s): Johannes Kellendonk (Lyon 1), lan F. Putnam (Victoria), érmo Sadun
(Texas, Austin)

Inthe 1960’s and 1970’s, mathematicians discovered geanpeitterns which displayed a high degree of
regularity, and yet were not periodic [7]. The subject alammgd enormous importance with the discovery of
physical materials (quasicrystals) with pure point x-rfralction spectrum, which indicates a highly ordered
atomic structure, and yet symmetry patterns in that specivhich could not be produced by periodic atomic
structures [21, 8]. Since that time, the subject has grovestsmtially. In doing so, it has drawn on a highly
diverse collection of mathematical ideas.

One very productive idea is to regard a tiling as producingraadhical system [14, 17, 16, 15, 20]. First,
all translates of the tiling are considered, Then a metjidased on such tilings. This arises from natural ideas
in symbolic dynamics for discrete patterns, but these mestdapted to handle the geometry of Euclidean
space. The translation action of the Euclidean space extentthe completion of this metric space. Under
fairly mild assumptions, the space obtained, called thedifuhe tiling, is compact and so provides a natural
setting for using techniques from dynamics. Eventuallgai been realized that this space actually contains
a great deal of interesting and computable (from standg@lagical techniques) information on the original
tiling.

The standard assumption through much of the literatureaisdah‘finite local complexity’ or FLC: for
a fixed R, the number of different patterns in the tiling of diametesd thanR, is finite modulo translation
[13]. Moreover, it has been known for a long time that, unde€Rhe hull is locally the product of a
totally disconnected set arif!, whered is the dimension of the tiling [16, 1, 19]. Moreover, it carebe
presented as inverse limit of fairly simple cell-complex€e first natural generalization of FLC is to relax
the condition ‘modulo translation’ to allow more generabgps of isometries. This leads ¢FLC, where
G is the appropriate group. This has already appeared in theafonany authors (for example, see [4, 18].
However, there are a number of interesting examples whésehgipothesis fails, but this can happen in
several ways. Several of the participants, Natalie Prietaek, Sadun and Kellendonk, in particular, had
been considering such examples, and through the course tithweeks a unifying view of the metric was
achieved. In some cases, the approximation by cell compke@med possible. If successful, this could lead
to extending computations of cohomology invariants for méasses of tilings. Under study by a fairly large
part of the FRG, including Priebe-Frank, Sadun, Kellend&iknam, Hunton, Barge and Diamond, progress
was made in understanding them within a global frameworlePaon this subject should be forthcoming
shortly. Some other examples of non-FLC tilings were preskby Bellissard, arising from mathematical
models of amorphous materials. Here, it seems that new ateaseeded to provide a better understanding
of the hull.
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There was a general theme for the FRG of trying to understandature of the cohomology of the tiling
and its physical interpretations. This cohomology is dip$eked witht the K-theory of theC*-algebras
associated with the tiling, first constructed by Bellissandl investigated by Forrest, Hunton, Kellendonk,
Putnam and others [2, 5, 10, 11, 1, 6]. There were some ititggasew interpretations made of how parts
of this K-theory could arise from lower dimensional phenomén the tiling. At a physical level, these
could lead to measuring defects in physical materials. 1&éwdscussions elaborated links with groupoid
cohomology and other interpretations of the cohomology.

A lot of progress was also made in computational methods esudlts. The use of spectral sequences
for these calculations was studied intensely. Recentipgs were discovered with a non-trivial torsion
component in the cohomology. This rather surprising phesranwas investigated and discussed by Gahler,
Hunton and Kellendonk. A great deal of progress was made @rdfculation of several specific tilings of
interest. Most notable was the pinwheel. But there wereragkamples, where full rotational symmetry
was considered. This was the first time sufficient expertise tane had been brought to bear on these
computations. Kalugin presented some very novel appraachbe understanding of matching rules from a
topological view, leading to new methods for cohomology patation [9]. Recent work of Kellendonk and
Putnam on their notion of pattern equivariant conomologyg weesented [12]. The group spent some time
developing this as an alternate view of cohomology for halied indeed as a view of the hull itself, which
seems very useful.

In the special case of one dimensional tilings, Barge ananbred have a number of quite strong in-
variants. Moreover, a number of rather precise statemdrtedull can be made. These were discussed,
especially with an idea to trying to extend this program ghleir dimensions.

One of the most popular features of the two weeks were theiailgolt should be stressed that the com-
mon interest was in topological aspects of aperiodic malterbut the participants came from a remarkably
wide range of backgrounds: mathematical physics, algebypblogy, operator algebras, dynamical systems,
discrete geometry, ... . Each day, long tutorials were pitesk essentially aimed at novices, of technical tools
from these different areas. For example, the use of spesetcplences for these cohomological calculations
is crucial, yet only an expert in algebraic topology has thikis tool kit. All participants really gained a lot
from some exceptionally revealing presentations.

A large number of other related topics were covered in varfmesentations: the Aubrey-Mather theory
for quasi-crystals, relations with translation surfaced arbit equivalence for Cantor minimal systems to
name a few.
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Chapter 41

Speciality of Malcev Algebras (05rit020)

April 30 — May 14, 2005

Organizer(s): Murray R. Bremner (University of Saskatchewan, Canada) R. Hentzel
(lowa State University, U.S.A.), Luiz A. Peresi (Univeradk de Sao Paulo, Brasil)

Lie algebras and the PBW theorem

The Poincaré-Birkhoff-Witt (PBW) theorem (Jacobson [@jplies that any Lie algebra is isomorphic to a
subalgebra of the commutator algebra of some associatieb . This result is established by constructing
an associative universal enveloping algebid.) for an arbitrary Lie algebrd, together with an injective
Lie algebra homomorphism froth to the commutator algebfa(L) .

The speciality problem for Malcev algebras

The first step beyond Lie algebras leads to Malcev algebradlakev algebra is a vector spadé with a
bilinear product satisfying anticommutativity and thentgy

[[w, 9], [, 2]) = [[[w, 2], 4], 2] + [[[=, 9], 2], w] + [[[y, 2], w], 2] + [[[2, w], 2], y].

The commutator in any alternative algebra satisfies thematittes, and so every Lie algebra is a Malcev
algebra. The speciality problem for Malcev algebras as&syfMalcev algebra is isomorphic to a subalgebra
of the commutator algebra of some alternative algebra. dioislem has been open for 50 years since it was
first posed in Malcev’s paper on analytic loops [4] (wheresthalgebras were called “Moufang-Lie algebras”;
they were given their present name by Sagle [6]).

Enveloping algebras for Malcev algebras

A solution to a different formulation of the speciality pteln for Malcev algebras has recently been provided
by Pérez-Izquierdo and Shestakov [5]. They generaliz€ B\ theorem to Malcev algebras in the following
sense: for every Malcev algebid they construct a universal nonassociative envelopingsa#dé (/) and

an injective Malcev algebra homomorphism frdmto the commutator algebfa(A/ )~ such that the image

of M lies in the generalized alternative nucleuddf\ ). The algebrd/ (M) is in general not alternative
nor even power-associative, but it inherits many of the goagberties of universal enveloping algebras of
Lie algebras, such as the universal mapping property, a BR/basis, and a (nonassociative) Hopf algebra
structure. Furthermore, ¥/ is a Lie algebra, the®y (M) is isomorphic to the familiar (associative) universal
enveloping algebra af/.

313



314 Research in Teams Reports

The results we obtained at BIRS

The three of us met in Saskatoon on Friday, April 29, 2005 angaltogether to Banff, arriving at BIRS
in time for dinner on Saturday, April 30, 2005. On the way fr@askatoon to Banff, we agreed to start
by reading and discussing the paper by Pérez-lzquierd@ardtakov [5]. After doing that, we decided to
start with a specific non-Lie Malcev algebra and use the tigcts of [5] to compute explicitly the structure
constants of the enveloping algebra. In the early paper lp}eg6] there is an example of a 4-dimensional
solvable non-Lie Malcev algebrd (Example 3.1, page 433). ¢ From the results of Filippov [H] lknzmin

[3] it follows that in dimensiork 4, this is the only (up to isomorphism) non-Lie Malcev algelanad that it

is solvable and special. We decided that our goals for oyratBIRS would be:

1. To explicitly construct the enveloping algelif@)\/) with PBW-type basis and structure constants.
2. To study the polynomial identities satisfied by the noaeisdive algebrd/ (M).

3. To determine the quotiemt (M) of U(M) by the alternator ideal, thereby obtaining an alternative
enveloping algebra fak/.

4. To determine a finite-dimensional quotientdfA/) containing// in its commutator algebra.

To achieve these goals, we computed (using Maple and Pdsmallo express an arbitrary product of basis
monomials ofU (M) as a linear combination of basis monomials. To do this weiredwarious reduction
algorithms to perform arguments by induction; the esskidigas behind these algorithms appear in the proof
of Proposition 2.2 of Pérez-lzquierdo and Shestakov [8f fechniques we developed at BIRS will allow us
to continue this research in the following directions:

1. To solve the same problems for the 5-dimensional non-la&kV algebras (Kuzmin [3]).

2. To do the same for the 7-dimensional simple non-Lie Maklgebra (Sagle [6], Example 3.2, pages
433-435), and use this to obtain a new construction of thendas.

3. To do the same for the free Malcev algebra, and use thisatclsdéor Malcev s-identities (identities
which are satisfied by special Malcev algebras but not by alckV algebras).

Our time at BIRS was very productive; we expect to get at leastpublication (possibly two or three) from
the methods we developed during our “Research in Teams'tranog
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Chapter 42

Random Matrices, multi-orthogonal
Polynomials and Riemann-Hilbert
Problems (05rit094)

April 30 — May 14, 2005

Organizer(s): John Harnad (Concordia University and Centre de recherohésmatiques,
Université de Montréal )

The objective of this collaborative project was to furthdvance the computation of largé asymp-
totics in multimatrix models by extending the previouslylkm methods used i-matrix models [8, 5] and
applying them to the Riemannn-Hilbert formulation of mudtthogonal polynomials developed in [2, 9].

The specific objectives were;

1. Torelate the “dual” formulations of the Riemann-Hilbgroblem characterizing biorthogonal polyno-
mials obtained by the different members of this group [1,,8]3

2. To extend the asymptotic analysis, based on the RiemHlilhart method, and variational equations, to
obtain rigorous largé&V asymptotics for the partition function #¥matrix models [6, 7], the equilibrium
distributions for the eigenvalues, and correlation fumasiin terms of asymptotics of the associated
biorthogonal polynomials.

Considerable progress was already made on item 1 betweg@tati@ing of this meeting and the actual
event. The relation between the two different approachdisadriemann-Hilbert problem for biorthogonal
polynomials was in fact completely determined by M. Bertha J. Harnad, in colllaboration with A. Its, in
the months prior to the meeting, and these results were camncated to the other members of the group at
the beginning of the meeting. The full details are curreh#ing written up in final form, but a preliminary
version is now available in the preprint [4].

The essential difference between the two approaches wasithereas the large argument asymptotics
in the formulation ref. [9] were fairly simple, involving dnexponentials and power law dependence on the
arguments, the jump discontinuities across the integratmtours on which the biorthogonality is defined
involves transcendental nonconstant dependence. In fhreagh of [2] however, the jump discontinuities
are piecewise constant, but the large argument asymptotickre fractional powers of the arguments and
have sectorial behaviour, with Stokes matrices relatiegdifferent sectors. Moreover, only the “dual” fun-
damental systems were given an explicit integral reprasentin [2], with the asymptotics of the “direct”
systems determined through the invariant bilinear pairifige new approach, described in [4], gives an in-
tegral representation also for the “direct” fundamentatsgns, and these integral representations are used to
deduce the sectorial large argument asymptotics and jusepuiinuities explicitly, as well as the differential
equations satisfied, without recourse to either the “fajtlimethods used previously, or further algebraic
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manipulations based on infinite recursions. Moreover, ttegral representation in [4] is shown to factorize
into a product of: 1) an explicitly known matrix factor, whiés constant in the arguments of the system,
though not in the degrees of the biorthogonal polynomiglshe integral representation of [9]; 3) a matrix
factor that is independent of the polynomial deghéeconsisting of the Wronskian matrix of an associated
higher degree constant coefficient equation whose coefticiere determined by the polynomial potential.
This factorization relation shows how the transcendentaly matrix in the system of [9] is transformed into
a constant one, while at the same time introducing¥himdependent sectorial behaviour that is required.

Since this point was already resolved by the start of the imgethe remaining time could be devoted
to addressing the set of problems listed under item 2. In famtsiderable progress in this direction had
also already been made prior to the meeting, so the actualgpant at BIRS could, in part, be devoted to
communicating this further progress, and to planning oetftliure steps needed for fully resolving these
problems. The progress regarding large N asymptotics wale npartly on a heuristic, and partly a rigorous
basis, by B. Eynard [6, 7].

He explained to the others in the group:

1. How the three different versions of thematrix models, the “Normal” model, the “symmetry broken”
normal model, and the “formal” model are related. The firsti@se, which is the one studied in
[1, 2, 3] is based on integration on homology classes of aostadhe second is based on grouping
together multiple integrals by partitions of N in which thar{s indicate the number of factors in the
multiple integrals along a given contour and the third, tiegrhal” model, is based on a combinatorial
definition of the partition function involving the multiglation of the weights of Feynmann graphs
associated with a perturbative development about a Gausstasure and evaluation of the integrands
at the critical point contributions via gaussian integrati

2. How the existence of an “equilibrium” spectral curve maydeduced from a suitable definition of the
free energyFy, which coincides With]% times the logarithm of the partition function in the “formal
model. This definition can be given on any “spectral curvehefgeneral form deduced from the “loop
equation” [6] (which follows from the reparametrizatiowamiance of the partition function),

E(x,y) = —(Vi(z) =) (V2 (y) — ) + P(z,y),

whereV; (z) and V5 (y) are the polynomial potentials, of degreés+ 1 andd, + 1, respectively,
defining the biorthogonality measure aR¢dz, y) is a polynomial of degreg d; — 1 in z and< ds — 1

in y. The free energy is given by residue formulae involving theamerphic differentialydz, which
determineF; as a functional on the moduli space of algebraic curves oabwe the form. Its real
part may be shown to be a convex function. The extrema areftirerwell-defined, and the variational
equations for these imply the vanishing of the real parthiefdycles of the abelian integralydz on
the curve around any cycles.

3. Explicit forms - partly conjectural, partly proved, ergsing the asymptotic forms of the fundamental
systems of refs. [2, 4] in terms of ratios of Riemann thetafioms on the equilibrium curve. Since
these formulee were deduced assuming the applicabilitydiflegpoint and WKB techniques which
require more rigorous justification, the Riemann-Hilbeethod is required to complete the analysis.

During the remainder of the two week period of the meetingl|ipiinary calculations were undertaken
with a view to determining the branch cut structure for therRann surface of the spectral curve in the
case when the potentials are even quartic polynomials,l@denus of the curve & The purpose was to
determine a contour that is homologically equivalent todtietour of integration on which the various trans-
formations may be applied to reduce the Riemann-Hilbetblera to factors that differ from the identity only
by terms that are exponentially decreasing. This is accistmgd through the introduction of a generalization
of the g-function, as done for th&-matrix case in ref. [5]. The definition of thisfunction seems now to be
clear: it is the multivalued function defined by the abeliatregral [ ydz on the spectral curve.

These preliminary calculations for the geriusase appear to lead to the correct cut structure that should
arise. It also appears, from these preliminary discussaiodscalculations, that the sequence of gauge trans-
formations and deformations of the contours along whichjtimep discontinuities arise can be correctly
defined by virtue of the analyticity and asymptotic promertdf theg-function. Moreover, the presence of
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sectorial asymptotics in the Riemann-Hilbert problem appé¢o be consistent with the largé asymptotic
properties of thg function, making this approach to the larfyeasymptotics of the biorthogonal polynomials
very likely the correct one for implemention. In additionese considerations potentially reveal a connection
between (i) a physically motivated existence and uniquettesorem for the equilibrium spectral curve, and
(ii) nonlinear steepest descent analysis of the assodrRitedann-Hilbert problem.

Much further work will be needed, but the preliminary respind the general method of approach laid
out at this BIRS meeting, seem to give very good promise fadhér development of an ongoing program
that should lead to the resolution of the main unresolvedtipres on the large N asymptotics of 2-matrix
models and biorthogonal polynomials.
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Chapter 43

Affinizations of Extended Affine Lie
Algebras (05rit024)

May 22 — June 4, 2005

Organizer(s): Bruce Allison (University of Alberta), Stephen Berman (Uarisity of Saskatchewan),
Arturo Pianzola (University of Alberta)

Extended affine Lie algebras, or EALAs for short, were idinoed by Hoegh-Krohn and Torresani in
1990 [9] as natural generalizations of finite dimensionaipde Lie algebras and affine Kac-Moody Lie
algebras. Many of the basic facts about these algebras weregin [1]. By definition EALA'S are complex
Lie algebras that possess Cartan subalgebras and inviariars, and hence they possess root systems which
turn out to be extended affine root systems. Roots of lengtie @alled isotropic roots, and they generate a
lattice whose rank is referred to as the nullity of the EALAs Aas been shown in [3], EALA's of nullity O
and 1 precisely coincide with finite dimensional simple blges and affine Kac-Moody algebras respectively.
Therefore there has been a lot of interest and activity inaeedecade on the study of EALA's of higher
rank.

An EALA L possesses an ideél, called the core ofZ, which is defined to be the subalgebra®f
generated by the root spaces/icorresponding to nonisotropic rootsC(is the derived algebra of in
nullity 0 and 1.) The quotient algebié.. := Lc/Z(L.), is called the centreless core 6f Y. Yoshii [14]
has recently given an internal characterization of the lgelaras, called centreless Lie tori, that arise as
the centreless core of an EALA. Furthermore, the structfi@oEALA is to a large extent governed by
the structure of its centreless core. In fact, E. Neher [BF tecently announced a procedure that, given a
centreless Lie toruk, describes all EALA's with centreless cdie For this reason, an important equivalence
relation for EALA's is isomorphism of their centreless care

Many centreless Lie tori, and consequently EALA's, can bestwcted using various “matrix” construc-
tions, from coordinate algebras such as the noncommutaiaetum tori that generalize Laurent polynomials
in several variables. This is a combination of the work of bemof authors in the last few years beginning
with the paper of Berman, Gao and Krylyuk in [7].

Another approach to the construction of EALA's makes useooplalgebras and affinizations of Lie
algebras relative to finite order automorphisms.Glfs a Lie algebra and is an automorphism of of
periodm, the loop algebra of; relative too is the algebral (G, o) of fixed points of the automorphism
r® f(2) — o(z) ® f((;'2) of the untwisted loop algebi@ ® S, where(,, is a primitive i root of unit
andS is the ring of Laurent polynomials in the variableFurther, ifG possesses a nondegenerate invariant
symmetric bilinear form that is preserved by one defines the affinization ¢f relative too to be the Lie
algebraAff(gG, o) obtained fromL(G, o) by first forming a 1-dimensional central extension (with yde
defined as usual using the invariant form) and then adding-ienensional algebra spanned by the degree
derivationz 4.

In his pioneering work on loop algebras in 1969, V. Kac shotted if G is finite dimensional simple and
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o is a finite period automorphism ¢f then Aff(G, o) is an affine Kac-Moody Lie algebra and all such Lie
algebras arise in this way. In the language of EALAS thisdseas follows: 1fG is a EALA of nullity zero
then Aff(G, o) is a EALA of nullity one and moreover, all such algebras ans¢his way. When phrased
this way it becomes quite natural to ask what happens in the @BEALA's of higher nullity. In our work at
BIRS on this problem, we focused on the case of nullity 2 andvwaked at the level of centreless cores.

It is remarkable fact, which follows from a theorem annowhoecently by Neher in [12] along with
the classification theorems for centreless cores of ty&, 8, 13], that with the exception of one well-
understood family, all centreless cores of EALA's are filyigenerated as modules over their centroids. (The
exceptional family consists of Lie algebras of the feidm , (C,), whereC, is the quantum torus determined
by a quantum matriy with at least one entry that is not a root of unity.) For thiasen, we concentrated in
our work on centreless cores with this additional finitergeperty. While at BIRS we were able to complete
the proofs of a number of results on this topic.

We showed that every centreless core of an EALA of nullity & 1k finitely generated over its centroid
is isomorphic to a Lie algebra of the form

L(gcc, 0)7 (1)

whereg is an affine Kac-Moody Lie algebras ands a diagram automorphism gf Conversely, we showed
that any Lie algebra of the form (1) is isomorphic either teatceless core of an EALA of nullity 2 (finitely
generated over its centroid) or to a Lie algebra of the f@ip C,4], whereqg = (CL f) and( is a root of
unity.

The class of Lie algebras of the form (1) is interesting inoien right. We were able to characterize
algebras in this class in a number of different ways, inclgdiasZ?-graded-central-simple Lie algebras
whose central grading group has finite indexzih We also gave a complete classification of the algebras
in this class up to isomorphism. That is, we precisely deiteechwhen two algebras of the form (1) are
isomorphic.

Precise statements and detailed proofs of the results jestiomed will appear elsewhere. Our proofs
make use of techniques and results that we developed rgderdl series of papers on EALA's and loop
algebras including [4], [5], [6] and our paper [2] with Johaufkner.

The Banff International Research Station provided an ig&ade for the three of us to get together for
two weeks of uninterrupted research. We wish to thank BIR$ rauch for this opportunity.
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Chapter 44

Hamiltonian systems with symmetry
(05rit606)

August 21 — August 26, 2005
Organizer(s): G. W. Patrick (University of Saskatchewan)

The conservative, or Hamiltonian, dynamical systeans finite or infinite dimensional dynamical sys-
tems that model physical phenomena on time scales over wligsipation is not dominant. In the idealized
models, dissipation is absent, multiple time scales arellysoresent, and the long time dynamics is very del-
icate. The systems often exhibit temporal chaos. The stubgecexisted for centuries as celestial mechanics,
but the current application domains (such as underwatechestynamics [5][8][9], molecular dynamics and
spectra [6][7][13], fluids and plasmas [1][4][10], and faational physical field theories [2][3]) far exceed
its origins.

When symmetry is present in these systems, one can seelorsluwhich are generated by one parameter
subgroups of the symmetry group (i.e. of the farmp(&.t)p. Whereg, is a Lie algebra element called the
generator ang. € P). These are theelative equilibrig and they correspond to equilibria in the reduced
spaces. The physical form of these solutions depends orythmetry. For the three dimensional rotation
group SO(3), they will be uniformly rotation solutions, such as the alar orbit of a satellite. In the case
of a neutrally buoyant underwater vehicle with coincidesters of mass and buoyancy, the symmetry is
the Euclidean groupE(3) = SO(3) x R?, and the relative equilibria correspond to screw motions.eW
the underwater vehicle has an additional axial materialrsgiry, the system symmetry B2(3) x SO(2),
and the relative equilibria correspond to screw-spinnimgioms. When the symmetry group is not compact,
such as the Euclidean symmetry group, establishing thdistaif relative equilibria is delicate. Generally,
in the noncompact case, a common criterion—formal stgbilis insufficient to establish stability, and a
more restrictive criterion-4, stability—must be used [12]. There is a gap betw&gmnd formal stability.
Stability inside the gap has been established using KAMrihdor certain relative equilibria of the system
of an underwater vehicle [11] with coincident centers of snasd buoyancy. Thé&, stability theory and the
KAM-desingularization technique, both due to workshogipgrants, are the state of the art in the area.

The workshop participants met to hammer out the details africle that they are writing which consid-
ers an example where the gap actually occurs: the relativilaéa consisting of the falling, spinning motion
of an axially symmetric underwater ellipsoid with non-cgdent centers of mass and buoyancy, where the
symmetry group isSO(2) x R3 x SO(2). The target audience for this work consists not just of matite
cians, but possibly also engineers and physicists, so ihjsitant to find an exposition in the most basic
language. Also this is important because the target audiemest be brought to accepting that there is a
subtle impact of this work on some highly regarded liturafsuch as [5, 8, 9].

The stability problem, it was determined, can in the casehefdymmetry in question, be generally
addressed using a widely known, venerable, technique wieidhces an abelian symmetry by eliminating
“cyclic coordinates”. After this reduction, one is redudeda parameterized, two degree of freedom sys-
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tem. There is an additional circular symmetry at the parammirresponding to the relative equilibrium in
guestion, and the stability is a symmetry-breaking phemamdrom a completely integrable system. The
general understanding of what typically occurs for anyaysthat has the same symmetry group was estab-
lished. Suitable coordinates are required to prove KAMiBtalinside the gap. These should be accessible
to and recognizable by the target audience, and such cadedinvere developed over the course of the work-
shop. A draft article was completed which the workshop pgrdints anticipate will be rapidly completed
and disseminated.

Another reason for considering the falling, spinning rieaéequilibria, is that it has nontrivial isotropy. A
considerable amount of work on the isotropy problem hasdirdeen completed, but that was deliberately
excluded from the theory developed in [12]. The workshoprjated an opportunity to work again on this
project. One of the base problems is to ensure that the presdiisotropy is fully taken advantage of in the
stability theory. This was not so clear because isotropyligagsingularities in the reduced spaces, at which
methods which rely on a smooth structure are inapplicalties froblem was resolved over the course of the
workshop: the isotropy is usually compact, in which case relguopological proof was found that shows
the presence the singularities in the reduced spaces willffext the stability issue.

In this workshop, a team of three participants interactey W¢ensely. Progress was made on the isotropy
project, and priorities sorted and possibilities foundftother collaboration. A stalled project (the axisym-
metric stability project) was reinvigorated, and work whigould have taken many months, if it could have
been completed at all, was largely completed in one week, avfar superior outcome. Partly this was due
to an extensive preparation for the workshop, followingratiadl consultation a year earlier at the Bernoulli
Institute of EPFL Switzerland, but it was also due to the #go&BIRS environment. The team is scattered
across Canada and the UK, but the BIRS Research in Teamspregrabled it to meet, concentrate on, and
in large part resolve, a difficult problem, and to preparevtag for future collaborations.
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Chapter 45

Cohomogeneity Three Actions on
Spheres (05rit047)

August 21 — September 3, 2005

Organizer(s): Jill McGowan (Howard University), Catherine Searle (IMATENAM,
Cuernavaca)

During our stay at BIRS, Dr. McGowan and | were able to modify original project of classifying
cohomogeneity 3 actions on spheres to the following probleaiculate the diameters andextents of
spherical quotients of irreducible polar actions of cohemgjties 3 and higher. First let us make the following
definition: we call a cohomogeneityactionclassical polar when it is a polar action of cohomogeneity
corresponding to a symmetric spaG¢H where eithelG or H is a product of classical groups only. Those
actions which admit products with classical groups and jgtxaeal groups will be calleéxceptional polar
Note that there is a 1-1 correspondance between polar aaiwh symmetric spaces [D]. We are interested
in this problem given that we have found in joint work with Wuitbar and S. Greenwald [DGMS], and our
own, [MS], when we allow for disconnected grougto act isometrically on spheres by cohomogeneity 1, 2
or 3 (in the case where the action is classical polar) we ol following lower bounds for the diameter:

X for cohomogeneity 1
5 for cohomogeneity 2
£ for cohomogeneity 3

min(diam(S™(1)/G) = {

wherea = arccos(%), andg = arccos(1/1/40 + 12¢/2 — 8v/5 — 121/10).

We note that for these three cohomogeneities the diameggriégly increasing as the cohomogeneity
increases. The conjecture we are then currently trying toyis: let G be an irreducible polar action of
cohomogeneity on.S™, then the diameter &§" /G increases tg ask — oo. That s, as the cohomogeneity
of an irreducible action becomes large, the action “becOmeshicible. We would also like to understand
what is going on in terms of thg-extents for these spaces.

We have been able to confirm this conjecture for the claspickr actions of cohomogeneities 3 and
higher. The list includes the following groups:

Table 1: Classical Polar Actions of Cohomogeneity — 1
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Nr. G dim(S™) Corresponding Symmetric Space
1 SO(k) x SO(n) kn—1 SO(k+n)/(SO(k) x SO(n)),k>n
2 S(U((k) xU(n)) 2kn — 1 SU(k+n)/S(U(k) xU(n)),k>n
3 Sp(k) x Sp(n) dkn —1 Sp(k+ n)/(Sp(k) x Sp(n)), k> n
4 U(2(k)) k(k—1) — 1 SO(4(k)) /U (2(k))

5 U2(k) +1) k(k—1)—1 SO(4(k) +2)/U(2(k) + 1)

6 SO(k) % k—1)(k+2)—1 SU(k)/SO(k)

7 Sp(k) (k—1)(2k+1)—1 SU(2(k)/Sp(k)

8 SO(2(k)) %2(19)(219 - 1) (SO(2k) x SO(2k))/SO(2k)

9 SO(2k 4 1) E(2k +1) (SO(2k +1) x SO(2k +1))/SO(2k + 1)
10 U(k) k2 -1 (U(k) x U(k))/U (k)

11 Sp(k) 2% —k— 1 (Sp(k) x Sp(k))/Sp(k)

12 SU (k) k2 —2 (SU(k) x SU(k))/SU (k)

Of the remaining groups, for those whose corresponding sstmerspace is of the types x G)/G,
namely numbers 1, 6, 8 and 10 of Table 2, the result also holds During our stay at BIRS we were also
working on the remaining groups listed in the following &bl

Table 2: Exceptional Polar Actions of Cohomogeneities Grear than ‘2

Nr. G dim(S™) Corresponding Symmetric Space  Cohomogeneity
1 F4 51 (F4 X F4)/F4 3
2 SU(6) x SU(2) 39 Es/(SU(6) x SU(2)) 3
3 SO(12) x SU(2) 63 E7/(SO(12) x SU(2) 3
4 E7 X SU(2) 111 Eg/(E7 X SU(2)) 3
5 Sp(3) x SU(2) 27 Fy/(Sp(3) x SU(2)) 3
6 E6 7 (E6 X E6)/E6 5
7 Sp(4) 41 Eg¢/Sp(4) 5
8 E7 132 (E7 X E7)/E7 6
9 SU(8) 69 E7/SU(8) 6
10 Eg 247 (Eg X Eg)/Eg 7
11 SO(16) 127 Eg/S0(16) 7

Since these groups do not admit “easy” matrix expressiorsan@ using a technique of Hsiang outlined in
his book “Cohomology Theory of Topological Transformat®roups” [H] in order to calculate the principal
isotropy subgroups of these actions. Once we have complése subgroups, we then need to find their
normalizers so that we may use the techniqué&ahanifold reductions (cf. [GS]) to compute the quotient
space. Thatis, we must calculate twee group.G = N (H)/H, whereH is the principal isotropy subgroup,
and also find theore of the corresponding spherg§™. Since.M/.G ~ M /G, we may then compute the
guotient space.

During our stay, we were able to calculate the connected oot of the principal isotropy subgroup for
number 2 and we made a fair amount of progress for numbers 8 &md are completing these calculations
now). The only other action with non-trivial principal isopy is number 9. For the rest of the groups in
Table 2, we must use a different technique altogether, wtdchbe found in Straume [S], namely extend the
action to a larger dimensional group which will have noriaiiprincipal isotropy.

We also plan to see how much of Straume’s paper can be extémdealar actions of cohomogeneity 3
and higher.

We would also like to add that while we modified our originabposal for our stay at BIRS, we have
by no means abandoned the idea of classifying sphericalractf cohomogeneity 3 and higher. Upon
conclusion of this current project, we hope to be able toleackt only the classification problem, but also to
understand how the diameters of spherical quotients ofpwdar actions behave in terms of our conjecture.

In conclusion, we would like to add that we feel that our staBi&®S was incredibly productive for us.
This is the first time we have had an entire 2 weeks in whichgbgancentrate on our research. We are both
very happy to have been provided with this opportunity.
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Chapter 46

Symmetries of extremal conformal
mappings (05rit091)

Aug 25 — Sep 03, 2005

Organizer(s): Oliver Roth (University of Wiirzburg), Eric Schippers (Warsity of Mani-
toba)

Overview of the Field

A central problem in geometric function theory is to deseribe class of conformal mappings of the disc.
Two of the main reasons for the importance of this class azeRilemann mapping theorem, and the fact
that it provides a model for the universal Teichmueller gpa®olving extremal problems over the class (or
developing methods for doing so) is one method of descriltjrglnce the extremal function attaining the

maximum must lie on the boundary.

In two approaches to solving extremal problems, the variati method of Schiffer and the extremal
metric method of Teichmueller, the extremal functions areittons of a differential equation given by a
quadratic differential. This partly determines the extatfanction, but it is still not known how in general
to determine the function completely. In some cases fursigarmetries of the extremal function can be
identified from the functional, which appear in differentrfts in the Schiffer and Teichmueller approaches.

Recent Developments, Open Problems and Scientific Progrelsiade

Work of Prokhorov [1] and recent work of Roth [3] and Schippf8] indicates that a completely new ap-
proach to the above central problé&rased on optimal contrahight be possible.

Roth [3] has shown that Schiffer's method of boundary vaais equivalent to Pontryagin’s maximum
principle when applied to the Lowner differential equatiddis work has been extended by Schippers [6],
who exhibited a set of invariants under the Lowner flow. Mwmer, a Lie—theoretic interpretation of the
adjoint vector in Pontryagin’s maximum principle in ternfdtte associated quadratic differential is obtained.
This approach makes it clear that the main open problem (hmes the extremal problem determine the
extremal function) is closely linked with the question ofiqureness in Lowner’s differential equation: In
general there are many ways to generate a conformal map hysroéthe Lowner differential equation using
different control functions for the same conformal map.

The relation between the control function and the generatedormal map in Lowner’s differential
equation is known to be a notoriously difficult one and the many open questions and problems (see
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[2] for a very recent solution to one of these problems). lndburse of our discussion at BIRS this relation
between the control and the conformal map in Lowner’s dqoatiso turned out to be crucial for constructing
feedback controls in order to be able to apply the optimatrobmachinery to the study of extremal problems
for conformal maps. We have been able to design such a cée¢mdiback problem under the assumption that
every (extremal) conformal map can be generated via Lowifi@rential equation by a “canonical” control
function. This led to a natural conjecture how this candriéaner equation will look like. We are currently
working on a proof of this conjecture.
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Chapter 47

PIMS Summer School: BREAD
Summer School in Development
Economics (05ss100)

June 25— July 1, 2005

Organizer(s): Siwan Anderson (University of British Columbia), EstherfDu(Mas-
sachusetts Institute of Technology), Sendhil Mullainatftdarvard)

The first summer school in analytical development econounriganized by the fellows of BREAD (Bu-
reau for Research and Economic Analysis of Developmentheated by the Banff International Research
Station between June 25 and July 1, 2005. BREAD is a non-pmgfénization dedicated to encouraging re-
search and scholarship in development economics (httpw/laid.harvard.edu/bread/). Its members include
both leading senior researchers in development economity@unger researchers working on issues of
central importance for development. An important aim of BfRHs to foster academic interaction between
researchers from different institutions and at differéagjes of their career, to promote the use of mathemati-
cal tools in the analysis of the development process. The/BR& mmer school was an extremely important
element of this process.

The problems addressed in the field of development econcemécsome of the most pressing facing
researchers in economics today. The methods needed t@ariaBse problems in a rigorous manner have
become increasingly technical. These methods range frothemetical tools developed in contract theory
and positive political economy on the one hand to methodsatitical inference developed for evaluation
methods ranging from randomized field experiments to esiomaf dynamic structural models on the other.

A range of methodological approaches characterizes dewednt economics. The BREAD Summer
School is aimed at exposing students, in the formative geraf their research careers, to theoretical and
econometric techniques outside that which they are exptos@dtheir home institutions. This expands and
enriches their research capabilities and helps them brgalnew areas that may not have previously been
on their research horizons. Deepening and broadeningitetiskills is an integral objective of the BREAD
Summer School and is a key element of the formation of theestisdnvolved.

Over the course of five days, students attended three holgstafes each morning and three hours of
lectures each afternoon. Each three-hour lecture was giyendifferent BREAD fellow. Lectures covered
the most up to date theoretical modelling techniques andrezapmethods applied to the central topics in
micro-economic development.

Specific lecturers included:

e Empirical Methods by Sendhil Mullainathan (Harvard Unaigy)

e Randomized Experiments by Esther Duflo (Massachusetigutesbf Technology)
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e Land and Credit Markets by Abhijit Banerjee (Massachudettute of Technology)
e Markets and Firms by Robin Burgess (London School of Ecooe)mi

e Education by Michael Kremer (Harvard University)

e Health and Nutrition by Duncan Thomas (University of Califia at Los Angeles)

e Technology Adoption and Technological Change by Andrewtérd®rown University)
e Theories of Inequality by Dilip Mookherjee (Boston Univigy¥ Political Economy

e Corruption by Rohini Pande (Yale University)

Students also presented their own work in progress and gdbgek from faculty. Faculty held office
hours where students go the opportunity to discus theiareken a one-on-one basis.

Students feedback where extremely positive. They werécpéatly interested by the emphasis on meth-
ods and tools. The summer school has contributed to reiaf&ttdents’ technical skills, and will hopefully
contribute to make them ready to apply these skills in thein cesearch.
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Chapter 48

2005 Summer IMO Training Camp
(05ss006)

Jun 28 — Jul 09, 2005
Organizer(s): Bill Sands (University of Calgary)

The 2005 IMO Training Camp started on Saturday June 25 wélathival in Calgary of four of the six
student Team members and two of the three adult Team menilvesf the Team members, Peng Shi and
Yufei Zhao, were permitted to show up at the Camp a few daysdatthat they could attend the awards
ceremony in Washington for the USAMO, in which they had tiedthird place. One of the adult Team
members, Adrian Tang, is a graduate student at the Uniyefs@algary and was already here. Also arriving
on June 25 were two students from Edmonton and one from Varcochosen, along with three students
from the Calgary area, to participate in the Calgary portibtihe Camp.

The participants were:

Team members: Lin Fei, Elyot Grant, Richard (Yang) Peng,idéong Uk) Rhee, Peng Shi, Yufei
Zhao;

Adult trainers: Felix Recio (Leader), Dorette Pronk (Dgpueader), Adrian Tang (Deputy Observer),
Elena Braverman, Andy Liu, Paul Ottaway;

“Local” (Alberta and BC) students: Graham Hill and Brian Yoifh Edmonton; Allen Zhang from Van-
couver; Sarah Sun from Okotoks; and Zheng Guo and Yiyi Yaogpf€Calgary.

Everyone was housed in Cascade Hall, an apartment-styiddRes on campus, two students to a room.
Meals were catered by the Students Union, at set times intaiceoom.

Training began in the morning of June 26, with lectures ami@m sets. The three adult Team members
were assisted by Paul Ottaway, a graduate student at Dagheu had just finished attending a math meet-
ing at Banff and had volunteered to assist in part of the Cafmmther Calgary student, Boris Braverman,
was invited to take part in this training during the day. Ie #fternoon, all seven Team members present at
the Camp went with me to a nearby mall to purchase the Tearoramsf(pants).

Graham Wright arrived in Calgary in the early afternoon ofrday June 27, to prepare for the Media
Event to take place the next day. That evening he treateddihk Beam members and me to supper at a
nearby restaurant.

In the morning of Tuesday June 28 we were joined by three rmuveli younger) “local” students for the
day: Jaclyn Chang and Hunter Spink of Calgary, and Mariyd&#rof Edmonton, along with their parents.
After some “fun” math activity in the morning, the “Media Bv& took place from noon till 2:00 PM. Peng
Shi and Yufei Zhao arrived in Calgary just in time to take parthis event and be introduced to the media
and the guests along with the rest of the Team. The rest offthaon was spent in further “fun” training
activity, and at 4:00 the Calgary portion of the Camp endeti thie departure of all the local students. The
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Team members and trainers were then driven to the BIRStfamilBanff for the remainder of the Training
Camp.

BIRS of course was again an unmatchable setting for the Cautip,the facilities, the food, and the
scenery all superb. (There were, however, noticeably falethan in 2003.) Training continued, with an
increased emphasis on mock contests.

Besides the concentrated training that took place at BIRSTeam was taken on some excursions. On
July 2 we drove to the Columbia Icefields with a stop at Lakeis®@on the way back. That evening we went
to see “War of the Worlds” at the Banff movie theatre. In thergmag of July 5 most of us attended a concert
at a Banff church. Then on July 6 we all walked up the SulphuuMain trail. The weather turned rainy
once we were at the top of the mountain, and we eventuallyddddio take the gondola down rather than
risk the slippery hike down the trail. Once at the bottom wated the hot springs, where only two Team
members were prepared to go into the pool.

On July 3 Paul Ottaway left the Camp to return to Halifax. Oly 8uboth Elena Braverman and Andy
Liu arrived at the Camp to help out with the rest of the tragniand Elena and her family took part in the
excursion that day to Sulphur Mountain. On July 7 Felix la& Camp to fly to Toronto, where the next day
he continued on to Merida, Mexico (the site of the IMO) to hptppare the contest. The rest of the Team
stayed at Banff to continue training under the supervisiddarette, and with the help of Elena and Andy.

The Team left Banff on July 9 and returned to Calgary. Thatrafion everyone took in the Calgary
Stampede. The next morning the Team left for Toronto, wheeg stayed in a hotel near the airport, and in
the morning of July 11 they flew to Mexico.

Many thanks to:

e The staff and management at BIRS, especiBilgnda Shakotko the BIRS Station Manager, who
made our stay there so memorable; aSemai Chen the Calgary representative of PIMS, axdssif
Ghoussouh the BIRS head, were both very supportive of the idea thatNt® Camp should be at
BIRS.

e Paul Ottaway of the Department of Mathematics and Statistics of DalleuUsiiversity Elena Braver-
man of the Department of Mathematics and Statistics of the Usitieof Calgary, andAndy Liu of
the Department of Mathematics of the University of Albewtap were Trainers during the IMO Camp.

e Betty Teare, Budgets and Administration Manager of the Department ofhdiaatics and Statistics
of the University of Calgary, who helped to arrange the sitthe Media Event, booked the food, and
took the pictures at the Media Event.

e Grady Semmens of Media Relations at the University of Calgary, for assiste in setting up and
running our successful and enjoyable Media Event in therliegrtCommons on campus.

e University of Calgary graduate stude®arth Boucher, who drove the van taking the Team to Banff
on June 28 and bringing them back on July 9.

e Anthony Fink, who helped meet the IMO Team at Calgary airport on June 25lemke them to the
University.

e Tong Yu of Edmonton, who drove Edmonton students Brian Yu (his sod)@eam member) David
Rhee to Calgary on June 25.

e Former IMO Team member (and now University of Calgary stagatex Fink, who helped out during
the Calgary part of the IMO Camp.

e Hugh Williams of the Department of Mathematics and Statistics of the Usitye of Calgary, who
met Graham Wright at the Calgary airport on June 27 and dromadithe university.

e Yanmei Fej, a secretary in the Department of Mathematics and Statisfithe University of Calgary,
who drove Graham Wright and Vancouver student Allen ZhartheédCalgary airport on June 28.
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Chapter 49

Computing the Continuous Discretely:
Integer-point enumeration in polyhedra
(05ss027)

Aug 06 - Aug 20, 2005

Organizer(s): Matthias Beck (San Francisco State University), Sinai Rekremple Uni-
versity)

This is the final report of the MSRI/Banff Summer Graduatedattat the Banff International Research
Station, August 6—20, 2005. The theme was integer-poinnenation in rational polyhedra, which also goes
by the name of Ehrhart Theory.

The Location

We found the Banff International Research Station nothimgrtsof ideal for an MSRI graduate summer
school. Lodging, meals, and lecture halls are all on the ssitee away from the distractions, say, of a
city. This setting results in an automatic networking amthrggstudents. The rapport among the students was
wonderful to witness and had, needless to say, much posiftuence on the mathematics that was discussed
among them. The beautiful scenic setting of the Banff Cemdieled excitement among the participants and
fostered further interaction during free time. The staffsite was always helpful, and the computer support
was very good. Brenda Shakotko, the BIRS Station Managsgrdes our sincere thanks for making sure
that every little detail of the summer school was running sthly.

The Schedule

We settled on an 11-day schedule for the summer schoolinstavith lectures on Sunday morning, having the
middle weekend (Saturday and Sunday) off, and ending wih-tiiday afternoon session in the following
week. Each morning consisted of two hour lectures sepatatedhalf-hour coffee break. The afternoon
started with two hour TA sessions, also separated by a coffegk. We had two excellent TA's, Kristin
Camenga and Kevin Woods, who alternated from one day to tkie Aéne afternoon sessions were early
enough (starting at 1 p.m.) to allow ample time for the staslém interact in smaller groups on their own
time. This schedule worked very well for us. We got throughterial equivalent to one semester of a
second-year graduate course. One has to keep in mind, thihaglthe students had a complete manuscript
of the lecture notes, so that we could leave certain detatlsam (often in form of afternoon exercises). The
middle weekend was intentionally left free, to allow thetwapants to explore the area around Banff. A few
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students volunteered to organize large group activitiesemded up having groups that went on a day hike,
water rafting, a horse ride, a trip to Lake Louise and a neglégier, and a day bike ride. It is safe to say that
there was an activity for every participant.

The Program

We were pleased that we were able to cover all 12 chapters diomk in progres€omputing the continuous
discretely to be published in the Springer UTM series. The participaeemed excited about the material
that was covered. While it is natural that not everyone covicevery detail, especially in the more advanced
topics, the students showed 100% participation until they Vest day. Similarly, the afternoon problem
sessions were always lively, and all of them were attendedlllifie students. We were very grateful for the
active involvement of our students and the TA's, all of whaawegus invaluable feedback on our manuscript.

The Participants

There were 30 participating graduate students from 22 wsities in Canada, Mexico, and the US. Among
them were 10 women and 8 under-represented minorities.

We conclude with some of the students’ comments. They areeddom a short survey that we took at
the end of the first week.

“I think the lectures are great and | love their casual/infaf style. ”

“Too many mosquitos, but the time seems to fly during the testand the problem sessions. | like having
a break every hour as well.”

“This is wonderful material and both of you are giving nicetlees. Keep up the great work! The book
is well-written, generally enjoyable to read. | would sag trganization is a bit unorthodox. That makes the
reading more interesting.”

“l also very much enjoy the conversations and interacting féllow math people.”

“The location is great and the material is fun. Awesome sunsokool.”
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