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Chapter 1

Dynamics, Probability, and Conformal
Invariance (05w5009)

March 12, 2005 – March 17, 2005
Organizer(s): Ilia Binder (University of Toronto), Peter W. Jones (Yale University), Stef-
fen Rohde (University of Washington), Michael Yampolsky (University of Toronto)

The study of dynamics in the plane has recently seen a surge ininterest due to three recent breakthroughs:
the Sullivan-McMullen-Lyubich proof of the Feigenbaum Universality, the introduction by O. Schramm of
SLE processes, and the work of S. Smirnov on percolation. Thefields of Holomorphic Dynamics, SLE, and
Conformal Field Theory (CFT) are now seen to be closely linked, the glue being provided by renormaliza-
tion arguments, conformal mappings, Brownian Motion, and other methods related to Conformal Invariance.
Indeed, there is an emerging field where these different dynamical processes, as well as more classical areas
in conformal mappings, are unified into a more general theory. Though it is still early in the game, much
progress has been made. The workshop has brought together leading experts from the areas of SLE, Holo-
morphic Dynamics, Probability Theory, and Conformal Mappings to present the latest developments in these
areas and search for further unification of the fields.

Holomorphic Dynamics of Rational Maps and Kleinian Groups.

Hyperbolic geometry in 3 dimensions has experienced some very exciting progress recently. The main recent
achievement is the completion of the program of Minsky of proving Thurston’s Ending Lamination Conjec-
ture (ELC) by J. Brock, D. Canary, and Y. Minsky [15, 3] (both in the incompressible-boundary case). The
Conjecture had the same place in the field as the MLC (Mandelbrot set is Locally Connected) Conjecture
occupies in Holomorphic Dynamics. It is a rigidity statement which postulates that combinatorial invariants
(ending laminations) uniquely describe the geometry of the3 manifolds. Another exciting recent progress
is the proof of the Tameness Conjecture by Agol [1] and Calegari & Gabai [4]. It implies, in particular, the
Ahlfors’ Conjecture: If the limit set of a finitely generatedKleinian group has no interior, then its area is zero.

These achievements are of particular interest to holomorphic dynamicists as both have analogues in the
dynamics of rational maps (see below) which remain open. This, of course, is largely due to the fact that the
geometric objects (hyperbolic 3-manifolds) provide an additional set of tools to the study of the dynamics
of Kleinian groups, which are at best still being developed in the dynamics of rational maps. However,
the intuition coming from Kleinian groups has historicallyplayed a very important role in Holomorphic
Dynamics. Yair Minsky’s mini-course was a major event of the workshop. In his lectures Minsky has
outlined the proof of ELC, and tried to present the material in the form understandable to complex analysts
and dynamicists.

In dynamics of rational maps the counterpart of the Ahlfors’Conjecture would state that the Julia set of
a rational map is either equal to the sphere (that is has non-empty interior), or has area zero. Given parallels
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between the two fields, it is both exciting and unexpected that the feeling in rational dynamics is now that
this statement may be false.

A decade ago A. Douady has initiated a program to the end of constructing a quadratic polynomial whose
Julia set has positive measure.A. Chéritat [32] has recently been able to push through a large part of this
program, and gave a lecture on his results. The Douady’s program consists in approximating the candidate
quadratic polynomial by a sequence of carefully chosen quadratics with parabolic periodic orbits.

Each step of approximation is done through two stages. If we write the rotation number of a parabolic
point using the digits of its continued fraction expansion as [a0, a1, . . . , an,∞], the first stage consists of
perturbing the parabolic point to a nearby Siegel disk with rotation number

[a0, a1, . . . , an, very largeN, 1, 1, 1, 1, . . .];

and the second stage with going back to a parabolic

[a0, a1, . . . , an, very largeN, 1, 1, 1, 1, . . . , 1,∞].

Geometrically, each successive approximation should correspond to removing some thin cusps from the filled
Julia set – the hope is to bound the area of what is left from below. The limit filled Julia set would then have
a Cremer point. Such a filled Julia set would coincide with itsJulia set and have a positive measure.

Chéritat has shown that the second stage of an approximation step may be carried out with an arbitrarily
small loss of measure. Moreover, due to the work of X. Buff andA. Chéritat, making the loss arbitrarily small
at the first stage boils down to several conjectures aboutcylinder renormalization. The latter was introduced
by M. Yampolsky for proving the hyperbolicity of renormalization of critical circle maps. Geometrically,
this renormalization boils down to successive blow-ups of the golden-mean Siegel Julia set. A convergence
result for this procedure has been established earlier by McMullen; what is required now is a proof of the
hyperbolic properties of the limiting fixed point.

The appearance of renormalization-type arguments is common for this class of problems: for example,
Shishikura [19] used a parabolic renormalization procedure to demonstrate the existence of quadratic Julia
sets of Hausdorff Dimension2 used in his proof of HDim(∂M) = 2. The one-dimensional renormalization
theory (see e.g. [13]) has seen a spectacular progress sincethe works of Douady, Hubbard, and Sullivan which
related it to Holomorphic Dynamics, culminating in a proof of the Feigenbaum Universality by Sullivan,
McMullen, and Lyubich [11, 14, 21]. Many important problemsof scaling invariance and universality still
remain open, however, even in the setting of One-Dimensional Dynamics.

In particular, a renormalization hyperbolicity result forSiegel disks which would imply positive measure
is still missing. However, a lot of numerical evidence exists in its favour, and moreover, the recent unpublished
work of Shishikura opens an approach for settling this conjecture. In the light of the recent proof of Ahlfors’
Conjecture, the existence of positive measure Julia sets would truly be surprising.

Of course, renormalization has been the main tool for the attack at the MLC Conjecture. This counterpart
of ELC in the dynamics of quadratic polynomials, and its higher degree generalization, the Fatou Conjecture
are arguably the main open problems in Holomorphic Dynamics.

In the early 1990’s Yoccoz proved that MLC holds at all parameter valuesc in the boundary of the Mandel-
brot set which are at most finitely many times renormalizable. His proof also showed that the corresponding
Julia sets are also locally connected, provided all periodic orbits are repelling. Several partial results exist for
infinitely renormalizable values ofc, however, MLC is still not known in full generality. A particular example
of an infinitely-renormalizable quadratic for which MLC is still open is the celebrated Feigenbaum quadratic
polynomial. This particular map is infinitely renormalizable with the same combinatorial type (a particular
case ofsattelite type.

M. Lyubich has spoken on a new progress on this front in his recent joint works with J. Kahn [7, 8]. In
these works the authors have introduced a new analytic tool for study of Julia sets, which they call aQuasi-
Additivity Law. This law is a statement about extremal lenghts of families of curves, in the vein of the classical
Grötsch Inequality, which is strongly motivated with the analogy with Kleinian groups. They use this law to
prove that the Julia setJ(f) of at most finitely renormalizable unicritical polynomialf : z 7→ zd + c with
all periodic points repelling is locally connected, thus providing a higher-degree analogue of the results of
Yoccoz. The theorem of Yoccoz was a major step towards MLC, and with the new tool, further progress can
be expected. In particular, it is likely that the Quasi-Addittivity Law will lead to MLC for certain infinitely
renormalizable values ofc of satellite type, thereby bringing the conjecture closer to completion.
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Figure 1.1: The Mandelbrot set near the Feigenbaum parameter: “hairy”, but locally connected?

As we have seen above, Cremer Julia sets are conjecturally capable of having extreme measure-theoretical
properties. Shishikura [19] has established earlier that these Julia sets can have Hdim= 2; and it is well-
known that they are bad topologically, in particular, neverlocally connected. All the more surprising that
the recent work of I. Binder, M. Braverman, and M. Yampolsky shows that these sets arealgorithmically
computable. That is, an algorithm may be produced to, given the value of the parameterc, draw such Julia
sets on the computer screen with an arbitrary magnification.This nothwithstanding the fact that informative
pictures of Cremer Julia sets have never been produced.M. Braverman reported on this work, as well as on
his earlier result with M. Yampolsky demonstrating the existence of non-computable Julia sets in the quadratic
family. These results led to a lively discussion, as a numberof natural questions follow. Computability results
for limit sets of Kleinian groups are not yet known. And in thequadratic case, the size of the set of values
c for which the Julia set is uncomputable is interesting – and in particular, whether some such values are
actually computable reals themselves.

Random shapes and conformal invariance

SLE

One of the central topics of the workshop was Stochastic (or Schramm) Loewner evolution (SLE) (see [18,
17]). It is a process defined by using one-dimensional Brownian motion as the driving parameter in Loewner’s
differential equation. There is one free parameter in SLE, which is the speed of the Brownian driving process.
Thus the whole family of conformally invariant processes, SLEκ, is defined. Introduction to the properties of
SLE and the general overview of the subject was given byOded Schramm, the inventor of SLE in the first
talk of his three-lecture mini-course.

The SLE paths are conjectured to be the scaling limits of various natural random processes in the plane,
such as the interface of critical percolation, the Ising model or the self avoiding walk. Some such statements
have been recently proved by several authors: Smirnov [20] for Critical Percolation on the triangular lattice
(κ = 6); Lawler, Schramm, and Werner [10] for the Uniform SpanningTree (κ = 8), and Loop Erased
Random Walk (κ = 2). Quite a few other statements of this sort remain unproven.The direction of the
research is currently extremely active. Two of the talks of the mini-course series by Oded Schramm were
devoted to the problem. First, he discussed the so-called harmonic explorer process, which, as proven by the
speaker and Scott Sheffield, converges to SLE4. Using the result, they establish that the level lines of the
discrete Gaussian Free Field also converge to SLE4. It was also explained how one can find SLEκ for κ 6= 4
in the Gaussian Free Field.
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Although the conjectures about the value ofκ for scaling limits of different lattice models are widely
believed, it is not clear in a few cases which particular formof the SLE is obtained in the limit – there can
be different parameterizations, boundary conditions, etc. To understand this situation in a few specific cases,
Monte Carlo simulations of the two dimensional self-avoiding walk (SAW) were discussed at the talk byT.
Kennedy entitledMonte Carlo comparisons of the self-avoiding walk and SLE.This simulations have given
support to the conjecture that the scaling limit of the SAW isSLE with parameter 8/3. These past simulations
treated the SAW and SLE as subsets of the plane, i.e., the parameterization of the curves was ignored. In this
talk the speaker considered the SAW and SLE as parameterizedcurves and compared things that depend on
the parameterization.

Another very active area of research is understanding of thefine geometric properties of the SLE. It is
known that forκ ≤ 4 SLE is almost surely a simple path (Rohde and Schramm [17]), for κ > 4 SLE is not
a simple path almost surely, but is still generated by a curvecalled trace(Rohde and Schramm forκ 6= 8,
Lawler, Schramm, and Werner forκ = 8). The estimate for the upper bound,1 + κ/8 on the Hausdorff
dimension of SLE trace was established by S. Rohde and O. Schramm. It was shown by V. Beffara that the
Hausdorff dimension of theSLEκ-trace is actually equal to1 + κ/8. On the other hand, the conjecture that
the dimension of the boundary of the hull whenκ > 4 is equal to1 + 2/κ still remains open.

Normalized Schwarzian derivatives of SLE maps and other geometric properties of the SLE boundary
were discussed byNam-Gyu Kang in his talk Boundary Behavior of SLE. He showed that the normalized
(pre-)Schwarzian derivatives of SLE maps with higher orderterms are continuous square integrable martin-
gales with second moment obeying the Duplantier duality. Also he showed that they have correlations that
decay exponentially in the hyperbolic distance. The BMO space, or the space of functions of bounded mean
oscillation, is the appropriate substitute forL∞ in many results concerning singular integrals. This notioncan
be modified in the setting of continuous martingales. The normalized (pre-)Schwarzian derivatives of SLE
maps with negligible terms are BMO martingales. As a corollary, they satisfy the John-Nirenberg inequality.
This result may lead to an estimate on the lower bound for the Hausdorff dimension of the boundary of SLE
hull. The results obtained by Kang allows to make a formal argument for the lower bound.

Stas Smirnov in his talk entitledConformally invariant fractalsdiscussed some recent progress and
techniques in the study of the fine geometric properties of the SLE. In particular, he explained the multifractal
analysis of harmonic measure on SLE. In a joint work with D. Beliaev the speaker derived a formula for one
of the multifractal spectra, the so-called integral means spectrum, of the SLE. The spectrum reflects the
behavior of the Riemann map for SLE near the boundary. Using these calculations one can see that the fine
behavior of harmonic measure of the boundary, predicted by B. Duplantier, is very plausible.

Many geometric properties of the SLE were predicted by theoretical physicists (for example Cardy, Du-
plantier).

Overview of the physics point of view on SLE (see [6]) was given in the talk byBertrand Duplantier
entitledConformal fractal geometry and Quantum Gravity. More specifically, he discussed the fractal geom-
etry of conformally-invariant (CI) scaling curves. He focused on deriving critical exponents associated with
interacting random paths, by exploiting an underlying quantum gravity (QG) structure, which uses KPZ maps
relating exponents in the plane to those on a random lattice,i.e., in a fluctuating metric. This was accom-
plished within the framework of conformal field theory (CFT), with applications to well-recognized critical
models, likeO(N) and Potts models, and to the Stochastic Löwner Evolution (SLE). Two fundamental ingre-
dients of the QG construction are relating bulk and Dirichlet boundary exponents, and establishing additivity
rules for QG boundary conformal dimensions associated withmutually-avoiding random sets. These rules
are established from the general structure of correlation functions of arbitrary interacting random sets on a
random lattice, as derived from random matrix theory. The physics derivation of the multifractal spectra was
also discussed.

An essential role in the derivation is played by the Quantum Gravity, i.e. the theory of random two-
dimensional Riemann surfaces, and especially by Knizhnik-Polyakov-Zamolodchikov (KPZ) equation [9]. It
would be extremely important both for SLE theory and for String Theory to obtain the rigorous mathematical
justification of the Quantum Gravity and KPZ.

The talk ofAngel was devoted to the construction of the rigorous theory of discrete random Riemann
surfaces.

One can also consider the talk ofJ. Dubedat entitledCommutation of SLEsrelated to this program. In
the talk he discusses questions pertaining to the definitionof several SLEs in a domain (i.e. several random
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curves). In particular, the speaker derived infinitesimal commutation conditions, discussed some solutions,
and show how to lift these infinitesimal relations to global relations in simple cases. All these relations agree
to what is predicted by the means of Quantum Gravity, and theygive some insights on how Quantum Gravity
can be defined using SLE.

The workshop finished with an informal talk byPeter Jones. In the talk he presented his new result related
to the welding problem for the SLE. Peter Jones proposed a family of (random) homeomorphisms of the circle
which are conjectured to be the welding homeomorphisms of SLE. The family of the homeomorphisms is
related to the Gaussian Free Field on the unit circle. He alsodiscussed the connection of this new family with
some previous conjectures.

Other random shapes

Other random shapes were discussed during the workshop.
One of the most important questions in the Geometric function theory is understanding of the extremal

behavior of the multifractal spectra. The answer to the question would incorporate the Makarov’s and Jones-
Wolff’s dimension theorem, affirm the famous Brennan’s conjecture, and answer many classical questions
related to the coefficient growth problem for the univalent functions. It is known that the extremal behavior
of the spectra is the same for general and for the simply-connected domains, and that this behavior “almost”
occur on Julia sets. Nice upper estimates on the spectra wereobtained by H. Hedenmalm and S. Shimorin
using the technique of Bergman spaces.

D. Beliaevin the joint work with S. Smirnov proposed a new class of random fractals, so-calledRandom
Snowflakes. It is proven that the almost extremal behavior of the integral means spectrum also occur for the
class of objects. Because of the stochastic nature of the random snowflakes, the explicit calculations of the
multifractal spectra for them are much easier to control. Using the random snowflakes new rigorous lower
estimates on multifractal spectra are obtained. The estimates are now extremely close to the conjectured
values.

A generalization of the simple random walk and SLE to two- andhigher-dimensional processes is another
active area of research. One of such analogies was given byRick Kenyon in the talk entitledSimple random
surfaces. The talk was devoted to the speaker’s joint work in progresswith David Brydges and Jessica
Young. They consider a natural model of random immersed surfaces in a (finite or infinite) 2-complex. This
is in many ways a natural generalization of the simple randomwalk. Although little is known about this
model, certain expectations can be computed using the Green’s function on 1-forms.

While SLE provide at least conjectural limit for various twodimensional lattice model, nothing like
this exists in higher dimensions.G. Slade in the talk entitledScaling limits and super-Brownian motion
explained how critical percolation and related models can be described by super-Brownian motion, in high
spatial dimensions. The talk provided a survey of several results and gave all the necessary background on
super-Brownian motion.

Complex Analysis

Holomorphic Dynamics, the analytic theory of Kleinian groups, and SLE have their roots in classical complex
analysis and geometric function theory. In this section we report on some developments and talks that are
dealing with fundamental questions from complex analysis.They are not necessarily directly related to the
topics described above, but in most cases the relevance to the central theme of the workshop is very obvious.

Joan Lind discussed how properties of the driving term in the Loewner equation affect the geometry of
solutions to the Loewner equation. Since the Schramm-Loewner evolution is the Loewner equation driven by
one-dimensional Brownian motion, this can be viewed as the ”deterministic” counterpart to the path proper-
ties of SLE. A natural space of driving terms is the space of Hoelder continuous functions with exponent 1/2,
with the Hoelder normc replacing the speedκ in SLE. It was shown that forc < 4 the Loewner equation
always generates simple curves whereas forc ≥ 4 selfintersections and even topologically wild compacts
can occur. This phase transition atc = 4 is the deterministic counterpart to the phase transition inSLE at
κ = 4 from simple to non-simple curves. In her talk she also illustrated by means of examples that there is
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no simple other phase transition that would correspond to the transition atκ = 8 from ”swallowing curves”
to ”space filling” curves.

Another topic very closely related to the Loewner equation was discussed byDon Marshall. He (and
independently Rainer Kühnau) discovered in the early 1980’s an elementary algorithm for computing con-
formal maps (see [12]). The algorithm is fast and accurate, but convergence was not known. Given points
z0, , zn in the plane, the algorithm computes an explicit conformal map of the unit disk onto a region bounded
by a smooth curveγ with z0, , zn ∈ γ. Marshall reported on joint work with S. Rohde, proving convergence
for Jordan regions in the sense of uniformly close boundaries, and gave corresponding uniform estimates on
the closed disc for the mapping functions. Improved estimates are obtained if the data points lie on a smooth
or a K-quasicircle. The algorithm was discovered as an approximate method for conformal welding, however
it can also be viewed as a discretization of the Loewner differential equation.

A central topic of complex analysis is quasiconformal mappings. Quasiconformal mappings appear nat-
urally in the deformation theory of Riemann surfaces and arean indispensible tool in Kleinian groups. Since
their introduction to complex dynamics in the proof of Sullivan’s no wandering domain theorem, they have
become one of the most powerful tools in dynamics. They are the main tool in the work of Marshall-Rohde
and of Lind, as well as a cornerstone of the work of Peter Jonesdescribed above.Kari Astala andDaniel
Meyer both talked about exciting developments related to the theory of quasiconformal maps. Astala de-
scribed his deep joint work with Päivärinta [2], solving the Calderon’s inverse conductivity problem: In
tomography, or inverse problems in general, one aims to determine the structure of an object from indirect
observations. Such methods have a variety of immediate applications, ranging e.g. from medical imaging
to different industrial processes. A typical example is to determine the (conductivity) structure of a body
from (electrical) measurements on the boundary. From the mathematical point of view this question has a
clear and precise formulation, asking if the Dirichlet-to-Neumann boundary data determines the coefficients
of a differential operator in the interior of a domain. In histalk, Astala discussed recent joint work with
L. Päivärinta, solving the problem in two dimensions. Complex analysis, quasiconformal methods and, in
particular, the function theoretic view to elliptic PDE’s developed by Bers, are unavoidable for the solution
in its full generality.

Self-similar sets in two dimensions often can be quasisymmetrically (quasiconformally) mapped to stan-
dard sets: For instance, limit sets of quasifuchsian groupsand Julia sets of hyperbolic rational maps are
quasiconformal circles (if they are topological circles).The powerful tools to prove such statements, an ex-
plicit geometric characterization of quasicircles (the Ahlfors three-point condition) and theλ− Lemma about
holomorphic motions, are not available in dimensions higher than two. Already in three dimensions, there are
self-similar surfaces (such as the product of the van koch snowflake with the real line, known as ”Rickman’s
rug”) that cannot be quasisymmetrically parametrized by the plane. Daniel Meyer discussed quasisymmetric
parametrizations of fractal surfaces in three dimensions.A Quasisphere is the image of the sphere under
a quasiconformal map (ofR3). The largest known class of quasispheres are called snowballs, they are
topologically 2-dimensional analogues of the snowflake curve. For those surfaces the qc-embedding can be
constructed explicitly. Many questions about the mapping behavior can be answered, at least numerically.
For instance, Meyer showed that the ”harmonic measure on a snowball”, i.e. the image of Lebesgue measure
of the sphere under the quasisymmetric parametrization, has dimension strictly smaller than the dimension
of the snowball. This can be viewed as an analog of the celebrated Makarov theorem concerning harmonic
measure of simply connected planar domains, and its higher dimensional generalization by Bourgain. The
question if the dimension is greater than two (reminiscent of Wolff’s example) was raised, at this point a
positive answer is suggested by numerical results.

Nick Makarov reported on joint work with H. Hedenmalm on the quantum Hele-Shaw flow. The Hele-
Shaw flow is closely related to the Loewner differential equation and describes the geometry of a growing
”cell”. It is used to model the interface between two fluids ofdifferent viscosity (such as water and oil). It
appears as the formal limit of diffusion limited aggregation DLA.

Michel Zinsmeister talked about joint work with S.Rohde. The physicists Hastings and Levitov proposed
a stochastic model for Laplacian growth, based on compositions of ”random” conformal maps, depending on
a parameter0 ≤ α ≤ 2. Forα = 2, the process is a version of DLA. SLE can also be viewed as (thescaling
limit of) random compositions of conformal maps, but the difference is that in SLE the growth is restricted to
a specified boundary point, whereas in the Hastings-Levitovmodel HL(α) the growth is uniformly distributed
with respect to harmonic measure. Incidentally, the special case HL(0) was considered in the late 1980’s by
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Richard Rochberg and his son and called ”stochastic Loewnerevolution”. As no result was published, the
name did not stick. Indeed, the celebrated work of Hastings and Levitov appeared about ten years after
Rochberg’s unpublished work. Zinsmeister proved some rigorous results about HL(α). In particular, he
proved that the scaling limit forα = 0 exists, he described this limit in terms of the Loewner equation, and
proved that the Hausdorff dimension of the random set is 1 almost surely. Forα near two, he explained how
the Carleson-Makarov formalism can be adopted to the current setting to obtain nontrivial lower bounds for
the dimension of the cluster. He also discussed the formal limit of the model and its relation to the Hele-Shaw
equation.

A. Poltoratski described joint work with N. Makarov. He generalized the definition of Toeplitz operators
to larger spaces of analytic functions. After that he studied the problem of injectivity of Toeplitz operators
in these spaces. It turns out that many problems of classicalanalysis, such as distributions of zeros of entire
functions (Levinson), completeness of bases of reproducing kernels (Beurling-Malliavin), spectral problems
for the Schroedinger and string operators (Krein, Marchenko, ...), naturally become a part of the picture. One
can use the Toeplitz approach together with some of the recent advances in complex and harmonic analysis
to give shorter proves and further generalizations to the classical results.
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Chapter 2

Computational Fuel Cell Dynamics-III
(05w5073)

March 19–24, 2005
Organizer(s): Keith Promislow (Michigan State University), Jean St-Pierre (Ballard Power
Systems), Brian Wetton (University of British Columbia)

Report Prepared By: Paul Chang1

Introduction

Replacing today’s fossil fuel economy with a hydrogen one would alleviate much of today’s environmental
and political problems. The transport and consumption of fossil fuels has contributed to oil spills, fossil
fuel scarcity issues, political instability in the middle east, etc. Hydrogen consumption, on the other hand,
would not since hydrogen can be produced by electrolyzing water and the latter is abundant and ubiquitous.
Moreover, Proton Exchange Membrane (PEM) fuel cells (a key component of the hydrogen economy) pro-
duce only water as its byproduct, and therefore greenhouse gases and other air pollutants would cease to be
produced.

Key challenges remain, however, in the transition to a hydrogen economy. Infrastructure for producing
and distributing hydrogen needs to be established. An economical means for storing hydrogen needs to be
developed. And, if PEM fuel cells are to supplant the internal combustion engine, PEM fuel cells need to be
as (if not more) durable, efficient, economical, and powerful as the latter. Our community aims to meet this
last challenge.

Cost-effective and rapid improvement of current fuel cell designs requires computationally fast and ac-
curate fuel cell models; a pure trial-and-error approach isclearly expensive and slow. The development of
fuel cell models requires the talents of a diverse group of scientists and engineers: chemists and physicists
are needed to understand the fundamental chemical and mechanical processes and their interactions, mathe-
maticians are needed to develop fast and stable numerical algorithms to solve the governing model equations,
engineers are needed to implement these models to optimize fuel cell design which in turn directs future
model development, and finally experimentalists are required to validate these models. Many members of
our community are able to play one or more of these roles, but since few are experts in all roles, it is clear
that a high degree of collaboration is needed.

The CFCD workshops hosted by Ballard Power Systems and PIMS at Simon Fraser University in June
2001, and at BIRS in April 2003, gave focus to these activities. These meetings brought together a diverse
mix of scientists and engineers to exchange expertise and tofind common ground, and provided future re-
search directions. The CFCD III workshop is a continuation of these efforts, providing a forum where the

1University of British Columbia
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Figure 2.1: The layers comprising a fuel cell. [5]

latest fuel cell knowledge and technologies can be shared, and focusing the multi-disciplinary efforts of its
participants. This important work will certainly lead to the development of a new generation of analytical
and computational tools for PEM fuel cell design, and ultimately the realization of the hydrogen economy.

Proton Exchange Membrane Fuel Cells and Modelling Activities

PEM fuel cells generate power by consuming hydrogen and oxygen. As earlier mentioned, hydrogen can be
produced by electrolyzing water, but in cases where pure hydrogen fuel is unavailable, it can be obtained by
processing available fuels including natural gas, propane, diesel, methanol, etc. Oxygen is drawn directly
from air. A PEM unit cell consists of a polymer membrane sandwiched between a pair of gas diffusion layers
sandwiched between a pair of bipolar plates (See Figure 2.1). The polymer membrane is usually made of
Nafion and the gas diffusion layers are often teflonated carbon fibre paper. The bipolar plates are usually
made of graphite. At the interface between the gas diffusionlayer and membrane lies a catalyst layer which
facilitates the power-generating electrochemical reactions. The catalyst is usually Platinum, but because
Platinum is such an expensive component of the fuel cell, other catalyst materials are being developed as
possible replacements.

Channels are carved in the bipolar plates which deliver hydrogen (on the anode side) and oxygen (on the
cathode side) to the reaction sites. The channel configuration can be straight, serpentine, or cross-flow. The
hydrogen diffuses through the gas diffusion layer to the anode catalyst sites where it disassociates into two
protons and two electrons. The electrolyte membrane, beinga good protonic and poor electronic conductor,
allows the protons to diffuse to the cathode side while the electrons are conducted through the bipolar plates
through an external circuit where useful work can be performed. The protons and electrons then meet with
the oxygen, which has diffused through the cathode diffusion layer, at the cathode catalyst sites where water
and heat is produced. The net electrochemical reaction is simply

2H2 +O2 → 2H2O. (2.1)

A key advantage of PEM fuel cells is its operation at low temperatures (around70◦C). However, this
necessitates a catalyst layer as the activation potential for the electrochemical reactions is much too high at
these temperatures. Reducing Platinum loadings at the electrodes, or the complete replacement thereof, is a
priority for the fuel cell community due to high cost of Platinum; but to do so without degrading the power
output capabilities of the fuel cell requires an understanding of the fundamental processes which drive the
catalyzed reactions. Existing approaches to modelling thecatalyst layer include interface models in which the
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Figure 2.2: A 2D unit cell slice.

layer is infinitesimally thin, microscopic or single-pore models in which the layer consists of pores filled with
gas and pores filled with electrolyte and catalyst, and agglomerate models in which the layer is composed of
spherical agglomerates of carbon grains supporting Platinum. Research in this area is active and ongoing.

The electrolyte membrane is a complex polymer comprised of Teflon spines from which typically hy-
drophilicSO3 groups extend. These are arranged in a nanoscale configuration which facilitates the selective
diffusivity of the membrane, enabling the fuel cell to perform close to the thermodynamic limit for efficiency.
While the membrane must be well hydrated to allow the protonsto cross over, the overproduction of liquid
water may saturate the surrounding porous electrodes, floodthe gas channels, and lead to a pronounced drop
in local power density. The control of the motion and distribution of liquid water in both the nano-structure
of the membrane and the surrounding fibrous electrodes is referred to as water management, and is critical to
effective cell operation. The understanding of water management is also key to optimizing fuel cell design.

Many efforts have been undertaken to develop fuel cell models which incorporate these effects. These
models can be roughly classified as either fully three dimensional, or reduced dimensional where quantities
are averaged in one or more directions. There are also modelswhich look at specific aspects of the fuel cell.

In recent years, several large computational fluid dynamics(CFD) code vendors have become interested
in developing comprehensive three dimensional fuel cell computational models. Some examples are the
modules developed by CFX [2], StarCD [4], and the more academic FEMLAB [3]. These CFD codes provide
convenient 3D meshing and visualization tools and robust solvers for the traditional fluid dynamics elements
of fuel cell models. These codes also provide a platform for validated models of elements unique to fuel
cells to be integrated into the “big picture”. However, preliminary models suggest that the delicate balance
of temperature, condensation and liquid water transport inthe gas diffusion layers will be difficult to capture
accurately in these general packages. It is apparent that larger scale problems such as electrical coupling of
unit cells in the stack and long time transients will have to be handled by specialized codes.

Reduced dimensional models exploit the high aspect ratio ofthe unit cell, roughly 1000 to 1 down chan-
nel versus thru membrane, and solve for quantities averagedin a particular direction. For instance, unit cell
models which assume a straight channel design and average inthe cross channel direction are comprised of
two one-dimensional models for transport along the channeland thru the membrane electrode assembly, cou-
pled through their boundary conditions. With such simplified geometries, these models are computationally
speedier than their CFD counterparts, yet certain higher dimensional effects may not be captured with these
models. A 2D slice of such a unit cell model is shown in Figure 2.2. It should be mentioned that this type of
fuel cell, which uses pure hydrogen, is one of many design approaches.

Currently, there are condensation and two phase flow models for gas diffusion layers. These are based on
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hydrophobicity and capillary forces combined with porosity and permeability factors associated with the gas
diffusion layer. This coupling of forces leads to difficulties in predicting water formation within the various
regions of the gas diffusion layer and catalyst areas. Theseparameters are extremely difficult to measure and
to correlate to model results.

Studies of water mobility and proton motion through the Nafion membrane and similar PEM products
have also been conducted. Some of the questions of interest here have been considered by researchers of
biological membranes. Various effects can be considered, ranging from molecular level models, hydraulic
pumping, nano-technology and capillary forces.

Presentation Highlights

The following is a summary of the presentations presented atour workshop.

• Bernhard Andreaus (Simon Fraser University):Performs kinetic Monte Carlo simulations of CO oxi-
dation on supported catalyst particles in the nanometer range. The goal is to improve our understanding
of the catalyst structure and the prevailing kinetic mechanisms, which can help us improve catalyst uti-
lization and optimize rates of current generation.

• Daniel Baker (General Motors):AC impedance tools have the potential of isolating the various contri-
butions to the fuel cell polarization curve. Daniel Baker presented some findings in the low frequency
range (much less than 1 KHz), and showed that the impedance spectra in this frequency range offers
a very sensitive tool for measuring gas-phase transport resistance. Of particular interest is a low-
frequency inductive effect that becomes observable at frequencies less than around 1 Hz. On another
note, General Motors will build an environmental chamber for car testing at the University of Ontario
Institute of Technology. It will include temperature and relative humidity control. Quoted as the best
facility in North America when completed.

• Jay Benziger (Princeton University):Recent studies at Princeton have discovered that multiple steady
states and autonomous oscillations occur in PEM fuel cells due to a positive feedback between the
resistance of the polymer membrane and the water productionin the fuel cell. It was also discovered
that additional steady state multiplicity arises from the coupling of the mechanical properties of the
polymer electrolytes and their electrical and chemical properties. Control of the construction of PEM
fuel cells is key: if the sealing pressure is too low the membrane-electrode contact is poor, whereas
if the sealing pressure is too high water is squeezed out of the membrane thus increasing membrane
resistance. A series of experiments that show the effects ofwater inventory on the dynamics of fuel
cell performance was presented, as well as a lumped parameter model of a differential PEM fuel cell.
A model explaining these experimental results was also developed by Keith Promislow.

• Peter Berg (University of Ontario IT) and Arian Novruzi (University of Ottawa):Presented a dry,
non-isothermal, macroscopic model for the catalyst layer.The model couples variables for these three
phases: 1) electric potential for the Carbon/Platinum, 2) oxygen and water vapor concentrations and
pressure in the pores, and 3) proton concentration, water content, electric potential in the membrane.

• Uwe Beuscher (W. L. Gore and Associates, Inc.):A detailed model is under development for studying
the material and structural properties of the membrane, catalyst layer, and gas diffusion layer. The Gore
Electrode Model (GEM) is a one-dimensional description of all essential processes in the PEM fuel cell.
Transport processes that are considered include proton transport in the catalyst layers and membrane,
electron and gas transport in the catalyst layers and gas diffusion layers, and water transport in all these
domains. Need for degradation modeling mentioned.

• Viola Birss (University of Calgary):Developing non-noble metal ORR catalysts using sol-gel synthe-
sis, a simple and low cost approach known to yield nanoparticulate composite materials. These new
catalysts have demonstrated very good ORR activity in acidic solutions after adsorption on carbon and
subsequent heat treatment, with a maximum in performance and minimum inH2O2 generation after
prepartion at700◦C.
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• Radu Bradean (Ballard Power Systems):Presented a model for controlling the MEA water content.
Such a model is used to provide input into the design of operating strategies of automotive fuel cell
stacks. The measurements of MEA water content during fuel cell operation, stack purging after shut-
down, and natural cooling after shutdown is reasonably predicted by the model.

• Felix Buechi (Paul Scherrer Institute):Presented a fast 1+1D model used for parameter space analysis
of along-the-channel current and species distribution. The model accounts for heat transport in the
MEA and along the channel, and has been validated against experimental data in a wide parameter
space. Measured electrical interactions with a two cell stack and a non straight channel design.

• Brian Carnes (University of Victoria):Presented a general model, named BFM2, for the transport of
water and protons within PEMs. It rigorously accounts for multicomponent transport using the Binary
Friction Model for transport in a porous medium. The model was shown to provide an excellent fit
to experimental conductivity data. Mentioned the need for ionomer (different properties than manu-
factured membranes) and membrane property measurements including the direct relationship between
conductivity and water content at different operating conditions.

• Paul Chang (University of British Columbia):Presented a stack model which accounts for electrical
and thermal coupling effects between unit cells. This modelis comprised of a four parameter 1+1D
unit cell model which was validated using a significantly large and varied data set. A two dimensional
end plate model is also included. Runs with simulated anomalies were presented, where a unit cell
received substantially less coolant flux and oxidant flux than its neighbours. Experimental validation
presented by Gwang-Soo Kim.

• Juergen Fuhrmann (Weierstrass Institute Berlin):Presented a model for Direct Methanol Fuel Cells
using the control volume method. The model includes fully resolved catalytic reaction chains, evapo-
ration/condensation/dissolution reactions, two-phase flow of water and a gas mixture in a hydrophilic-
hydrophobic porous medium, and Stefan Maxwell diffusion.

• Herwig Haas (Ballard Power Systems):PEM fuel cell models often lack validation in respect to pre-
dicted MEA water distributions. Two experimental methods have been developed at Ballard which can
serve to validate these models. These methods were presented and discussed.

• Erin Kimball (Princeton University):Presented a simplified lumped parameter Stirred Tank Reactor
model for the kinetics and mass transport in a differential PEM fuel cell; this model captures the
dynamic water balance in response to changes in load, feed, and temperature. Highlighted how the
model matches dynamic results from a differential PEM fuel cell, and what it predicts for more complex
flow patterns.

• Hyunchul Ju (Pennsylvania State University):Presented a model for two-phase flow (of water) which
accounts for catalyst active area reduction due to liquid water coverage, liquid water transport through
hydrophobic porous media, and liquid water droplets emerging at the gas diffusion layer/channel inter-
face. Emphasis on understanding water transport and effects on flooding.

• John Kenna (Ballard Power Systems):Gave an overview of Ballard Power System fuel cell products
and simulation models, and how stack requirements are managed with the use of bounded design space
analysis tools. The bounded design space methodology allows the interaction of multiple variables as
well as the effect of advancing technology to be clearly visualized. Introduction of design space tools
and using DOE hydrogen energy roadmap has helped focus Ballard’s simulation and modeling efforts
towards meeting their targets.

• Gwang-Soo Kim (Ballard Power Systems):Presented experimental results which elucidated the elec-
trical and thermal cell interactions which occur in a stack.Specific anomalies were introduced for this
purpose. For electrical interactions, different bus platematerials and a partially inactive cell was intro-
duced. For thermal interactions, the geometry of the coolant flow field channel in a bipolar plate was
modified. Results were compared with model predictions.
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• Andrei Kulikovsky (Research Center Jlich):Presented a 1+1D model of PEM and direct methanol fuel
cells. The direct methanol fuel cell model reveals a new effect where, for infinitely small total current,
a “bridge” of finite local current density forms near the inlet of the oxygen gas channel. This bridge
forms only in the presence of methanol crossover, and short-circuits the electrodes. This phenomenon
explains a well known effect of mixed potential in direct methanol fuel cells.

• Xianguo Li (University of Waterloo):Presented a fuel cell stack model which takes into account a
variety of factors. A new flow field design was also proposed. Need for significant data was mentioned
including cell voltage and pressure drop measurements under significant mass transfer control (low
stoichiometries, wide range of temperatures and relative humidities including over-saturation).

• Chun Liu (Pennsylvania State University):Introduced a general energetic variational procedure for
modeling the free interfacial motions in complex fluids. Themethod employs a phase field approach to
capture the moving free interfaces, and gives a natural coupling between the flow field and the different
interfacial properties.

• Simon Liu (National Research Council Canada):Presented an overview of PEM fuel cell modelling
activities at NRC. The capabilities of commercial modelingsoftware are illustrated by means of sev-
eral engineering case studies the authors have conducted inthe past four years, involving computational
fluid dynamics, computational solid mechanics, computation electrochemical engineering, and compu-
tational materials. Need for an increased level of activityin two phase flow modelling was mentioned.

• Graeme Milton (University of Utah):Outlined the basic theory of linear composite materials andtheir
effective properties. Discussed approximation schemes such as average field approximations, effective
medium schemes, differential schemes, and asymptotic methods. A brief overview of the subject of
bounds on the effective properties of composites, and the optimal microstructures which achieve them.
Authored a book on the subject [1].

• John Pharoah (Queens University):Presented a gas diffusion layer model and investigated the effects
of several properties of the gas diffusion layer on fuel cellperformance, including thermal conductivity,
mass diffusivity, and relative permeability. A new method for the determination of anistropic transport
coefficients was outlined, and the results were compared to currently used values.

• Keith Promislow (Michigan State University):Presented a model of ignition dynamics and bistable
operation of a Stirred Tank Reactor PEM fuel cell. In dry inlet gas operation, the positive feedback
between current, water production, and membrane resistance leads to two stable “ignited” states, which
correspond to a uniform current distribution or a partiallyextinguished cell with localized current
production. Comparison with experimental data gathered byJay Benziger.

• Isaac Rubinstein (Ben Gurion University):Over-limiting conductance is a phenomenon where steady
state current higher than the limiting one is readily passedthrough a cation exchange membrane.
Electro-convection driven by nonequilibrium electroosmotic slip at the solution/membrane interface
was suggested as a mechanism drawing together the overlimiting phenomena at cation exchange mem-
branes. Numerical calculations and experimental results were shown which support this case.

• Tobias Schaeffer (City University of New York):Based on the work of Grimshaw et al., Tobias Schaeffer
presented a 1D transient model for membrane swelling and contraction, and the effects these changes
have on membrane hydration. Results were compared with a simple ex situ type test with a membrane
immersed in a solution.

• Juergen Schumacher (Fraunhofer Institute for Solar EnergySystems):Overview of different modeling
approaches at the Fraunhofer Institute for Solar Energy Systems at the unit cell, stack and system scales.
These models include a two dimensional non-isothermal model for planar self-breathing fuel cells
(validated with experimental results), a dynamic two-phase flow model for unit cells, and a simplified
dynamic stack model with energy, mass, and charge transfer phenomena. Fuel cell system modeling
using the Colsim package of Fraunhofer ISE was also presented, which includes a fuel cell stack model,
models for reformers, power inverters, heat storage units,pumps, compressors, valves, and controllers.
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• Sirivatch Shimpalee (University of South Carolina):Presented a model which relates the electrical con-
ductivity of the gas diffusion layer to fuel cell performance. Relative in-plane to thru-plane electrical
conductivity including contact resistance are experimentally measured, and the interaction of flow-field
geometry with the gas diffusion layer is also studied.

• Jean St.-Pierre (Ballard Power Systems):Presented a simplified 1D unit cell model for low cell voltages
which elucidates our understanding of unit cell behaviour in the mass transfer limited regime. This
model was validated and can be used to extract mass transfer coefficients from full size unit cells.
Criteria were also defined to ensure model applicability.

• John Stockie (Simon Fraser University):Previous work has shown that mass transport limitations in the
catalyst layer, rather than the gas diffusion layer, is responsible for limiting current density behaviour.
A catalyst layer model which captures this effect is presented, and results are compared to existing
results from both experiments and simulations in the literature.

• Henning Struchtrup (University of Victoria):Presented a simplified conductivity model, named BFCM,
for perfluorosulfonic acid membranes to investigate the unknown parameters in the general transport
model BFM2 (See Brian Carnes). This model was shown to provide a more consistent fit to 1100 EW
Nafion than other established models, and was able to predictthe conductivity of a Dow and Membrane
C membrane.

• John Van Zee (University of South Carolina):Presented experimental data relating PEM fuel cell
performance to rapid changes in the voltage. This dynamic behaviour depends on the type of flow-field
and the voltage range of the voltage change. Overshoot and undershoot of the steady state current
density profile were observed for fixed flowrates when the fuelstoichiometry varied between 1.2 and
1.1. The dimensionless peak current and percentage of overshoot current is shown to depend on starting
cell voltage and the range of voltage change. These peaks arelimited primarily by oxygen, even though
operating conditions are close to fuel starved conditions.

• Adam Weber (Lawrence Berkeley National Laboratory):Presented a model for transport in PEMs. It is
based on a physical model that is semi-phenomenological andtakes into account Schroeder’s paradox.
The model addresses two different transport mechanisms, vapor- and liquid-equilibrated, as well as the
simultaneous occurrence of both modes. The model thus bridges the gap between one- and two-phase
macroscopic models currently used in the literature.

• Brian Wetton (University of British Columbia):An overview of PEM fuel cell operation is given, with
emphasis on stack design. Some of the fundamental scientificquestions related to device performance
are outlined, and a summary of modelling approaches and the use of modelling in the application is
given.

• Ziheng Zheng (University of New Brunswick):A new Magnetic Resonance Imaging (MRI) method-
ology was presented to measure membrane gas phase diffusioncoefficients. The MRI challenges of
low spin density and short gas phase relaxation times, especially for hydrogen gas, have been success-
fully overcome with a modified one-dimensional, Single-Point Ramped Imaging with T1 Enhancement
(SPRITE) measurement. The diffusion coefficients of both hydrogen gas and sulfur hexafluoride were
measured in a model polymeric membrane, which is of potential interest as a gas separator in metal
hydride batteries.

• Christoph Ziegler (Fraunhofer Institute for Solar Energy Systems):Presented a dynamic, two-phase
flow model which accounts for Schroeder’s paradox. Cyclo-voltammograms are simulated and mea-
sured, and a hysteresis effect is found in the measured IV-curves. This is likely due to the accumulation
of liquid water at the cathode side of the cell.

Personal Remarks from the Organizers

There are other notable fuel cell meetings: the Gordon Conference on Fuel Cells, the American Society of
Mechanical Engineering meetings on Fuel Cell Science, and sessions at the larger Electrochemical Society
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meetings. There are also several possibilities for generalmeetings on industrial mathematics: the SIAM
annual meetings and the larger ICIAM meetings every four years. However, at both of these kinds of meeting,
the mathematical researcher with a focus on the fuel cell application is an outsider. The CFCD series of
meetings at BIRS is a chance for this activity to be at the centre, with participation of experts in mathematical
areas that will be used in the next generation of models, and application experts to identify where modelling
activity should be focused. BIRS provides a really wonderful opportunity for these communities to meet.

We would like to thank the staff and directorship of BIRS for their enthusiastic support of our workshop.
Banff was the perfect setting to hold this workshop: the majestic scenery, the recreational facilities, the food
attracted many top-notch participants who otherwise mightnot have come. Given the opportunity, we would
welcome the chance to hold our next meeting at BIRS again.
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Representations of Kac-Moody Algebras
and Combinatorics (05w5064)

March 26–31, 2005
Organizer(s): Vyjayanthi Chari (University of California, Riverside), Gerald Cliff (Uni-
versity of Alberta), Peter Littelmann (University of Wuppertal), Nicolai Reshetikhin (Uni-
versity of California, Berkeley)

The particular focus of this workshop was on the combinatorial aspects of representation theory. It
brought together senior mathematicians working in the representation theory of Kac-Moody algebras with
students and postdoctoral fellows who are in the initial stages of their career in this field. The participants
represented the field quite well, in subjects ranging from the algebraic aspects of the representation theory
of infinite–dimensional algebras, the combinatorial aspects of the crystal base theory and the path model, the
geometric aspects of quiver varieties and the mathematicalphysics aspects of the Bethe Ansatz. Towards the
end of the conference a good picture emerged of the development and the interplay between the different
aspects of the subject.

We outline the main developments which were presented and discussed in the workshop.

Algebraic Aspects

The study of Kac–Moody Lie algebras began in the 1970’s and were a natural generalization of the theory
of semisimple Lie algebras. A Kac–Moody Lie algebra, [K] of rankn is defined by ann× n integer valued
matrixA = (aij) (called the generalized Cartan matrix) satisfying the conditions: aii = 2 and fori 6= j
aij = 0 ⇐⇒ aji = 0. Such matrices were classified by Vinberg and were shown to besatisfy one of
the following mutually exclusive conditions: (a) the matrix is positive definite, (b) the matrix is positive
semidefinite and and every proper principal minor is positive definite, (c) there exists a vectorv of positive
integers such thatAv is a negative vector. In case (a) the associated Lie algebra is a semisimple finite
dimensional Lie algebra while in the other cases the Lie algebra is infinite dimensional. If the matrixA
satisfies condition (b) or (c) it is said to be of affine or indefinite type respectively.

The affine Lie algebras and the representation theory of these algebras is widely studied and is motivated
by important applications in physics. One such applicationcomes from the underlying symmetry of two
dimensional conformal field theories which also led to the study of vertex algebras. Another application is
that of the quantized universal enveloping algebras in the theory of quantum integrable systems. Both these
applications in turn, brought important ideas to the study of the representation theory of these algebras. The
talks in the conference that focussed on the algebraic side were given by Bakalov, Brundan, Greenstein, Her-
nandez, Loktev and de Moura. The talks dealt with representations of affine Lie algebras and its applications
to physics. The representation theory or indeed the structure of an arbitrary Kac–Moody algebra is in general
poorly understood. However in the last two years some progress has been made in understanding the rep-
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resentation theory of certain infinite families of Kac–Moody Lie algebras and S. Viswanath reported on this
new development.

All the talks discussed so far focussed on the integrable representations of the Kac–Moody algebra which
are the analogs of the finite–dimensional representations of a semisimple Lie algebra. A closely related cate-
gory is the Bernstein-Gelfand-Gelfand categoryO. C. Stroppel presented some new results for the category
O associated to a Kac-Moody algebra and indicated a very intriguing new connection with knot invariants.

Vertex operator algebras

These were introduced by R. Borcherds as an algebraic tool tostudy the underlying the operator product
expansion operation in conformal field theory. They were instrumental in the proof of monster moonshine
conjecture. Chiral algebras which are a generalization of vertex algebras were introduced later and play an
important role in the geometric Langlands program. An algebraic structure that emerged from the study of
chiral algebras in conformal field theory are the Lie conformal algebras and its higher dimensional analogs
the Lie Pseudoalgebras, [3]. B. Bakalov discussed the classification of Lie Pseudoalgebras and the relation
to solutions of the classical Yang–Baxter equations.

Representations of indefinite type Kac–Moody algebras

For many years there was limited progress in the representation theory of Kac-Moody algebras associated to a
generalized Cartan matrix of indefinite type. The best studied amongst these were the algebras of hyperbolic
type and even there, results are hard to come by. More recently, M. Kleber and S. Viswanath identified
infinite families of algebras of indefinite type whose representation theory parallels and in fact generalizes
that ofsln. Roughly speaking, the algebras they consider are obtainedby “extending” the Dynkin diagram of
a Kac–Moody algebra by a tail which is the Dynkin diagram ofsln. Clearly the finite–dimensional algebras
of classical type belong to this picture. But now, one can also allow the infinite series coming from the
simple laced exceptional algebras, this includes the hyperbolic Lie algebraE10 which has been studied by
mathematicians and physicists. In his lecture, S. Viswanath discussed the representation ring of these algebras
and showed that the tensor product of the integrable representations decomposed in a stable way: namely as
the length of the tail went to infinity, the multiplicity of the isotypical components remained the same. Using
this, he explained how to define a stable product on a suitablevector space, analogous to the ring of symmetric
functions coming from the representation theory ofsln.

Ben Webster, a graduate student at Berkeley and one of the participants of the conference noticed that
this stabilization feature can be explained clearly using quiver realizations of representations of Kac–Moody
algebras. His preprint is now available on the archive, [29].

Representations of affine Kac–Moody algebras

Affine Kac-Moody algebras are one of the most important and well studied class of Kac-Moody algebras.
The main reason for this is that they can be realized as the universal (one–dimensional) central extension of
the Lie algebra of Laurent maps from to a semisimple Lie algebra. The representation theory of the affine
algebras are “controlled” by the center, and there is striking difference between the representations where the
center acts by a positive integer (positive level representations) and those where the center acts trivially (level
zero representations). One outcome of the workshop was a very good understanding and formalizing of the
connection between these two families of representations.

The irreducible finite–dimensional representations of quantized affine algebras play a key role in the theory
of quantum integrable systems. The structure of these representations is quite complicated and there are a
number of approaches to studying them, [1], [4], [5], [7], [9], [10], [27]. Two of these approaches have had
significant success recently and were discussed in the conference. One is the approach ofq–characters, an idea
that was introduced by Frenkel and Reshetikhin and further studied by Frenkel and Mukhin. D. Hernandez
discussed his work onq–characters and showed how his methods could be used to solvea conjecture on the
structure of a particular family of modules, the so-called Kirillov–Reshetikhin modules. This also allowed
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him to establish that these characters solved a system of equations called the Q–system arising in the study
of integrable systems. A. deMoura (joint work with V. Chari)presented an alternate approach to defining the
q–characters which leads to a parametrization of the blocks (generalizing results of [8]) in the category of
finite–dimensional representations of quantized affine algebras.

A second approach is to consider theq = 1 limit of representations of quantum affine algebras which led
to the idea of Weyl modules in this context. These modules were defined and initially studied by Chari and
Pressley who also had a conjecture on the structure of these modules. About the same time, B. Feigin and
S. Loktev defined the notion of a fusion product of finite–dimensional representations of a simple Lie algebra
and showed that these could be regarded as modules for the polynomial valued subalgebra of the affine
algebra. S. Loktev discussed (joint work with various coauthors) in his lecture the relationship between the
Weyl modules and fusion products and also generalizations of Weyl modules to other algebras. J. Greenstein
(joint work with Chari) discussed extensions in the category of finite dimensional representations of affine
Lie algebras and a new realization of current algebras.

A new connection between the theory of Yangians [D] andW -algebras was also presented during the confer-
ence.W -algebras are endomorphism algebras of certain induced modules for a finite dimensional reductive
complex Lie algebra. There is a natural way to associate to nilpotent element such an algebra (Slodowy
slice). In fact, the coordinate ring of the Slodowy slice is isomorphic to the an appropriate associated graded
version of theW -algebra. In special cases it has been observed before that in this way one gets the Yangian
of level ℓ. J. Brundan reported on his joint work with A. Kleschev, where they consider arbitrary nilpotent
matrices. They describe a presentation of these algebras which leads to a generalization of the of Yangians,
the so-called shifted Yangians. Because of the Schur-Weyl duality or rather it’s quantized version, they obtain
also a close connection with the degenerate cyclotomic Hecke algebra and representations of the Lie algebra
gl∞

Projective functors in the Bernstein–Bernstein–Gelfand categoryO [2] are the functors obtained as direct
summands of the functors given by tensoring with finite dimensional representations. Such functors have
been classified by Gelfand and Bernstein.

A different approach to this problem was presented during the meeting by C. Stroppel. The advantage
of the approach is that it not only recovers the known resultsbut also can be easily generalized to the Kac-
Moody case. Further, the approach by deformation theory also opens a new and very interesting connection
to knot and tangle invariants

Combinatorial Representation theory

Macdonald polynomials play an important role in representation theory and govern in many cases the com-
binatorial aspects of a theory. In his talk M. Haiman explained the latest developments in this field. In
particular, he explained a new combinatorial formula for Macdonald polynomials. The advantage of this
formula is that fact that it gives deep insights into the structure of these polynomials and provides a new
approach to understanding the charge formula of Lascoux andSchützenberger. M. Shimozono gave a talk
on finding a Schubert calculus on affine Grassmanians and explained the importance of this in enumerative
algebraic geometry. Roughly speaking the idea is to find a pairing between the Schubert bases of the coho-
mology and homology of the affine Grassmanian associated tosln. Using this he and his collaborators hope
to find the structure constants of the homology. This should give the decomposition of the fusion product of
positive level representations generalizing the the Littlewood Richardson rule for the tensor product of finite
dimensional representations ofsln.

The theory of crystal bases developed independently by Kashiwara [2], [16] and Lusztig [23] has become
a very important tool in many aspects of representation theory. The associated graph reflects in many ways
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important properties of the representation. Different aspects of the theory of crystals were discussed at the
meeting: in the case of finite dimensional representations of affine Kac-Moody algebras for example, it is
only conjectured [17] that crystal bases exist in the general case. Proofs for the existence in special cases
need case by case considerations. The other important pointis that of constructing combinatorial models of
these graphs, [20], [21], [26]. Of course, different modelsof the same graph may be particularly adapted
to different properties, so a third important point is to understand the relationship between different existing
models

K. Misra gave a report on further development of the second problem mentioned above. He presented results
on a joint work with Kashiwara, Okado and Yamada. They construct perfect crystals for the integrable highest
weightD(3)

4 -modules of levelk > 0. These perfect crystals are finite graphs, but the graphs forthe infinite
dimensional integrable highest weight modules can then be constructed as semi-infinite tensor products of
these graphs.

The crystal graph can be also very helpful in constructing bases of the representation spaces. One case was
reported on the conference by A. Premat. The aim was to construct a monomial basis for Demazure modules.
Of course, there is the global / canonical basis by Kashiwaraand Lusztig, but which is in general not always
easy to compute in an explicit way. Using a combinatorial model for the crystal basis by Young diagrams,
she reported that the transition matrix between the monomial basis constructed by her and global bases are
upper triangular with ones in the diagonal.

An important step in developing a crystal graph theory for finite dimensional representations of untwisted
affine Kac-Moody algebras was presented by D. Sagaki and S. Naito. The set of Lakshmibai-Seshadri paths
makes sense for affine Kac-Moody algebras even in the case whereλ is not a weight in the Tits cone. Suppose
λ is of level zero and dominant integral for the underlying finite dimensional Lie algebra. They show that
after the projection on the space modulo the imaginary root one can endow this set with the structure of a
crystal graph. In fact, this set has a tensor product decomposition, it is the product of the corresponding sets
for the fundamental weights. Since these are combinatorialmodels for the crystal graph of quantum Weyl
modules, it follows that in this way they provide a uniform way to get a combinatorial way for the quantum
Weyl modules of all untwisted affine Kac-Moody algebras.

Another successful tool to obtain combinatorial models forcrystal bases / crystal graphs for irreducible
highest weight crystals of quantum (affine) algebras.

The Young walls consist of colored blocks with various shapes that are built on a given ground-state wall
and can be viewed as generalizations of Young diagrams. The rules for building Young walls and the action
of Kashiwara operators are given explicitly in terms of combinatorics of Young walls. The crystal graph of
a basic representation is characterized as the set of all reduced proper Young walls. The character of a basic
representation can be computed easily by counting the number of colored blocks that have been added to the
ground-state wall.

This theory has been developed by Seok-Jin Kang, J. H. Kwon, J.-A. Kim, H. Lee, D.-U. Shin and
others. A report on the present state of the theory was given and a possible connection between modular
representation theory and crystal bases.

A first step in the understanding of the connection between the Kyoto path model for representations of affine
quantum algebras and the path model by Littelmann was presented by P. Magyar. In the case of the basic
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level-one representation, he derives a direct connection between the two path models by generalizing the path
model to a class of semi-infinite concatenations of paths, called skeins.

Let g be a simple complex Lie algebra and denote byĝ the affine Kac–Moody algebra associated to the
extended Dynkin diagram. It is a natural approach to understand the infinite dimensional highest weight
representations of̂g by first studying them asg–modules. To do so, one needs restriction formulas. A natural
filtration by finite dimensional subspaces of such a representation is given by itsg–stable Demazure modules.

In the case whereV = V (ℓΛ0) corresponds to a multiple of the highest weight of the vacuumrepresen-
tation (and some more general cases), G. Fourier (joint workwith P. Littelmann) presented a very effective
approach. In this case the Demazure modules are indexed by dominant coweights, and it was explained
that the Demazure module decomposes asg-module into a tensor product of Demzure modules correspond-
ing to fundamental coweights. This decomposition can be viewed as the natural generalization and uniform
formulation of many partial results know before.

For these “smallest modules” an explicit decomposition is given in the classical case (and in many non-
classical cases). In fact, it turns out that asg-module they are isomorphic to some Kirillov–Reshetikhin-
modules.

As a consequence one can give a description of theg-module structure ofV (Λ) for an arbitrary dominant
weight as a semi-infinite tensor product of finite dimensional g–modules.

The Bethe Ansatz

The Bethe Ansatz is a method to obtain eigenvectors for a certain set of operators. The corresponding Bethe
vectors correspond then in the general case to certain parameters satisfying the Bethe equations. There are
two methods to obtain these vectors, one coming from the crystal base theory and another method to obtain
to obtain eigenvectors comes from representation theory ofaffine Lie algebras.

E. Mukhin showed that the Bethe equation for the nonhomogenous Gaudin model could be solved by certain
orthogonal polynomials. He also addressed a similar problem for other models, namely the trignometric
model and the XXZ model. All these involve looking at suitable finite dimensional representations of affine
Lie algebras.

Another problem on this subject was addressed by Anne Schilling. In the case of a given spin model, the
Bethe vectors are indexed by certain rigged configurations,whereas the solutions obtained by representation
theory are indexed by elements of a crystal graph. So it is natural to ask for the relationship between these to
methods.

A. Kirillov and N. Reshetikhin provided a combinatorial bijection between certain restricted rigged con-
figurations and highest weights in crystal. This bijection was generalized later by A. Kirillov, A. Schilling and
M. Shimozono. A. Schilling gave a report on this subject and presented the latest development: An extension
of the bijection above to a bijection between the rigged configurations parameterizing the Bethe vectors and
the crystals parameterizing the eigenvectors obtained by representation theoretic methods. This result was
obtained by defining a crystal graph structure on the set of rigged configurations.

The tensor product of evaluation representations of affine Kac-Moody algebras lifts to the fusion product
of integrable modules. The fusion tensor product induces the grading of the multiplicity spaces for the
decomposition of tensor product of irreducible modules over the underlying simple Lie algebra. Poincaré
polynomials for graded multiplicity spaces can be regardedas generalizations Kostka-Foulkes polynomials.
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The structure of these polynomials is closely related to thestructure of irreducible characters of corresponding
affine Kac-Moody algebras. The latest progress in this direction was reported by R. Kedem.

Talks

Speaker: Bojko Bakalov
Title: Lie Pseudoalgebras
Abstract: One of the algebraic structures that has emerged recently in the study of the operator product

expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra
is a “higher-dimensional” generalization of the notion of aLie conformal algebra. On the other hand, Lie
pseudoalgebras can be viewed as Lie algebras in certain pseudo-tensor categories.

I will review the classification of finite simple Lie pseudoalgebras, and I will discuss their relationship
to solutions of the classical Yang-Baxter equation and to linear Poisson brackets. I will also describe the
irreducible representations of the Lie pseudoalgebraW (d), which is closely related to the Lie-Cartan algebra
WN of vector fields, whereN = dim d. (Based on a joint work with A. D’Andrea and V. G. Kac.)

Speaker: Jon Brundan
Yangians, Whittaker modules and cyclotomic Hecke algebras.
There has recently been some progress in understanding somealgebras introduced originally by Kostant

in 1978. These algebras can be viewed as quantizations of theSlodowy slice associated to a nilpotent orbit
in a semisimple Lie algebra. In typeA, it turns out that these quantizations of the Slodowy slice are closely
related to the Yangian of the Lie algebragln. Actually, they are generalizations of the Yangians which we
call shifted Yangians.

In recent work with A. Kleshchev, we have worked out the combinatorics of the finite dimensional rep-
resentations of shifted Yangians. The approach uses in an essential way a theorem of Skryabin relating
representations of these algebras to certain categories ofgeneralized Whittaker modules. In particular, we are
able to reprove and generalize the known results about representations of Yangians, all as a direct application
of the Kazhdan-Lusztig conjecture.

There is also a close connection between shifted Yangians and the degenerate cyclotomic Hecke algebras,
thanks to a Schur-Weyl duality which interpolates between the classical Schur-Weyl duality and Drinfeld’s
affine analogue of it. This leads to a natural representationtheoretic construction of some higher level Fock
spaces for the Lie algebragl∞, complete with their dual canonical bases.

Speaker: Jacob Greenstein

An application of free Lie algebras to current algebras

We realize the current algebra of a Kac-Moody algebra as a quotient of a semi-direct product of the
Kac-Moody Lie algebra and the free Lie algebra of the Kac-Moody algebra. We use this realization to
study the representations of the current algebra. In particular we see that everyad-invariant ideal in the
symmetric algebra of the Kac-Moody algebra gives rise in a canonical way to a representation of the current
algebra. These representations include certain well-known families of representations of the current algebra
of a simple Lie algebra. Another family of examples, which are the classical limits of the Kirillov-Reshetikhin
modules, are also obtained explicitly by using a construction of Kostant. Finally we study extensions in the
category of finite dimensional modules of the current algebra of a simple Lie algebra.

Speaker: Mark Haiman

Title: A combinatorial formula for Macdonald polynomials

Abstract: I’ll explain recent joint work with Jim Haglund and Nick Loehr, in which we prove a combi-
natorial formula for the Macdonald polynomialH̃µ(x; q, t) which had been conjectured by Haglund. Such a
combinatorial formula had been sought ever since Macdonaldintroduced his polynomials in 1988.
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The new formula has various pleasant consequences, including the expansion of Macdonald polynomials
in terms of LLT polynomials, a new proof of the charge formulaof Lascoux and Schutzenberger for Hall-
Littlewood polynomials, and a new proof (and more general version) of Knop and Sahi’s combinatorial
formula for Jack polynomials.

In general, our formula doesn’t yet give a new proof of the positivity theorem for Macdonald polynomials,
because it expresses them in terms of monomials, rather thanSchur functions. However, it does yield a new
combinatorial expression for the Schur function expansionwhen the partitionµ has parts≤ 2, and there is
hope to extend this result.

Speaker: David Hernandez

Title:The Kirillov-Reshetikhin conjecture and solutionsof T-systems.

In this talk we present a proof of the Kirillov-Reshetikhin conjecture for all untwisted quantum affine
algebras : we prove that the characters of Kirillov-Reshetikhin modules solve the Q-system, and so we get
explicit formulas for the characters of their tensor products. Moreover we establish exact sequences involving
tensor products of Kirillov-Reshetikhin modules and provethat their q-characters solve the T-system. For
simply-laced cases these results were first obtained by Nakajima with geometric arguments which are not
available in general. The proof we present is different and purely algebraic, and so can be extended uniformly
to non simply-laced cases.

Speaker: Seok-Jin Kang

Title: Combinatorics of Young walls and crystal bases.

We will discuss the construction of irreducible highest weight crystals using Young walls. We will also
discuss the possible connection between modular representation theory and crystal bases.

Speaker: Rinat Kedem

Title: Constructions of affine Lie algebra modules via graded tensor products via generalized Kostka
polynomials.

The graded tensor product is a tensor product of finite-dimensional g-modules, endowed with a g-equivariant
grading. This grading is related to the action of the loop algebra on the ”fusion product” of representations
of conformal field theory, and was originally defined by Feigin and Loktev. A conjecture, which has been
proven in some special cases is that the graded multiplicityof an irreducible g-module in the graded tensor
product is related to the Kostka polynomial or one of its generalized or level-restricted versions.

I will discuss how this graded tensor product allows us to construct integrable modules in two very
different ways. One is in terms of the inductive limit of the graded tensor product of an infinite number
of g-modules. The other is a generalization of the semi-infiniteconstruction of Feigin and Stoyanovksy,
which allows us to compute the characters of arbitrary highest weight integrable modules. This last requires
use of the inverse of the matrix of generalized Kostka polynomials, and hence gives an interesting alternating
sum expression for characters corresponding to non-rectangular highest weights in terms of rectangular ones.

Speaker: Sergei Loktev

Title: Weyl modules overslr-valued currents

Abstract: We discuss Weyl modules overslr-valued currents in one and two variable.
For one–dimensional currents a construction of basis, proposed by V.Chari and the speaker, will be de-

scribed. If there will be enough time, the relation to Demazure modules and fusion modules will be discussed.
For two–dimensional currents relation to the space of diagonal coinvariants and parking functions, ob-

served by B.Feigin and the speaker, will be explained.
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Speaker: Kailash Misra

Title: Perfect crystal forD(3)
4

Abstract: The crystal base theory developed by Kashiwara and independently by Lusztig provides an
important combinatorial tool to study the representationsof symmetrizable Kac-Moody algebras. It is known
that the crystal base for affine Kac-Moody Lie algebras can beconcretely realized as a subset of the semi-
infinite tensor products of perfect crystals. In this talk wewill present a perfect crystal for the integrable
highest weightD(3)

4 -module of levelk > 0. This is a joint work with Kashiwara, Okado and Yamada.

Speaker: Adriano A Moura

Title: Blocks of Finite Dimensional Representations of Classical and Quantum Affine Algebras.

Abstract: It is well known that the category of finite dimensional representations of classical or quantum
affine algebras is not semisimple. To understand its block decomposition in the quantum case, P. Etingof
and the speaker introduced the notion of Elliptic Characters. However, the original definition using analytic
properties of the R-matrix imposed some un-natural restrictions to the problem (—q— should be different
from 1). In particular, it was unclear how to compute the classical limit of the block decomposition. In this
talk based on joint work with V. Chari we present a definition of Elliptic Characters from the point of view of
the Braid Group action and the theory of q-Characters. This allow us to obtain the block decomposition for
generic q as well as for q=1.

SPEAKER: Evgeny Mukhin

TITLE: Multiple orthogonal polynomials in Bethe Ansatz.

ABSTRACT: We show that the Bethe Ansatz equation for the non-homogeneoussln Gaudin model and
two finite dimensional representations one of which is a symmetric power of vector representation, is solved
in term of zeroes of multiple orthogonal Jacobi-Piñeiro polynomials. Equivalently, the spaces of polynomials
with two finite ramification points with special exponents atone of the points have a basis explicitly given via
multiple orthogonal Jacobi-Piñeiro polynomials. In a similar way, multiple orthogonal Laguerre polynomials
appear in the Bethe Ansatz related to the trigonometric Gaudin model and multiple orthogonal little q-Jacobi
polynomials in the Bethe Ansatz related to the XXZ model.

This is a joint work with A. Varchenko.

Speaker: Alejandra Premat

Monomial Bases for Demazure Modules

Abstract: We will discuss certain monomial bases of quantumDemazure modules for the algebra Uq(affine-
sln) and show how to compute them using a description of the crystal graphs by Young diagrams. We will
also see that the transition matrices from these bases to theGlobal bases are upper triangular with ones in the
diagonal.

Speaker: D. Sagaki - S. Naito

Crystal of Lakshmibai-Seshadri paths associated to a level-zero integral weight for an affine Lie algebra

Let λ =
∑

i∈I0 mi̟i, with mi ∈ Z≥0, be an integral weight of level zero that is a sum of level-zero
fundamental weights̟ i, i ∈ I0, for an affine Lie algebrag. We study a certain crystalB(λ)cl, which is
(modulo the null root ofg) the crystal of all Lakshmibai-Seshadri paths of shapeλ, and prove that theB(λ)cl
is isomorphic as a crystal to the tensor product

⊗
i∈I0 B(̟i)

⊗mi

cl of the crystalsB(̟i)cl, i ∈ I0. Here
we note that for eachi ∈ I0, theB(̟i)cl turns out to be isomorphic as a crystal to the crystal base of the
level-zero fundamental moduleW (̟i) over the quantum affine algebraU ′q(g).
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Speaker: Anne Schilling

Title: Crystal structure on rigged configurations

Abstract: Rigged configurations label the Bethe vectors of agiven spin model. According to a bijection by
Kirillov and Reshetikhin (generalized by Kirillov, S., Shimozono) rigged configurations correspond to highest
weight crystal paths. The natural question arises whether there exist ”unrestricted” rigged configurations
corresponding to any crystal path, not necessarily highestweight. In this talk we define unrestricted rigged
configurations and describe the crystal structure on this set.

Speaker: Mark Shimozono

Title: Schubert calculus on the affine Grassmannian

Abstract: We present a generalization of the Robinson-Schensted-Knuth correspondence which conjec-
turally realizes the Cauchy identity that gives the perfectpairing between the Schubert bases of cohomology
and homology of the affine Grassmannian of typeA

(1)
n−1/An−1. This involves two kinds of tableaux that are

defined using respectively the weak and strong Bruhat orderson the affine Weyl group. Whenn goes to infin-
ity the bijection converges to the usual RSK map. We state a Pieri rule for the multiplication in cohomology,
which uniquely determines the basis.

We are also investigating the properties of a jeu de taquin algorithm on weak order tableaux which may
lead to a rule for the structure constants for homology. These constants generalize the fusion Littlewood-
Richardson coefficients that come from the tensor product ofrepresentations at a given level.

This is ongoing joint work with Thomas Lam, Luc Lapointe, andJennifer Morse.

Speaker: Catharina Stroppel

Title: The classification of projective functors for Kac-Moody Lie algebras

We consider the Bernstein-Gelfand–Gelfand category O attached to a semisimple complex Lie algebra.
Projective functors are the direct summands of the functorsgiven by tensoring with finite dimensional repre-
sentations. These functors were classified by Bernstein andGelfand. We want to give an alternative approach
to this classification using deformation theory. We will explain how this alternative proof can be generalized
to the Kac Moody situation giving rise to a classification of projective functors. As an explanation we briefly
mention the connection to knot and tangle invariants.

Speaker: S. Viswanath

Dynkin diagram sequences and tensor product stabilization

In this talk, we will consider sequences of Dynkin diagramsZk of the formX −o−o−o− · · · −o−o− Y
whereX andY are two fixed Dynkin diagrams andk is the number of intermediate nodes. The classical series
Ak, Bk, Ck, Dk are all of this form and we can construct many more such seriesof indefinite Kac-Moody
algebras as well (e.gEn, Gn, (E − E)n, · · · ).

Our goal will be to show that for theZk, multiplicities of irreducible representations in tensorproduct
decompositions exhibit a stabilization behavior ask → ∞. This parallels the situation for the seriesAk
where this result is implied directly by the Littlewood-Richardson rule. We’ll use Littelmann’s path model to
do this.

The stable values of these multiplicities can be used as structure constants to define a “stable tensor
product” operation on a spaceR(X |Y ) that could be called the “stable representation ring”. We’ll show that
this multiplication operation is indeed associative, makingR(X |Y ) a bonafide C algebra that captures tensor
products in the limitk → ∞.

Speaker: Milen Yakimov
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General finiteness of the fusion tensor product

Kazhdan and Lusztig proved a finiteness result for the fusiontensor product for smooth modules over an
affine Kac-Moody algebra which can be viewed as an analog of the fact that the product of finite dimensional
modules over a simple Lie algebra is finite dimensional. In the classical situation Kostant’s theorem from
the late 70’s provides a much more general finiteness: for anysubalgebra k of a complex simple Lie algebra
g which is reductive in g, the category of finite length, admissible (g,k)-modules is stable under tensoring
with finite dimensional g-modules (with applications to category O, Harish-Chandra modules, etc.). We will
describe a proof of an analog of this theorem for the fusion tensor product of smooth affine modules, based
on an approach different from the one of Kazhdan and Lusztig.

Conclusion

The important ideas which emerged from the workshop were therelation between the Demazure modules,
the level zero representations of affine Lie algebras , the Weyl modules and the path model for these represen-
tations. It is hoped that these relations should help in solving a conjecture of Kashiwara which predicts that
the Kirillov–Reshetikhin modules for the quantum affine algebras admit a crystal basis. Also, it now appears
very likely that the specialization toq = 1 of the tensor product of representations of the quantum affine
algebra should be the fusion product of the representationsof the classical affine algebras. While much of the
work reported was on the untwisted affine algebras, it also became clear that the corresponding problems for
the twisted affine algebras were also important.

The average age of participants was younger then usual and women were well represented among the
speakers and participants. We consider this a success. The workshop has already stimulated research activity
amongst its participants. S. Viswanath [28] and Ben Webster[29] have already posted articles following up
on results presented at the conference. Several other collaborations between the participants, Hernandez and
Greenstein, Hernandez and deMoura are ongoing and preprints should be available soon. On the whole we
believe that the workshop was very useful and provided a goodvenue for interaction between the various
directions of research in representation theory.
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Chapter 4

Workshop in Homotopical Localization
and the Calculus of Functors (05w5078)

April 2–7, 2005

Organizer(s): Kristine Bauer (University of Calgary), Ralph Cohen (Stanford University),
George Peschke (University of Alberta), Hal Sadofsky (University of Oregon)

Overview and Introduction to the Subject

This workshop focused on two relatively recent developments in homotopy theory: homotopical localization,
and the calculus of homotopy functors. An effort was made to promote the, as of yet, sparsely explored
interrelationship between these two subjects. To develop asense of purpose and perspective, let us mention
a few evolutionary highlights of algebraic topology/homotopy theory, and observe how its concerns and
viewpoints progress over time (we use present day terminology throughout):

1. Early activity in the subject centered around combinatorial invariants of polyhydra, such as the Euler
characteristic, Betti numbers, etc. These were adequate toclassify the members of certain families of
spaces, such as connected surfaces which are compact and without boundary. More generally, they
provided a tool for distinguishing spaces.

2. Next followed a functorial approach to invariants for thedisconnectivities in general topological spaces:
homotopy groups, various species of (co-)homology theories, etc. As a ‘biproduct’ the homotopy
invariance of the earlier invariants was obtained.

3. The next evolutionary layer came with the notion of a homotopy functor (one which preserves ho-
motopy equivalences). This provided a unifying platform for all of the specific and geometrically
motivated constructs which characterized the previous stage. In addition, it set the stage for a system-
atic comparison of such functors; e.g. which functors detect a homotopy theoretical property in a given
space? which homotopy functor factors through another? etc.

4. With homotopy functors in the center of view, the need for tools to study such resulted in the study of
functors on the category of homotopy functors.

Each step further in this development was motivated by the prospect of gaining insight in earlier steps. As
history testifies, each step has been successful in this regard.

How do homotopical localization and the calculus of homotopy functors fit in? Homotopy localization of
spaces or spectra generates homotopy functors with certainpredictable properties. Such functors fit naturally
into framework of 3 above. Building on ideas and the groundwork provided by the works of Adams [1],

34
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Bousfield [5, 6], Bousfield-Kan [9], Sullivan [23], and others a flurry of activity over the 1990’s culminated
in a fully developed theory which permits implementations in suitable model categories; see the works of
Farjoun [13] and Hirschhorn [17].

The calculus of homotopy functors belongs to level 4. above.It aims to study a homotopy functorF by
a tower of homotopy functors

· · · → TnF −→ Tn−1F → · · · → T1F → T0F.

This tower is strikingly analogous with Taylor polynomial approximations of a smooth function as we’ll
describe below.

At this point we’d like to describe homotopical localization and the Goodwillie Calculus in more detail.

Mathematical Background

We will be working in categories where it is possible to do homotopy theory or something related to homotopy
theory. The most basic example of such a category is the category T of topological spaces.

There are many variations on this category, some of which areconsidered in Goodwillie’s work, and some
of which have been considered in the work of other authors. One can do homotopy theory in the category
of topological spaces with distinguished basepoints,T∗ (where all functions must preserve the basepoint),
topological spacesoversome fixed base spaceY , and the category of spectra,S. We will useT∗ in the suc-
ceeding and take this opportunity to describe three basic constructions. LetX be a space with a distinguished
basepointx0, andI be the unit interval. Thesuspensionof X is

ΣX = (I ×X)/({0, 1} ×X ∪ I × {x0}).

Thebased loop spaceonX is
ΩX = Maps((I, {0, 1}), (X,x0))

in other words, all continuous maps from the interval toX which take the endpoints of the interval to the
basepoint. Thesmash productof X with Y is

X ∧ Y = (X × Y )/({x0 × Y ∪X × {y0}}).

SinceS features prominently, and may not be familiar, we also describe it briefly, taking liberties with
the definition for the sake of conciseness. Aspectrummay be thought of as being a sequence of topological
spaces with basepoints

{X0, X1, . . . }
together with continuous functions (preserving basepoints)

siΣXi → Xi+1

which are nice inclusions.
It is not important to elaborate the details of the morphisms(the functions) inS, these being somewhat

technical but to note the most germane properties of this category. There is a functor

S∞ : T∗ → S

which takes a spaceX with distinguished basepoint to the spectrum

{X,ΣX,Σ2X . . . }.

In S, the functionΣ(·) is invertible, and fibers of maps (equivalent to) desuspensions of cofibers.
There is also a smash product inS which is also denoted∧ and which is determined by wanting

S∞(X ∧ Y ) = S∞(X) ∧ S∞(Y ).

∧ in S plays a role similar to⊗ in a category of modules.
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Our interest inS arises because any functor

X 7→ h∗(X)

from T∗ to graded groups which satisfies the axioms of a homology theory is actually given by

X 7→ π∗(S
∞(X) ∧H)

for an appropriately chosen spectrumH . So spectra represent homology theories.

Goodwillie’s Calculus

We begin by considering a functor
F : T → T

such thatF preserves weak homotopy equivalences. For purposes of simplicity, we also assume thatF (∗)
is contractible (F is reduced). There is a special class of such functors which are referred to asexcisive. An
excisive functor is a functor which takes homotopy pushout squares to homotopy pullback squares. Loosely
this condition can be though of as taking cofiber sequences ofspaces to fiber sequences of spaces. In other
words, ifF is excisive, then the functor

X 7→ π∗(F (X))

satisfies the axioms of ahomology theory. (It is a consequence as discussed above that linear functors are
represented by spectra; in fact an excisive reduced functorfrom based spaces is represented by the spectrum
F (S0).)

One reason excisive functors have a special role is that in many cases homology theories are computable,
so that even if we can’t always identifyF (X) precisely, we can at least compute its homotopy groups.
Goodwillie considers excisive functors to be analogous to linear functions in single variable calculus.

One way to think about the beginning of the functor calculus is to imagine searching for an algorithm
which allows one to approximate an arbitrary (reduced homotopy) functor by an excisive one. In ordinary
calculus, the analogy is to finding a linear approximation toan arbitrary function.

Goodwillie solves this problem in [14]. Given an arbitrary reduced homotopy functorF , Goodwillie
gives an algorithm for computing a linear (excisive) functor

P1F : T → T

which comes with a natural transformationη : F → P1F which is initial among natural transformations
from F to linear functors. That is, given any natural transformationν : F → G whereG is linear,ν factors
throughη. With the restrictions we’ve given, it is easy to describe the algorithm for makingP1F . With the
restrictions we’ve given, there is a natural map

F (X) → ΩF (ΣX).

The target functor (as a functor ofX) is also a reduced homotopy functor, so the construction canbe iterated.
ThenP1F is (loosely) the limit of

F (X) → ΩF (ΣX) → Ω2F (Σ2X) → . . .

The notion of a linear approximation to a functor turns out tobe just the beginning of an analogy between
Taylor polynomials and Taylor series. Goodwillie calls an excisive functor is “1-excisive.” Goodwillie gives
a definition ofn-excisive: roughly speaking, a functor isn-excisive if it takes anyn + 1-cubes of spaces in
which every square is a pushout to somen+ 1 cubes of spaces in which the initial corner is the pullback of
the rest of the cube. From this definition it is obvious that itis easier to ben+1 excisive thann excisive (that
is,n-excisive functors are automaticallyn+ 1-excisive).

For each (reduced, homotopy) functorF , there is ann-excisive approximationPnF and a natural trans-
formationηn : F → PnF which is initial among natural transformations fromF to n-excisive functors.
Just as1-excisive functors are to be thought of as analogous to linear functions,n-excisive functors should
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be thought of as analogous to polynomial functions of degreen. SoPnF can be though of as the degreen
polynomial approximation toF . Becausen − 1-excisive impliesn-excisive, the universal property of the
natural transformation

ηn : F → PnF

implies there is a functorπn : PnF → Pn−1F so that

πn ◦ ηn = ηn−1.

There are two important structural observations to make here. First the natural transformationsπn give us
a tower of functors{PnF} and the natural transformationηn give compatible maps fromF into this tower.
One can ask what the relationship is betweenF and the homotopy inverse limit of this tower. In particular,
one hopes that for any particular spaceX , F is analyticatX (that is,F (X) = lim(PnF )(X)).

Second, recall that linear functors are described by spectra. Polynomial functors of degree greater than
1 don’t have such a simple description, but for eachn, the fiber of the natural transformationπn : PnF →
Pn−1F is completely describe by a spectrum with thenth symmetric group,Σn, acting on it, and techniques
for determining what this spectrum actually is are described in [16]. This functor should be though of as
a homogenous functor of degreen. So while excisive functors of degreen may be somewhat complicated,
they are described by a finite number of extensions of functors which are themselves determined by equiv-
ariant spectra. In principle, this leads to descriptions of(analytic) functors from spaces to spaces in terms of
equivariant stable data together with extension information.

This is already interesting in the case whereF is the identity functor. In this case the functor is, of course,
understood, but because homotopy groups are extremely difficult to compute for most topological spaces, the
homotopy groups of the functor evaluated at most interesting spaces are not understood. The homogenous
layers are discussed in [16] and [19], and the entire tower isdiscussed in [2]. This work is further developed
for particular values of the spaceX in[3] where the homotopy groups of the spaces in the Goodwillie tower
shed light on the homotopy groups ofX .

Homotopical localization

Homotopical localization has its roots in algebraic localization. Serre introducedC-theory as a tool that
allowed him to prove local versions of classical theorems like the Hurewicz theorem. Some years later the
implicit ideas are developed in different directions by Quillen and Sullivan.

Quillen, in [22], gives a development of localization in “model categories”. At its most fundamental, this
gives conditions where a new category can be constructed from an old category by “inverting” some collection
of morphisms which are to be thought of as equivalences (in the new category). A specific and commonly
used example is to take the old category to be the category of topological spaces and the equivalences to
be maps which induce isomorphisms onH∗(−;Q). (More examples can be easily produced by substituting
other coefficients forQ.)

Sullivan, in [23] takes a different approach. He describes for a set of primesS and sufficiently nice CW
complexesX a constructionXS which “inverts” primes inS. That is, ifX → Y is a map which induces an
isomorphism inH∗(−;Z[S−1]), then the induced mapXS → YS will be an equivalence.

Bousfield in [5] generalized these ideas considerably. Ahomology theoryE∗(−) is a homotopy invariant
functor from spaces to graded abelian groups which satisfiesthe usual properties of singular homology except
that if∗ represents the one point space, the graded groupE∗(∗) is not required to be concentrated in dimension
0. Given such a homology theory, Bousfield constructs a functor LE from the category of spaces to itself
which he callsE-localization, and a natural transformation,η from the identity functor toE. E-localization
is determined up to homotopy by the following two properties:

1. LEX isE-local.

2. The natural transformation evaluated atX gives a mapX → LEX which is initial (up to homotopy)
among maps fromX toE-local spaces.

Here byY isE-local, we mean that ifE∗(A) = E∗(∗), then[A, Y ] = ∗, the one point set. So all maps from
A to Y are homotopic to the constant map.
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Fundamental to the construction of Bousfield’s localization functors are the class of maps which are
to localize to homotopy equivalences. Bousfield ([8]), Dror([12]) and other authors study more general
localizations based on collections of maps which are to become equivalences.

There is a sequence of homology theories related to cobordism known as Johnson-Wilson theories

E(0)∗(−) = H∗(−;Q), E(1)∗(−), E(2)∗(−), . . .

(hereE(1)∗(−) is closely related to complexK-theory). Since work of Morava as expanded by Miller,
Ravenel and Wilson [20] and the celebrated Nilpotence Theorem [11, 18] localization with respect to these
theories has become one of the central organizing principles of stable homotopy, and to a lesser extent,
unstable homotopy. Localization with respect to the homology theoryE(n) is generally denotedLn(−), and
this family of localizations are referred to as the chromatic localizations.

Scope of workshop

The workshop was intended to center on areas where the calculus of functors meets homotopical localizations.
LetL be a homotopical localization functor on some category.L is guaranteed to come with an important

structure; a natural transformation from the identity functor toL:

ηX : X → L(X)

such that
ηLX : LX → L(LX)

is a homotopy equivalence (L is homotopy idempotent).
This is also a property satisfied by the functors in Goodwillie’s Taylor Tower when interpreted suitably.

Consider the category whose objects are homotopy functors from (for example)T to T . ThenPn applied to
this category of functors is idempotent and comes with a natural transformation from the identity functor. In
Dwyer’s presentation at the workshop, he described how to producePn as a homotopical localization.

One of the more fascinating results in these area is that of Arone and Mahowald in [3]. This paper analyzes
the Goodwillie tower of the identity functor from spaces to spaces. One of the main results is that for certain
spaces (at least for spheres) the layers in the Goodwillie tower for the identity functor are essentially the
chromatic localizations,Ln. While the implications of this fact are far from completelyunderstood, Michael
Ching’s work presented at this workshop displays these sameobjects (the derivatives of the identity functor)
arising as the spaces in an operad.

A second place where an interaction between chromatic localizations and Goodwillie’s techniques was
demonstrated at this meeting was in Kuhn’s report on his work. If X is a spectrum, it determines a certain
infinite loop space (writtenΩ∞X). Kuhn is able to use a number of techniques including Goodwillie calculus
to computeE∗(Ω∞X) in terms ofE∗(X) for homology theoriesE∗(−) related to chromatic localizations.

While initially the calculus of homotopy functors was designed for functors on spaces or spectra, the
theory has in the mean time found parallel instances in a number of other categories, such as chain complexes,
vector spaces and the category of open subsets of a manifold.This begs for an eventual full bodied framework
for the calculus of homotopy functors on suitable model categories.

There were two main goals to this conference. First, we sought to introduce researchers in the calculus
of functors or homotopical localization to each other’s subject. Second, we sought to develop an overlap
of these two research areas by exploring current research inboth areas. Towards the first objective, Tom
Goodwillie provided a series of expository lectures which laid out the foundations of the calculus of functors.
A complementary series of lectures were provided by Bill Dwyer, who gave an excellent introduction to
localizations and explained how to construct Goodwillie’sTaylor stages as homotopy localizations within a
suitable category of diagrams of spaces as mentioned above.These lectures laid the groundwork for what
followed.

Outcome of the meeting
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While it is unfair to categorize the contributions of the participants of this conference into such a short
list of topics, it is beneficial to enumerate those topics which form current trends in the calculus of functors
and homotopical localizations. What follows is a short compilation of those topics which pertain most to the
intended goals of this meeting.

• Manifold Calculus: As mentioned in the introduction, the calculus of functors has applications to areas
reaching beyond homotopy theory. In particular, Goodwillie’s machinery can be applied to functors
from the category of open sets of a manifold to the category oftopological spaces. In tandem lectures,
Ismar Volic and Brian Munson gave a gentle introduction to manifold calculus. The talks pertained
to research in both the machinery of calculus (Munson’s results address the lifting problem from the
second stage of the tower to the third stage of the tower), andapplications of this machinery to the
study of embeddings (Volic described joint work with PascalLambrechts and Greg Arone related to
finite type invariants of knots).

• Calculus and Operads: Recently, there has been a flurry of activity trying to understand an apparent
operad structure on the layers of the Goodwillie tower of theidentity functor from spaces to spaces.
One of the great testimonies to the beauty of the calculus of functors is complexity of the Goodwillie
tower of the identity functor, which is seemingly innocuous. In particular, this complexity is the main
obstacle to obtaining a chain rule. Motivated by our instinct from the calculus of real variables, we
would expect that the layers of the tower forF ◦G, whereF andG are homotopy functors of spaces,
would be the composition of the layers ofF with the layers ofG. However, the expected formulation
fails. Rather, the identity functor plays a critical role. In his talk, Michael Ching showed that the layers
of the identity functor form an operad, and conjectured a solution to the chain rule problem, relying
on the left and right module structures of the layers ofF and the layers ofG over this operad. An
alternative approach to understanding the operad structure of the layers of any homotopy functor of
spaces equipped with a natural transformationF ◦F → F was suggested in the talk of Andrew Mauer.
Mauer’s approach relies on the formulation of the layers of such a functor in terms of the cross effects
of this functor. This is also related to Dev Sinha’s talk, in which he presented another formulation of
the operad structure on cross effects of the identity of functors, at least for spheres. The relationship
between Sinha’s work and Ching’s work can be seen by relatingboth of their operads to the Lie operad.

• Tensor calculus of homotopy functors: ad hoc special session by Tom Goodwillie with an outline of an
obstacle toward a ‘theory of differential forms’ of homotopy functors (spaces) to (spectra).

• Relationships between calculus of functors and localizations: Nick Kuhn’s work withK(n) localiza-
tions and calculus, Taylor stages in the calculus of homotopy functors are homotopy localizing functors
in a suitable category of diagrams of spaces: Bill Dwyer

Abstracts of Talks

M. Ching Operads and calculus of functors
I’ll talk about some aspects of the relationship between thecalculus of homotopy functors and the theory of
operads. In particular, I’ll describe the operad structureon the derivatives of the identity functor and try to
explain how the derivatives of other functors might fit into this framework.

C. Casacuberta Continuity of homotopy idempotent functors
A functor L in a simplicial model category is called simplicial or continuous if it defines a map from
map(X,Y ) → map(LX,LY ) for all X , Y , which is natural and preserves composition and identity. As
shown by Farjoun and Hirschhorn,f -localizations can be constructed as continuous functors.Thus, a nec-
essary condition for a homotopy idempotent functor to be equivalent to somef -localization is that it be
equivalent to a continuous functor.

In joint work with different coauthors, we discuss continuity of homotopy functors in several model
categories, with emphasis on simplicial sets, spectra, andgroupoids. In the latter, remarkably, continuity is
automatic.
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W.G. Dwyer Localization and Calculus I and II
A general discussion of the idea of localization in homotopytheory. Followed in part II by specialization to
the localization of diagram categories, and further specialization to the case of a particular diagram category
associated to the Goodwillie tower.

E. Farjoun Open problems and some recent progress in localization and cellularization theory
The talk will revisit some of the progress made recently in understanding localization and co-localization
functors. We shall list some interesting problems and describe related partial progress. The talks will concen-
trate mostly on general properties of localization with respect to a map in both algebraic homological algebra
and topological categories.

T. Goodwillie Introduction to the Calculus of Homotopy Functors, I,II, and III
Overview of basic definitions and results (excisive andn-excisive approximations of functors, classification
of homogeneous functors, chain rule); key examples; matrixnotation. Followed in part II by: more about
homogeneous functors, with an emphasis on results which require no information about connectivity.

A geometric view of the functor/function analogy. In this view, Top is a variety and functors Top→
Spectra are global functions. I will say which categories are the tangent spaces of Top. I will discuss tangent
vector fields and more generally tensor fields, in both a coordinate-free way and a coordinate-dependent way.
I will show that there are two tangent connections, both of which are flat, and that their difference is the tensor
field known as smash product of spectra. I will say something about higher-order jets and about differential
operators. I cannot make much sense of differential forms (except 0-forms and 1-forms), but I may talk about
them anyway. Applications are work in progress, but I will make sure to at least say something trivial about
some nontrivial examples, and maybe something nontrivial about some trivial examples.

M. Hovey E(n)∗ − E(n)-comodules
I will recap my results with Neil Strickland about the structure of the category ofE(n)∗E(n)-comodules
(e.g. the Landweber filtration theorem works there as well).I will describe why we need to know more about
comodules (derived functors of product in the category of comodules form theE2-term of a spectral sequence
converging to theE(n)-homology of a product of spectra; this is relevant for the chromatic splitting conjec-
ture). Then I will describe some new results I have about the honest injectiveE(n)∗E(n)-comodules. There
are onlyn+ 1 isomorphism classes of indecomposable injectives, and most interestingly, the endomorphism
ring of thek-th one is(E(k)∧)∗(E(k)∧), whereE(k)∧ is the completion ofE(k) at Ik.

So in the category ofE(n)∗E(n)-comodules, you are seeing all theE(k)∧ operations for0 ≤ k ≤ n,
and therefore seeing all the different stabilizer groupsSk for 0 ≤ k ≤ n. This is a good thing, since the
relation between the different stabilizer groups is basically what the chromatic splitting conjecture is about.

N. Kuhn Periodic homology of infinite loop spaces
If E∗ is a homology theory, one can ask to what extent theE∗-homology of an infinite loop space is deter-
mined by theE∗-homology of the associated spectrum. Using a combination of the Hopkins-Smith Periodicy
Theorem, as packaged in the telescopic functors of Bousfieldand me, and Goodwillie calculus, I can give a
quite definitive answer to this question when the homology theory is Morava K-theory. There are calculations
still to be done that may inform on the Telescope conjecture.

A. Mauer-Oats An operad from the derivatives of a monad
McClure and Smith have a simple idea that explains how to produce an operad from a functor operad by
evaluating on the unit of the smash product. The cross effects of a (reasonably good) monadF are a functor-
operad of spaces. We explain the proper way to prolong a multivariate functor to spectra, and use this to
produce an operad of symmetric spectra. If a certain problemof cofibrancy can be overcome, the spectra in
the operad will be the derivative spectra ofF .

B. Munson The layers of the embedding tower
I will discuss the layers of the embedding tower and their relationship to the obstructions to finding embed-
dings.
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D. Sinha A pairing between graphs and trees
We give an elementary pairing between graphs and trees, which facilitates the study of the Lie operad and
free Lie algebras. It arises in topology through both homology of configuration spaces and (conjecturally) in
studying Hopf invariants and Whitehead products. We sketchits possible application in using the embedding
calculus to define knot invariants, and hope that it might be of interest in the homotopy calculus as well.

D. Stanley Complete invariants of t-structures
LetR be a Noetherian ring. We give a classification of Bousfield classes on the bounded derived category of
R. This also gives complete invariants oft-structures on the same category. We also show that thet-structures
on the unbounded derived category ofZ-modules do not form a set.

I. Volic Embedding calculus and formality of the little cubes operad
I will first give a brief introduction to embedding calculus and say how a certain Taylor tower can be assigned
to an isotopy functor. Then I will describe joint work with Greg Arone and Pascal Lambrechts in which the
central observation is that the stages of the Taylor tower inthe case of Emb(M,V ), the space of embeddings
of a manifold in a vector space (up to immersions), have the structure of maps of certain modules over the
little cubes operad. Using Kontsevich’s formality of this operad, one then concludes that the cohomology
spectral sequence for Emb(M,V ) arising from the Taylor tower collapses rationally. In the special case of
spaces of knots, this was conjectured by Vassiliev. Additionally, using the interplay between embedding
and orthogonal calculus, one also deduces that the rationalcohomology of Emb(M,V ) only depends on the
rational homotopy type ofM when2dim(M) + 1 < dim(V ).

M. Weiss Stratifications and homotopy colimit decompositions
This talk will discuss the art of converting stratificationsinto homotopy colimit decompositions, perhaps
with applications to the theory of surface bundles. Every well behaved stratified space has a homotopy
colimit decomposition indexed by a certain topological category in which all endomorphisms are invertible
up to homotopy. In many cases one can do better and match the stratification with a homotopy colimit
decomposition indexed by a discrete category in which all endomorphisms are invertible. The matching
property means roughly that the strata correspond to the isomorphism classes of the indexing category.

List of Participants

A determined effort was made to ease the entry into these subjects by young researchers. Specifically, out of
34 participants, 3 were graduate students and a number of 5 were within the first 3 years of their postdoctoral
career. We had talks from one of the graduate students and from three of the postdocs.

Arlettaz, Dominique (Universite de Lausanne)
Bauer, Kristine (University of Calgary)
Casacuberta, Carles(University of Barcelona)
Chebolu, Sunil (University of Washington)
Ching, Michael (Massachusetts Institute of Technology)
Chorny, Boris (University of Western Ontario)
Dover, Lynn (University of Alberta)
Dror-Farjoun, Emmanuel (Hebrew University of Jerusalem)
Dwyer, William (Notre Dame University)
Goodwillie, Tom (Brown University)
Gutierrez, Javier (University of Barcelona)
Hovey, Mark (Wesleyan University)
Krause, Eva (University of Alberta)
Kudryavtseva, Elena(University of Calgary/Moscow State University)
Kuhn, Nick (University of Virginia)
Lambrechts, Pascal(Louvain-la-Neuve)
Mauer-Oats, Andrew (Northwestern University)
McCarthy, Randy (University of Illinois at Urbana-Champaign)
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Munson, Brian (Stanford University)
Nicas, Andrew(McMaster University)
Nikolaev, Igor (University of Calgary)
Palmieri, John (University of Washington)
Peschke, George(University of Alberta)
Prince, Tom (University of Alberta)
Ravenel, Douglas(University of Rochester)
Sadofsky, Hal(University of Oregon)
Scull, Laura (University of British Columbia)
Sinha, Dev(University of Oregon)
Stanley, Don(University of Regina)
Varadarajan, Kalathoor (University of Calgary)
Volic, Ismar (University of Virginia)
von Bergmann, Jens(University of Calgary)
Weiss, Michael(University of Aberdeen)
Zvengrowski, Peter(University of Calgary)
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Chapter 5

Complex Data Structures (05w5504)

April 9–14, 2005

Organizer(s): Jim Berger (Statistical and Applied Mathematics Institute), Nancy Reid
(University of Toronto), James Stafford (University of Toronto), Mary Thompson (Univer-
sity of Waterloo)

Introductory Remarks

Projects, and pilot projects, within the National Program on Complex Data Structures (NPCDS) met April 9
- 14 at the Banff International Research Station. Leaders inComputer Experiments, Data Mining, Genomics
and Survey Methods each organized a day of activity in their respective fields. An additional day was devoted
to three pilot projects that have inaugural workshops laterthis year in the areas of Biomedicine, Forestry and
Marine Ecology. Research presentations were incredibly varied and included topics that concerned pharma-
cophore identification, complex HIV proteomic data structures, communications security, studies of complex
traits, social behaviour, forest fires, high throughput genomics, tracking of leatherback turtles, turbulence, and
so on. Underlying such a diverse set of topics was a genuine common interest in complex data, regardless
of its origin. This, in effect, bonded participants in theirvision of what NPCDS can bring to the statistical
sciences community in Canada. As such the event was instrumental in generating considerable enthusiasm
for the Program’s model. Concretely, the establishment of interdisciplinary projects with quantitative lead-
ership was viewed as a vehicle that gives our community a greater voice in the research agenda’s of other
disciplines. These projects have the potential to create a culture in our discipline where training takes place
in intensely interdisciplinary environments ensuring young researchers become effective collaborators in the
long run. This was evident by the number of excellent presentations given by graduate students including
Norberto Pantoja Galicia, Jason Loeppky, Pritam Ranjan andso on.

The Science

Data Mining

Certainly this workshop started in extremely strong fashion setting the tone for the remainder of the week. The
first day’s topic was data mining, a field with many connotations though organizers were able to encapsulate
much of the research in this area through a focus on the rare target problem. Data mining is a new and
fast-changing discipline, which aims at the discovery of unusual and unexpected patterns in large volumes
of data. It came to life in response to the challenges and opportunities provided by the increasing number
of large, complex, high-dimensional databases covering important areas of human activity, coming from the
industrial, economical, social and biomedical sectors.
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Stan Young of the National Institute of Statistical Sciences addressed the use of Gibbs sampling for
pharmacophore identification, a problem where large libraries of molecules are searched for comparatively
similar reactive properties. Here the binding of a small molecule to a protein is inherently a three dimensional
matching problem. As crystal structures are not available for most drug targets, there is a need to be able to
infer the key binding features of small molecules and their disposition in space, the pharmacophore from
bioassay data. They use fingerprints of 3D features and a modification of Gibbs sampling to determine the
common pharmacophore parts for a set of compounds. We use a clique detection method to map the features
back onto the binding conformations. The method works for known pharmacophores. We show the basic
algorithm is fast, 15 minutes for 15 molecules, and it can easily deal with a hundred compounds and tens
of thousands of conformations. They demonstrated the successful use of PharmID on a multiple binding
mode problem. Being able to sort out multiple pharmacophores from the same data set is potentially useful
in cell-based assays where different molecules could be hitting different biological targets. Knowing the
3D pharmacophore for a biological target was a key for more efficient compound design and 3D database
searching.

Stan’s talk was followed up by a mesmerizing demonstration of the predatory behaviour of the Human
Immunodeficiency Virus (HIV). This was in the context of George Hatzakis’s (McGill University) lecture
concerning modeling HIV complex clinical and proteomic data structures. Within the context of Clinical/Bio-
Informatics, it is common to use numerical techniques to model and optimize clinical management of patients
treated for Human Immunodeficiency Virus-1 (HIV-1). HIV infection is for the most part chronic and asymp-
tomatic. Optimal therapy should suppress the HIV-virus, prevent the emergence of antiviral drug-resistance
and control long-term side effects. In George’s presentation he addressed the former 2 aspects. To achieve
virus-suppression one has to longitudinally follow and understand how an HIV-patient progresses. However,
clinical and laboratory follow-up information is non-stationary and characterized by transients and trends.
George used Artificial Intelligence based models to follow the progression of a subset of patients from the
Electronic Anti-Retroviral Therapy (EARTH) International-cohort and addressed several what-if scenarios
related to morbidity and mortality. Also, to identify thosepatients that could mostly benefit from the new
class of drugs based on the CCR5 and CXCR4 chemokine inhibitors, he analyzed the proteomic sequences
of the V3 loop on over 1000 patients coming from the HOMER BC-cohort. Clustering techniques were
presented.

Further presentations concerned the development of particular data mining tools as demonstrated most
effectively by Antonio Ciampi and Steven Wang who spoke on soft classification trees and clustering cate-
gorical data respectively. Perhaps one of the most compelling presentations was given by Shirley Mills and
Ted Normington, both of Carleton University, who are involved in various research projects in consultation
with the Communications Security Establishment: Data mining in action leading to secure national borders
(we hope).

Genomics and Statistical Genetics

Not to be outdone by the data miners the second day of the workshop was devoted to the genetic revolution
that is taking both the medical world and our imaginations bystorm. Advances in many areas of Genomics
have become the most exciting story in the biological, life,and health sciences in recent years, and have
captured the imagination of the public at large. One of the most interesting technological breakthroughs in
genomics has been the miniaturization of classical experimentation techniques in molecular biology. This
has led to the ability to conduct massively parallel experiments on the scale of the whole genome. The most
widely known examples of such technology are various kinds of microarrays or DNA chips, which can now
measure the expression activity of most of the predicted genes in humans. There exist similar high-throughput
technologies to detect Single Nucleotide Polymorphisms (SNP chips), protein abundance (proteome chips),
RNA activity, protein-protein interaction systems, and others.

For the first time in history, biologists are facing huge volumes of noisy data. The challenge of analyzing
this data has been described as the biggest bottleneck in modern biology. Huge dimensionality and small
sample size creates a challenge throughout an experiment, from the design, visualization and exploratory
phases, to the analysis itself.

The genetics/genomics theme at the meeting was led by Dr. Brent Zanke, VP of the Ontario Cancer
Research Network (OCRN) who spoke on the use of high throughput genomics to predict disease risk and
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treatment response. Here the coincidence of functionally relevant polymorphisms in genes that are part of
a single pathophysiologic pathway may cause significant risk for an individual and collectively account for
a large proportion of population at attributable risk. For instance, the activities of phase I enzymes such as
the cytochrome P450s, phase II enzymes, such as glutathione-s-transferases, DNA repair enzymes, cell cycle
control enzymes and apoptosis effectors. Polymorphisms ineach of these enzymes that individually would
confer only minor increased disease susceptibility could collectively cause significant individual risk. Many
case-control studies evaluating isolated polymorphisms have failed to identify significant disease association,
potential victims of underpowered study designs.

In anticipation of genome-wide disease association studies an international human variation-mapping
(HapMap) project was launched in October 2002 to catalogue blocks of LD and haplotype diversity
(http://genome.gov/10005336). As much as 85% of the human genome may be organised into haplotype
blocks that are 10,000 bases or larger. The exact pattern of SNP variants within a given haplotype block
differs among individuals, though for most less than 5 distinct haplotype clades exist. This limited haplotype
diversity makes complete genotyping of individuals of Northern European or Asian descent possible with
measurement of as few as 50,000-100,000 haplotyping SNPs (htSNPs) and measurement of approximately
250,000-500,000 htSNPs in individuals of African descent.

Brent and colleagues are studying haplotype diversity in patients with colon cancer and controls to detect
associations with the presence of the disease and with treatment response to those with cancer receiving
chemotherapy. Tests such as these will reduce health care costs and reduce the social cost of cancer. With an
investment from Genome Canada our group will measure over 1 billion SNPs in 2400 individuals over the
next 6 months. The statistical analysis of this data set willpresent new issues in multiple testing correction
and multivariate analysis.

Rafal Kustra and Celia Greenwood are leading efforts to confront the new statistical issues in this context.
They present an initial analysis of the first batch of data in an international effort to derive a prognostic test of
colon cancer using dense maps (hundreds of thousands) of genetic markers and detailed clinical and lifestyle
data. They discussed attempts in building a predictive, multivariate model using boosting and proposed a
dimension reduction techniques motivated by statistical and evolutionary genetics. Their untested proposal is
intended to spark discussion on dealing with huge dimensionality of genomic data in the presence of highly
refined existing knowledge about genetics, knowledge whichcould potentially be used to construct more
successful predictive models.

Rafal and Celia were followed up by Shelley Bull who addressed issues in multiple testing and effect
estimation for candidate gene and genome-wide studies of complex traits. While it is well-recognized that
the examination of multiple hypotheses corresponding to multiple SNPs within a candidate gene and/or to
multiple genes or genetic markers across the genome can leadto inflated false positive rates and failure to
replicate findings in an independent sample, the impact of multiple testing and strict type I error control
on effect estimation has received less attention. To put these issues in context Shelley first considered some
background concerning gene discovery and gene characterization, and the related data structures. Approaches
to multiple testing adjustments in genetic linkage and association analysis, whether family-based or case-
control designs, can usefully depend on the correlation structure among neighbouring genetic loci. However,
multiple testing and stringent type I error control typically induce bias in the associated effect parameter
estimates. They proposed a bootstrap algorithm and resampling-based estimators that yield bias-reduced
estimates from the original sample in general settings.

Jenny Bryan then spoke on statistical problems in gene clustering from high-throughput data. The term
”high-throughput data” encompasses a large variety of current assays in which a response is measured across
a range of condition or subjects for a large number genes (often for practically an entire genome). This
certainly includes transcriptional profiling via microarrays, as well as highly parallel phenotypic studies in,
for example, the yeast deletion set. A common use of such datais to cluster genes, with the hope that apparent
gene clusters will have substantial overlap with biological gene groups, such as pathways, protein complexes,
or regulons. Jenny cast this problem in the form of a traditional statistical inference problem and drew some
practical conclusions about preferred algorithms and suchmatters. She used this framework effectively to
generate group discussions on the general”disparate data”unification problem in gene clustering (should we
create meta-datasets and then cluster? should we cluster datasets separately and then merge? should we use
biclustering-type techniques?).

The final genomics speaker, Bob Nadon, addressed data analysis, software, and pedagogy in big sci-
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ence biology. Big science biology is generating massive data sets that provide motivation for algorithm
development and potential for long-term funding. This continuing collaboration between biology and the
computational sciences will be most productive if knowledge and tools are made available in formats readily
accessible to applied scientists. Bob described such a project in microarray analysis that integrates software,
pedagogy, and data analysis research.

Pilot projects

After two exciting days devoted to Data Mining and Genomics attendees were treated to a short day composed
a simply a morning session in which nascent NPCDS projects were featured. This was extremely rewarding
for both the speakers and audience, the latter be given a sense of future directions of NPCDS while the former
received an abundance of helpful advice and suggestions to assist their endeavours.

The first of these speakers, John Braun, discussed forest ecology under the title Forests, Fires and Stochas-
tic Modelling. He asserted that statisticians have an important role to play in the study of various aspects of
forestry. The talk began with a description of how an upcoming NPCDS workshop would facilitate interac-
tions between statisticians and researchers into wildfire behaviour as well as forest ecology and hydrology.
This was followed up by a description of a work in progress connected with a problem of forest fire prediction
given observed lightning strokes. The prediction problem is not solved; however, the talk will describe how
interactions with forest fire researchers have spurred development of statistical methodology.

John’s lecture was followed up by a joint effort from Chris Field and Joanna Flemming who both gave an
overview of statistical methods in marine ecology. This included a general overview of the Marine Ecology
Workshop to be held at Dalhousie in August, 2005 as part of theNPCDS programme. They also gave brief
descriptions of example problems involving the dynamics ofplankton levels in the tropical Pacific and a more
detailed analysis of a problem involving tracking data of leatherback turtles, a long distance migrant.

The third presentation was given by Peter Song who discussedan array of methods he has developed for
use in biomedical research. This included a personal overview of the methodological development in the
of longitudinal and clustered data analysis (LCDA). Arguably, the methodology of the LCDA has provided
powerful tools to practitioners for their subject-matter innovative research in past two decades or so. In his
talk, he covered both Liang and Zeger’s marginal models and the generalized linear mixed models. Peter
used a few real world data sets as running examples to enhancediscussions.

Computer Experiments for Complex Systems

The design and analysis of experiments continue to make important and far-reaching contributions to sci-
entific investigation. Historically, experimenters have relied on physical experiments to help understand
processes. The rapid growth in computing power has made the computational simulation of complex sys-
tems feasible and has helped avoid physical experimentation that might otherwise be too time consuming,
costly, or even impossible to observe. The advent of such widespread computer experiments raises a host of
challenging statistical issues, which this project will explore.

The fourth day of the workshop was devoted to the topic of computer experiments and was marked by
a large number of student presentations which were all quiteexcellent. Jason L. Loeppky, a postdoctoral
student at UBC, addressed issues in model calibration. Computer models are widely used in engineering and
science to simulate physical phenomena. Before using a computer model, for example to optimize systems,
a natural first step is often to assess whether it reliably represents the real world. Data from the computer
model are compared with data from field measurements. Similarly, field data may be used to calibrate or tune
unknown constants in the computer model.

Calibration is particularly problematic in the presence ofsystematic discrepancies between the computer
model and field observations. In Jason’s talk he introduced alikelihood based approach to the estimation of
the calibration parameters and further showed how one coulduse this to test the reliability of the computer
model. The approach and the test were illustrated through a series of examples, and compared to the results
of a Bayesian implementation.

Zhiguang Qian, a graduate student at Georgia Institute of Technology, discussed building surrogate mod-
els based on detailed and approximate simulations, while Pritam Ranjan, a graduate student from SFU, dis-
cussed designing efficient simulations for exploring features of response surfaces. Pritnam’s talk was partic-
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ularly interesting as in many engineering applications, one is interested in identifying the values of the inputs
in computer experiments that lead to a response above a pre-specified threshold. In his talk he introduce sta-
tistical methodology that identifies the desired contour inthe input space. The proposed approach had three
main components. Firstly, a stochastic model is used to approximate the global response surface. The model
is used as a surrogate for the underlying computer model and provides an estimate of the contour together
with a measure of uncertainty, given the current set of computer trials. Then, a strategy for choosing subse-
quent computer experiments that improve the estimation of the contour is outlined. Finally, he discussed how
the contour is extracted and represented. The methodology is illustrated with an example from a multi-class
queuing system.

Yet another graduate student, Crystal Linkletter of SFU, presented where she discussed inert column
variable selection. In many situations, simulation of complex phenomena requires a large number of inputs
and is computationally expensive. Identifying which inputs most impact the system can be a critical step
in the scientific endeavour so that these factors can be further investigated. In computer experiments, it is
common to use a Gaussian spatial process to model the output of the simulator. Crystal introduced a new,
simple method for identifying active factors in computer screening experiments. The approach is Bayesian
and only requires the generation of a new inert variable in the analysis. The posterior distribution of the inert
factor is used as a reference distribution with which we assess the importance of the experiment factors. The
methodology was demonstrated on simulated examples as wellas an application in material science.

The final speaker of the day was Derek Bingham, who leads the NPCDS project in this area and su-
pervised a number of the students who presented. In Derek’s talk latin hypercube sampling was presented
as a popular method for evaluating the expectation of functions in computer experiments. However, when
the expectation of interest is taken with respect to a non-uniform distribution, the usual transformation to
the probability space can cause relatively smooth functions to become extremely variable in areas of low
probability. Consequently, the equal probability cells inherent in hypercube methods often tend to sample an
insufficient proportion of the total points in these areas. Derek introduced Latin hyper-rectangle sampling to
address this problem. Latin hyper-rectangle sampling is a generalization of Latin hypercube sampling that
allows for non-equal cell probabilities. A number of examples were given illustrating the improvement of
the proposed methodology over Latin hypercube sampling with respect to the variance of the resulting esti-
mators. Extensions to orthogonal-array based Latin hypercube sampling, stratified Latin hypercube sampling
and scrambled nets were also described.

Complex survey data

Survey data now being collected by many government, health and social science organizations have increas-
ingly complex structures precipitating an urgent demand for new statistical methodology to further research
in substantive areas. In cross-sectional studies, which are taken at one point in time, it is typical to use very
complex sampling designs, involving stratification and clustering as the components of random sampling.
There can also be complexities in the resulting data file due to the patterns of nonresponse. In longitudinal
studies, which follow individuals or groups of individualsover time, there is additional complexity stemming
from possible complex correlation structures induced by repeated measurements on the same sampling unit,
by irregularly spaced data and differing numbers of repeated observations on individuals. This datatype, with
all it various complexities, is increasingly common in substantive areas due to its power to infer causality, to
separate individual and population trends and to detect changes in time.

The final day of the workshop was devoted to the efforts of the survey methods project within NPCDS,
although due to many of the team members being drawn to the meeting of the International Statistical Institute
in Australia, the session was limited to four speakers. Nevertheless this is a very active project, involving
many graduate students one whom presented in this session.

The first speaker was Milorad Kovacevic of Statistics Canadawho discussed survey bootstrap methods
and analysis of survey data. Here a variety of approaches forestimating design-based variances of estimated
model parameters were reviewed. The particular approach ofbootstrapping through the rescaling of the
survey weights - which he call the survey bootstrap, was presented as gaining popularity due to its portability.
Namely, once bootstrap samples have been taken and bootstrap weights calculated, the user estimates the
quantities of interest in exactly the same way with the full sample and with each of the bootstrap samples,
and then combines these estimates to obtain variance estimates. There are situations, however, in which this
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direct variance estimator may be unstable. Recently, methods have been proposed for making inferences
using an estimating function bootstrap in a model-based setting, which seem to provide more stable results.
These methods have been adapted to produce different design-based estimating function survey bootstraps. In
Milorad’s presentation he covered some of these new developments. Results of a simulation study motivated
by a real-life analysis were presented.

The next speaker, Brajendra Sutradhar considered generalized quasilikelihood approaches for survey
based incomplete longitudinal binary data. When the response variable in a longitudinal model is subject
to missing completely at random (MCAR) or missing at random (MAR), the existing ‘independence’ or
‘working correlations’ based generalized estimating equations (GEE) approaches yield consistent estima-
tors for the effects of the covariates. These GEE based estimators may, however, be inefficient. There also
exists a true correlation structure based GEE approach to deal with exponential family based longitudinal
responses subject to MCAR or MAR. The existing correlation models used in such incomplete data analy-
sis are, however, quite restricted. In Brajendra’s presentation he exploited a robust correlation model based
generalized quasilikelihood (GQL) approach, where the correlation model can accommodate AR(1), MA(1)
and exchangeable correlation structures for longitudinalbinary responses. Furthermore, for the cases when
individuals are selected based on a complex survey samplingscheme rather than simple random sampling, it
becomes necessary to incorporate the survey weights in the estimation approach. For this purpose, Brajendra
developed a survey design based GQL (DBGQL) estimating equation approach as a generalization of the
GQL approach. The DBGQL estimation approach was illustrated by analysing a real life binary longitudinal
data set subject to MCAR or MAR.

The next talk, a joint effort by Roland Thomas and Irene Lu, was of particular interest as the research
resulted from a collaboration borne out of NPCDS/SAMSI joint efforts in the context of the SAMSI the-
matic program: Latent Variable Models in the Social Sciences. The title of their talk was ”Latent Regression
with Social Science Data: A Comparison of Various Methods Using Simulation and Complex Survey Data
Examples” The presentation focused on methods for estimating regression coefficients for the linear latent re-
gression models frequently encountered in social science research. In the social sciences, latent variables are
typically measured using batteries of questionnaire itemsfrom which latent variable scores can be predicted
in numerous ways. These scores comprise fallible estimatesof the underlying latent variables, and it is well
known that naive methods of analysis based on these scores are likely to result in biased estimates. These
biases are quantified not only for simple scoring methods, but also for methods based on Item Response
Theory (IRT). The conclusion is that the use of scores, no matter how sophisticated, yields unacceptably
large bias and should be avoided. An alternative approach via discrete structural equation modeling (SEM) is
also evaluated. This approach, which implicitly includes the IRT model structure, is shown to provide lower
levels of regression parameter bias, though its bias cannotbe ignored for the smaller sample sizes. Finally,
the speakers described a recent adaptation (Bollen, 1996) of the instrumental variables approach to social sci-
ence data, and shows that this simple approach provides low levels of parameter bias comparable to the more
computationally involved discrete SEM method. The performance of the various approaches was compared
using simulation, and is also illustrated on complex surveydata from Statistics Canada’s Youth in Transition
Survey.

The day, and indeed the workshop, ended in fine form with a presentation from yet another graduate stu-
dent, this time Norberto Pantoja Galicia from the University of Waterloo who was one of the participants of
the internship program that is jointly funded by NPCDS and Statistics Canada. Norberto discussed a nonpara-
metric test for association of interval censored event times in the National Population Health Survey (NPHS).
Here outcomes from the questionnaire of the NPHS a longitudinal survey conducted by Statistics Canada,
offer the necessary information to explore the relationship between smoking cessation and pregnancy. A
formal nonparametric test for association was presented. This test requires estimation of the joint density for
interval censored event times, which takes into account complexities of the sample design.

Concluding Remarks

For NPCDS this event at BIRS was timely as the Program is currently entering the second half of its four-year
funding cycle and it offered an opportunity for participants to assess what has been accomplished thus far.
The general view was ”a lot!”: with potentially seven national projects established in a two year span the
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Program has engaged the broader community in a robust way. Credit mustbe attributed to the many indi-
vidual researchers who are investing time and energy into this endeavour. During the week at Banff, general
meetings were held where progress, and the future of the program, was discussed openly. For example, is-
sues concerning capacity led to consideration of an RFP for training initiatives, which is now being actively
pursued. In addition, plans for the renewal of the program have been set in motion.
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A BRIEF INTRODUCTION

The idea of building mathematical structures out of local data has been a cornerstone of both modern Mathe-
matics and Physics. Manifolds, distributions, simplicialcomplexes, vector bundles, and homogeneous spaces
attest to this fact. The mathematical tools that measures the obstruction preventing us from gluing local data
in a compatible way are the various cohomology theories.

In the middle of the last century the theory of algebraic varieties was establishing itself as a invaluable tool
that allowed “geometric methods” to be applied to arithmetical questions. But already A. Weil had explicitly
singled out that one of the most powerful classical tools, namely the construction of the quotient of a manifold
by the action of a Lie group (homogeneous spaces), had no successful analogue for algebraic groups acting
on varieties. (The reason being that the Zariski topology ofa variety, which plays the role of the classical
topology for a manifold, is too weak: there are too few open sets to trivialize actions, and these sets are too
big). The answer to this riddle came from the work of Serre andof Grothendieck. The resulting theory of
principal homogeneous spaces (Torsors for short), hinges around endowing schemes with the étale topology,
and using various theories of “descent” to produce a coherent cohomology theory to go with it.

Several of the fundamental problems in algebra and number theory are related to the problem of classi-
fying G-torsors and in particular of computing the Galois cohomologyH1(k,G) of an algebraic groupG
defined over an arbitrary fieldk. The study of Galois cohomology is still in its early stages and many natural
questions and long standing conjectures are still open. During the past two decades new insight into this
theory began arising under the influence of algebraic geometry and algebraicK-theory. We note that new
possibilities provided by algebraicK-theory still only begin to manifest themselves in full strength.

It has also recently become apparent that torsors can also beused to understand affine Kac-Moody Lie
algebras and groups and superconformal algebras. It is possible, but at this point not known, that these
methods could extend to a more general class of Lie algebras (Extended Affine Lie Algebras) around which
there is today a considerable amount of interest.

Exploring the connections between these two aspects of torsors: The algebraic Geometry on one hand,
and the infinite dimensional Lie theory on the other, was one of the purposes of the meeting.
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SUMMARIES OF TALKS

G–forms and cohomological invariants

by E. Bayer–Fluckiger (EPFL Lausanne, Switzerland)

Let k be a field of characteristic6= 2. Milnor’s conjecture, recently proved by Voevodsky, provides a
classification of quadratic forms overk up to isomorphism. This gives hope for progress in related questions,
for instance the classification of quadratic forms invariant by a finite group.

Let G be a finite group. One of the natural examples ofG–forms is given by trace forms of G–Galois
algebras. IfL is aG–Galois algebra, let us denote byqL its trace form. Letq0 be the unitG–form – if
we denote byL0 the splitG–Galois algebra, then we haveqL0 = q0. If G has odd order, then it is known
thatqL ≃G q0 (where≃G denotesG–compatible isometry). If the2–Sylow subgroups ofG are elementary
abelian of rankr, then in a joint paper with J–P. Serre we give a complete criterion for the isomorphis of the
trace forms of twoG–Galois algebras in terms of anr–dimensionalmod 2 cohomological invariant.

Let us denote byW (k) the Witt ring of the fieldk, and letI = I(k) be the ideal of even dimensional
quadratic forms. Letd be the2–cohomological dimension ofk. Let L andL′ be twoG–Galois algebras.
Then Milnor’s conjecture implies that ifφ ∈ Id, then the quadratic formsφ ⊗ qL andφ ⊗ qL′ are isomor-
phic. Philippe Chabloz recently proved that these forms areactually isomorphic asG–forms. Going futher
in this direction, note that Milnor’s conjecture implies that if φ ∈ Id−1 and if we denote byed−1(φ) its
cohomological invariant, thenφ ⊗ qL ≃ φ⊗ qL′ if and only if ed−1(φ) ∪ d(qL) = ed−1 ∪ d(qL′). This talk

presented some partial generalisations of this fact. One can define a notion ofG–discriminantfor qL, denoted
by dG(qL). It is then natural to conjecture thatφ ⊗ qL andφ ⊗ qL′ are isomorphic asG–forms if and only
if ed−1(φ) ∪ dG(qL) = ed−1 ∪ dG(qL′). This is known in some cases, by the work of Chabloz, Monsurro,
Parimala, Schoof and the author.

Essential dimension of homogeneous forms

by G. Berhuy (Nottingham University, UK)

The essential dimension of an algebraic structure is roughly the minimal number of independent parame-
ters needed to describe it up to isomorphism. This notion hasbeen defined first by Reichstein an Buhler for
Galois extensions of given groupG in a more geometric way, then extended to anyG-torsor by Reichstein (
whereG is an algebraic group defined over an algebraically closed field of characteristic0).

In this talk, we compute the essential dimension of the generic homogeneous polynomial of degreed in n
variables when theg.c.d. of n andd is a (possibly trivial) prime power. For this, we define a new numerical
invariant attached toG-torsors in a geometric way, namely the canonical dimension. We then relate the
canonical dimension of a certainGLn/µd-torsor to the essential dimension of the generic homogeneous
polynomial, and we use the properties of canonical dimension to compute it.

The algebraic connective K-theory

by S. Cai (UCLA, USA)

By using the Brown-Gersten-Quillen spectral sequence, we give a simple definition of the algebraic con-
nectiveK-theory, the universal homology theory overriding theK-homology (chow groups) and algebraic
K-theory. The definition of a homology theory (a Borel-Moore functor) is verified, and standard properties
are proved. Relations withK-homology andK-theory are explored.
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Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes, I
et II

by J-L. Colliot-Thélène (Université Paris-Sud, France)
et B. È. Kunyavskiı̆ (Bar-Ilam University, Israel)

Soit k un corps de caractéristique nulle,k une clôture algébrique dek, et g = Gal(k/k). SoientG un
k-groupe connexe etX/k un espace homogène deG. Le stabilisateur ǵeoḿetrique, c’est-à-dire le groupe
d’isotropie d’unk-point deX = X ×k k est bien défini àk-isomorphisme non unique près. OnnoteH
ce groupe. Supposons le groupeH connexe. Il y a alors unk-toreT naturellement associé auG-espace
homogèneX , tel queT soit le plus grand quotient toriqueH

tor
deH . SoitXc unek-compactification lisse

deX . La k-variétéXc est unirationnelle, le groupe de PicardPic(Xc) est ung-module continu discret
Z-libre de type fini et le groupeBr(Xc) est fini. On noteBr1(Xc) le noyau de l’application de restriction
Br(Xc) → Br(Xc). Le quotient du groupe de BrauerBr1(Xc) par l’image du groupeBr(k) est un sous-
groupe du groupe finiH1(g,Pic(Xc)).

À tout g-module continu discretM et tout entier natureli on associe le groupe

Shaiω(k,M) = Ker[Hi(g,M) →
∏

h

Hi(h,M)],

oùh parcourt les sous-groupes fermés procycliques deg.

Théorème ASoientk un corps de caractéristique nulle,G unk-groupe lińeaire connexe,X unek-variét́e
espace homog̀ene deG, de stabilisateur ǵeoḿetrique connexe. SoitXc unek-compactification lisse deX .

(i) Le g-modulePic(Xc) est ung-module flasque, c’est-à-dire que pour tout sous-groupe fermé h ⊂ g,
on aH1(h,HomZ(Pic(Xc),Z)) = 0, soit encoreExt1h(Pic(Xc),Z) = 0.

(ii) Pour tout sous-groupe ferḿe procycliqueh ⊂ g, on aH1(h,Pic(Xc)) = 0.
(iii) SoitT le k-tore assocíe auG-espace homog̀eneX , et soitT̂ son groupe des caractères. SiG est

un groupe lińeaire quasitrivial, i.e. extension d’unk-tore quasitrivial par unk-groupe simplement connexe,
alors le quotient du groupeBr1(Xc) par l’image du groupeBr(k) s’injecte dans le groupeSha1

ω(k, T̂ ), et
est isomorphèa ce dernier groupe siX(k) 6= ∅ ou sik est un corps de nombres.

Sous l’hypothèse de (iii), nous montrons comment leg-moduleZ-libre de type finiPic(Xc) est déterminé,
à addition près d’ung-module de permutation, par lek-toreT – en particulier il ne dépend pas du groupe
quasi-trivialG.

Ce théorème est une extension naturelle de résultats connus dans le cas oùH = 1 (Voskresenskiı̆ 1975,
Colliot-Thélène et Sansuc 1976, Borovoi et Kunyavskiı̆ 2004). Ces résultats furent rappelés dans le premier
exposé.

Un ingrédient important de la démonstration du théorème A est le théorème suivant, pour la démonstration
duquel un ingrédient essentiel nous a été suggéré par O. Gabber.

Théorème BSoitA un anneau de valuation discrète de corps des fractionsK, de corps ŕesiduelk de
caract́eristique nulle. SoitG unK-groupe quasitrivial et soitE/K unG-espace homog̀ene de stabilisateur
géoḿetrique connexe et de tore associé trivial. SoitX unA-sch́ema propre, ŕegulier, int̀egre, dont la fibre
géńerique contientE comme ouvert dense. Alors il existe une composante de multiplicit é 1 de la fibre sṕeciale
deX/A qui est ǵeoḿetriquement int̀egre sur son corps de basek.

Totaro’s question on zero-cycles onG2, F4, andE6 torsors

by S. Garibaldi (Emory University, Atlanta, USA)

It is a natural naive question to ask: How can one tell if a collection of polynomial equations has a
common solution over a given fieldk? A more sophisticated version of this question asks: If a variety X
has a zero-cycle of degree1, doesX necessarily have ak-point, i.e., a closed point of degree1? Various
examples show that some restrictions on the varietyX are necessary for a positive answer. Several people
(Veisfeiler, Serre, Colliot-Thélène) have suggested hypotheses that may be sufficient to guarantee a positive
answer.
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In a 2004 paper, Totaro asked whether aG-torsorX that has a zero-cycle of degreed > 0 will necessarily
have a closed étale point of degree dividingd, whereG is a connected linear algebraic group. This question is
closely related to several conjectures regarding exceptional algebraic groups. Totaro gave a positive answer to
his question in the following cases:G simple, split, and of typeG2, typeF4, or simply connected of typeE6.
Detlev W. Hoffmann and I proved that the answer is also “yes” for all groups of typeG2 and some nonsplit
groups of typeF4 andE6. We make no restrictions on the characteristic of the base field. The key tool is a
lemma regarding linkage of Pfister forms.

Twisted forms of toroidal Lie algebras

by P. Gille (Université Paris-Sud, France)
jointly with A. Pianzola (University of Alberta, Canada)

The main thrust of our project is the study of Toroidal Lie algebras via cohomological methods This leads
us to the theory of reductive group schemes as developed by M.Demazure and A. Grothendieck [8]. More
precisely, Algebraic Principal Homogeneous Spaces (also called Torsors for short) and their accompanying
non-abelian étale cohomology, arise naturally once this new point of view is taken into consideration.

LetA be a finite dimensional algebra over a fieldk. An R-form of A is an algebraL overR for which
there exists a faithfully flat and finitely presented extensionS/R such that

L⊗R S ≃S A⊗k S

(isomorphism ofS-algebras).
SinceA⊗k S ≃ (A⊗k R)⊗R S, theR-algebraL is nothing but anR-form (trivialized bySpecS in the

flat topology ofSpecR) of theR-algebraA ⊗k R. SinceSpecR is affine, the isomorphism classes of such
R-algebras are parametrized byH1(R,Autk AR) (pointed set of Cěch cohomology on the flat side ofSpecR
with coefficients onAutk AR). The group sheafAutk AR is in fact an affineR-group scheme (becauseA is
finite dimensional). IfAutk A is smooth (for example if chark = 0), thenS may be assumed to be an étale
cover.

Because of connections with Extended Affine Lie Algebras (EALAs for short), the case whenR is a ring
of Laurent polynomial in finitely many variables is of special importance (one variable corresponding the
affine Kac-Moody case ). For simplicity, we will restrict ourattention to this special this case.

We assume henceforth thatk is of characteristic0. Fix n ≥ 0 and letRn = k[t±1
1 , . . . t±1

n ]. For any

positived, defineRn,d = k[t
± 1

d

1 , t
± 1

d

2 , · · · t±
1
d

n ], and letRn,∞ be the inductive limit of all theRn,d.

By definition, forms are trivialized in somefppf extension of the base ring. In the case of Laurent
polynomials, one has very precise control over the trivializing base change.

TheoremLetA be a finite dimensionalk-algebra. EveryRn-formL ofA is isotrivial (i.e. trivialized by
a finiteétale cover ofRn). More precisely, there exist a finite Galois extensionK/k and a positive integerd
such that

L⊗Rn
(Rn,d ⊗k K) ≃Rn,d⊗kK A⊗k (Rn,d ⊗k K).

Similarly, every reductive group scheme overRn is isotrivial.

Multiloop algebras are the quintessential examples of forms. Assumek to be algebraically closed, and
fix once an for all a compatible family(ζn)n>0 in k× of primitive roots of unity (thusξhhd = ξd).

We begin by introducing the ingredients needed in the definition of multiloop algebras. Letσ = (σ1, . . . , σℓ)
be a commuting family of finite order automorphisms of thek-algebraA. Letmi be the order ofσi.

For each(i1, ..., in) ∈ Zn, consider the simultaneous eigenspaces

Ai1...in := {x ∈ A : σj(x) = ξijmj
for all 1 ≤ j ≤ n}

(which of course depend only on theij modulo themj). Finally, consider the rings extensionRn ⊂ Rn,m =

k[t
±1/m1

1 , . . . , t
±1/mn
n ] wherem = (m1, ...,mn). Themultiloop algebraassociated to this data is thek-

algebra
L = L(A, σ) = ⊕Ai1...in ⊗ ti1/m1 . . . tin/mn

n ⊂ A⊗k Rn,m
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Observe thatL has a naturalRn-algebra structure. One easily verifies thatL⊗Rn
Rn,m ≃Rn,m

A⊗k Rn,m,
and thatRn,m/R is free of finite rank (hencefppf . In fact étale and even Galois). ThusL is anRn-form of
A which is trivialized by the extensionRn,m/Rn.

Let g be a finite dimensional split simple Lie algebra over an algebraically closed fieldk of characteristic
zero. In nullity1 loop algebras provide us with concrete realization of the affine Kac-Moody algebras (a
result of V. Kac). We can in fact prove a much stronger assertion: In nullity 1 everyform of g is a loop
algebra. This follows from the following result of Pianzola.

TheoremLetG be a reductive group scheme overR1 = k[t±1
1 ]. Then

H1(k[t±1
1 ],G) = 1.

This result ought to be thought as a the validity of “Serre Conjecture I ” fork[t±1
1 ] (the usual Conjecture

I, which is consequence of a Theorem of Steinberg, corresponding to the generic fiber ofR1; namely the
function fieldk(t1)).

With this in mind, we now turn our attention to the casen = 2 where some interesting and unexpected
behaviour arises. Assume now thatK is a field of dimension 2. Serre’s Conjecture II asserts thatH1(K,G) =
1 wheneverG is a semisimple algebraic of simply connected type. At the present time, this conjecture is still
open. There is however one case where the conjecture is knownto hold, and this is precisely the case when
K = k(t1, t2).

By analogy with the one dimensional case, it seems inevitable to raise the following.

Question. LetG be a semisimple group scheme overR = k[t±1 , t
±1
2 ]. AssumeG is of simply connected type.

IsH1(R,G) trivial? . More generally, ifG/R is semisimple andλ : G̃ → G is its universal covering with
(central) kernelµ, is the boundary mapH1(R,G) → H2(R,µ) bijective ?

We have shown that the the boundary mapH1(R,G) → H2(R,µ) is always surjective. Furthermore, if

G is split, thenH1(R, G̃) = 1 (and therefore the answer to the above question is positive). But somehow
surprisingly however, the answer in general is negative (wehave constructed an explicit counterexample, but
the classification of these exotic objects seems hard). The failure seems to be directly related to anisotropic
kernels.

Diagrams and torsors

by J.F. Jardine (University of Western Ontario, London, Ontario, Canada)

Maps between objectsX andY in a homotopy category can be identified with path componentsof a
category of cocycles, in great generality. This correspondence can be used to give a simple demonstration
of the identification of isomorphism classes of torsors (torsors are generalizations of principal bundles) for
sheaves of groupsG with maps in the homotopy category of simplicial sheaves. This identification is a
homotopy theoretic classificationG-torsors; this classification result has been known at this level of generality
since the late 1980s, but the new proof is much simpler and more conceptual.

A G-torsor can be characterized as a sheafX admitting aG-action for which the corresponding Borel
constructionEG ×G X is isomorphic to a point in the homotopy category of simplicial sheaves. More gen-
erally, for arbitrary index categoriesI, I-torsors are defined to be diagrams of weak equivalences which have
trivial homotopy colimits. Using the machinery of Quillen’s Theorem B (which is one of the main foun-
dational results of algebraicK-theory), one can show that homotopy colimit and derived pullback together
define a bijection

[∗, BI] ∼= π0(I − Tors)

relating morphisms from a point toBI in the homotopy category with the set of path components of the
category ofI-torsors. This definition ofI-torsor and the homotopy classification both exist quite generally,
and specialize to definitions of higher torsors and motivic torsors with corresponding homotopy classification
results.

Higher torsors can be thought of as special types of diagramswhich take values in simplicial sheaves,
and are defined on sheaves of categoriesI enriched in simplicial sets. Sheaves of groupoids enrichedin
simplicial sets are the objects of a homotopy theory which isequivalent to the full homotopy theory of
simplicial sheaves, for which the fibrant objects representhigher stacks. The homotopy classification result
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for higher torsors does not depend on the theory of higher stacks, and the result for the full category of sheaves
of categories enriched in simplicial sets was unexpected.

A bound for canonical dimension of the (semi-)spinor groups

by N. Karpenko (Universite d’Artois, Lens, France)

In the talk we discuss thecanonical dimensioncd(G) of a linear algebraic groupG defined over a field
F which was introduced recently by Berhuy–Reichstein. The general question raised by Berhuy–Reichstein
is to determinecd(G) for every split simple algebraic groupG.

For the spinor group, representing a particularly difficultcase of the above general question, one knows
thatcd (Spin2n+1) = cd (Spin2n+2), so that we will discuss onlycd(Spin2n+1) here.

Although the canonical dimension of, say, a smooth projective varietyX can be expressed in terms of
algebraic cycles onX , there are no general recipes for computingcd(X) or cd(G). A better situation occurs
with thecanonicalp-dimensioncdp, a “p-local version” ofcd, wherep is a prime: a recipe for computing
cdp(G) of an arbitrary split simpleG is obtained by Merkurjev and Karpenko. In particular, one has

cd2(Spin2n) =
n(n− 1)

2
− 2l + 1 ,

wherel is the minimal integer such that2l ≥ n+ 1 (and for any odd primep, one hascdp(Spin2n+1) = 0).
Sincecd (G) ≥ cdp(G) for anyG andp, we have alower boundfor the canonical dimension of the spinor
group, given by its canonical2-dimension.

We establish the followingupper boundfor spinor groups:

cd (Spin2n+1) ≤ n(n− 1)/2.

This result improves the previously known upper boundn(n+ 1)/2, established by Berhuy–Reichstein.
The proof makes use of the theory of non-negative intersections, of duality between Schubert varieties, and
of the Pieri formula for a variety of maximal totally isotropic subspaces.

Note that the lower bound forcd(Spin2n+1), given bycd2(Spin2n+1), coincides with our upper bound if
(and only if)n+ 1 is a power of2. Therefore, for suchn, we get the precise value: ifn+ 1 is a power of2,
then

cd(Spin2n+1) = cd(Spin2n+2) =
n(n− 1)

2
.

Our second main result is the following upper bound for the semi-spinor groupsSpin∼2n+2, obtained by
the similar technique: for any odd one has

cd(Spin∼2n+2) ≤ n(n− 1)/2 + 2k − 1,

wherek = v2(n+ 1) (the2-adic order ofn+ 1).
Importance of the spinor and semi-spinor groups in this context is explained by the fact that these groups

represent the only difficult cases of the following general question: letG be a split simple algebraic group,
having a unique torsion primep (a primep is a torsion primeof G if and only if cdp(G) 6= 0); is it true that
cd(G) = cdp(G)?

Zero cycles on homogeneous varieties

by D. Krashen (IAS, Princeton)

The study of projective homogeneous varieties and their invariants has been a source of many interesting
problems and has various applications in recent years. For example, Panin’s description of the algebraic K-
theory of homogeneous varieties has resulted in the useful index reduction formulas of Merkurjev, Panin and
Wadsworth. The study of algebraic cycles and the motives of these varieties has also played an important role
in quadratic form theory, and in particular, Voevodsky’s proof of the Milnor conjecture. The structure of the
Chow groups and motives of these varieties continues to be anactive area of research with many unresolved
questions.
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In the talk, we introduce tools for studying the Chow group of0-dimensional cycles on a projective variety
using results from Suslin and Voevodsky’s work on algebraicsingular homology. This allows us to connect
the study of the group of zero cycles to studying the more geometrically naive notion of R-equivalence (i.e.
connecting points with rational curves) on symmetric powers of the original variety.

We apply these ideas by showing that the symmetric powers of certain homogeneous varieties may be
related to spaces which parametrize commutative étale subalgebras in a central simple algebra. To make this
precise, we define moduli spaces of étale subalgebras in a central simple (or Azumaya) algebra. These spaces
are very interesting in their own right, as many open questions in the area of central simple algebras concern
the existence and structure of certain types of subfields in adivision algebra. We show that in certain cases
these moduli spaces are R-trivial, and we apply this to determining the Chow group of zero cycles for certain
homogeneous varieties. This allows us to show that the Chow group of zero dimensional degree zero cycles
is trivial for involution varieties as well as for certain Severi-Brauer flag varieties. This was previously known
to be true for involution varieties of index no more than2 (by work of Swan, Karpenko and Merkurjev) and
for Severi-Brauer varieties (by work of Panin).

On Cachazo-Douglas-Seiberg-Witten Conjecture for simpleLie algebras

by S. Kumar (University of North Carolina at Chapell Hill, USA)

Let g be a finite dimensional simple Lie algebra over the complex numbers. Consider the exterior algebra
R := ∧(g ⊕ g) on two copies ofg. Then, the algebraR is bigraded with the two copies ofg sitting in
bidegrees (1,0) and (0,1) respectively. To distinguish, wewill denote the first copy ofg by g1 and the second
copy ofg by g2.

The diagonal adjoint action ofg gives rise to ag-algebra structure onR compatible with the bigrading. We
isolate three ‘standard’ copies of the adjoint representationg inR2, whereR2 is the total degree2 component
of R. Theg-module map

∂ : g → ∧2(g), x 7→ ∂x =
∑

i

[x, ei] ∧ fi,

considered as a map to∧2(g1) will be denoted byc1, and similarly,

c2 :g → ∧2(g2), and

c3 :g → g1 ⊗ g2, x 7→
∑

i

[x, ei] ⊗ fi,

where{ei}i≤i≤N is any basis ofg and{fi}1≤i≤N is the dual basis ofg with respect to a normalized Killing
form 〈 , 〉 of g. We denote byCi the image ofci.

Let J be the (bigraded) ideal ofR generated by the three copiesC1, C2, C3 of g (in R2) and define the
bigradedg-algebra

A := R/J.

The Killing form gives rise to ag-invariantS ∈ A1,1 given by

S :=
∑

i

ei ⊗ fi.

Motivated by supersymmetric gauge theory, Cachazo-Douglas-Seiberg-Witten made the following con-
jecture. They proved the conjecture for classicalg. Subsequently, Etingof-Kac proved the conjecture forg of
typeG2 by using the theory of abelian ideals inb.

Conjecture [CDSW] (i) The subalgebraAg of g-invariants inA is generated, as an algebra, by the element
S.

(ii) Sh = 0.
(iii) Sh−1 6= 0, whereh is the dual Coxeter number.

The aim of this work is to give a uniform proof of the above conjecture part (i). In addition, we give a
conjecture, the validity of which would imply part (ii) of the above conjecture.
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To prove part (i), we first prove that the graded algebraBg is isomorphic with the singular cohomology of
a certain (finite dimensional) projective subvarietyY2 of the infinite GrassmannianY associated tog, where
B := R/〈C1 ⊕ C2〉. The definition of the subvarietyY2 is motivated from the theory of abelian ideals
in the Borel subalgebrab of g. This isomorphism is obtained by using Garland’s result on the Lie algebra
cohomology of̂u := g ⊗ tC[t]; Kostant’s result on the ‘diagonal’ cohomolgy ofû and its connection with
abelian ideals inb; and a certain deformation of the singular cohomology ofY introduced by Belkale-Kumar.

Steenrod operations in algebraic geometry

by A. Merkurjev (UCLA, USA)

Steenrod operations in algebraic geometry were originallydefined by Voevodsky in the context motivic
cohomology. P.Brosnan found an elementary definition of theSteenrod operations on the Chow groups of
algebraic varieties. His definition uses equivariant Chow groups of Edidin and Graham and the construction
relies on embedding to a smooth scheme.

In the talk a new direct construction of the Steenrod operations modulo 2 is presented. Namely, the
Steenrod operations (of homological type) of a schemeX are defined as the Segre classes of the tangent cone
of X . All the standard properties of the Steenrod operations canbe proven directly.

Non-commutative version of purity

by I. Panin (Steklov Institute, St. Petersburg, Russia)

Let F be a covariant functor from the category of commutative rings to the category of sets. We say that
F satisfies purity forR if

⋂

htp=1

Im [F(Rp) → F(K)] = Im [F(R) → F(K)].

For certain functorsF(R) injects intoF(K) for all regular local ringsR. In this case the purity ofF for R
implies that ⋂

htp=1

F(Rp) = F(R) ⊂ F(K).

Now we switch to a specific functor. For that consider a characteristic zero fieldk, a reductive algebraic
k-groupG (connected one) and a functorF which takes a commutativek-algebraR toH1

ét(R,G). We make
the following conjecture:

the functorF satisfies the purity for regular local rings containingk.

The conjecture is a kind of extension of the known conjectureof A. Grothendieck and J.-P. Serre. They
conjectured the injectivity. Here a purity is conjectured.It can be viewed as a non-commutative version of
Gersten’s conjecture inK-theory. In the talk we discussed in certain details this conjectures for interesting
examples of reductive groups like PGLn, SL1,A, O(q), SO(q).

Algebras of prime degree over function fields of surfaces

by R. Parimala (Tata Institute, Mumbai, India)
jointly with M. Ojanguren (Lausanne University, Switzerland)

It is an open question whether division algebras of prime degree are cyclic. Over number fields, cyclicity
of all central simple algebras is a classical theorem due to Hasse-Brauer-Noether. Further the index and
the exponent coincide for all division algebras over a number field. Artin raised the question whether the
index and the exponent coincide for central simple algebrasover aC2-field. Artin’s question is answered in
the affirmative for function fields of surfaces over an algebraically closed field of characteristic zero by de
Jong. We explain a method of proof of cyclicity of prime degree algebras over such fields using de Jong’s
techniques.
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Tori in quasi-split groups

by M. S. Raghunathan (Tata Institute, Mumbai, India)

In this talk a proof of the following result was outlined:

Let k be any field andG a quasi-splitk-algebraic group,S a maximalk-split torus inG, Z(S) = T the
centraliser ofS andN(S) the normaliser ofS. LetW = N(S)/Z(S) be the Weyl group-scheme overk. Let
i : W →֒ Aut(T ) be the natural inclusion. Nowk-isomorphism classes of tori of dimensionl (= dimension
T ) are in bijective correspondence with elements of the Galois cohomology setH1(k,Aut(T )). A necessary
and sufficient condition that a torusB overk is realisable as ak- subtorus ofG is that class[B] of B in
H1(k,Aut(T )) be in the image ofH1(k,W ). This is a consequence of the following stronger assertion:let
π : H1(k,N(T )) −→ H1(k,W ) andi : H1(k,N(T )) −→ H1(k,G) be the natural maps. Thenπ maps
kerneli(= i−1(trivial class inH1(k,G)) ontoH1(k,W ).

A key ingredient of the proof is the theorem of Steinberg thatevery regular semisimplek-conjugacy class
in G contains ak-rational point.

Group-theoretic compactification of Bruhat-Tits buildings

by B. Rémy (Lyon 1, France)
jointly with Yves Guivarc’h (Rennes 1, France)

Let G be a simply connected semisimple algebraic group, defined over a non-archimedean local field
F . We denote byGF the locally compact group of its rational points, and we denote byX the Bruhat-Tits
building ofG/F . We are interested in compactifying the verticesVX of X by group-theoretic means, so that
we eventually obtain structure results on the rational pointsGF (i.e. parametrizations of remarkable classes
of closed subgroups ofGF ). We first prove convergence of some sequences of compact open subgroups of
GF in the Chabauty topology. This enables us to define the desired compactification ofVX . We obtain then
a structure theorem showing that the Bruhat-Tits buildingsof the Levi factors all lie in the boundary of the
compactification. We obtain an identification theorem with the polyhedral compactification, previously de-
fined by E. Landvogt. We finally prove two parametrization theorems extending the correspondence between
maximal compact subgroups and vertices ofX : one is about Zariski connected amenable subgroups, and the
other is about subgroups with distal adjoint action.

Cyclic algebras overp-adic curves

by D. Saltman (Texas University, USA)

The study of the structure of division algebras goes back 150years since they were first defined. The issue
has always been how to describe their structure. The first examples of division algebras were so called cyclic
algebras - defined simply using a cyclic Galois extension. Since then non-cyclic algebras have been found,
but only with complicated (precisely composite) degree, where the degree of a division algebra is an integer
describing its size. Thus in some ways the first question about division algebras is still unsolved, namely,
whether all division algebras of prime degree are cyclic.

Another strain in the theory of division algebras is their study over special fields, where over time the
“special” fields have gotten more and more general. This approach is best illustrated by the Hasse-Brauer-
Noether-Albert theorem that all division algebras over global fields are cyclic. In this talk we discussed a
“higher dimensional” special field, namely, the function field of a curve over ap-adic field. What we showed
was that whenq is a prime not equal top, then any division algebra of degreeq over such a field is cyclic.

Of equal importance to the actual result is the methods we used. The fields we are concerned with are best
viewed as the function field of surfacesS over thep-adic integers. By a result of Grothendieck, such surfaces
have Brauer group 0. What this means is that the division algebras over such surfaces are determined by their
so called “ramification”. As a consequence of this, showing that a division algebra is cyclic is equivalent to
showing that one can “split” its ramification by a cyclic Galois extension of the right size. It turn out that
another way to view this result is that it is a result on splitting ramification over surfaces, and as such it has
had application to a much broader class of fields than treatedhere.
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The arguments of Grothendieck and Tits on splitting fields

by B. Totaro (Cambridge University, UK)

One of the great achievements of mathematics is the 19th-century classification of the simple Lie groups
by Killing and Cartan. There are four infinite families of groups and just five exceptional groups. Chevalley
showed in 1958 that the same classification works for the simple algebraic groups over any algebraically
closed field.

The classification of simple algebraic groups over an arbitrary field is much richer. It includes as a special
case some of the fundamental problems of algebra, such as theclassification of quadratic forms over an
arbitrary field. Nonetheless, one can hope to answer basic questions such as: given a simple algebraic group
of a given type over a field, what degree of field extension is needed to make it into the standard (Chevalley)
group?

Using the idea of torsors, and the definition of the Chow ring of a classifying space, we give an improved
proof of a theorem by Grothendieck which gives a strong connection between the classification of simple
algebraic groups over arbitrary fields and the topology of the corresponding compact Lie groups.

As a result, we can do topological calculations and read off information about splitting fields. Tits solved
these problems for many types of groups, but we are able to solve these problems in the remaining cases,
notably for the groupsE8 andSpin (n). We find, for example, that any algebraic group of typeE8 over any
field becomes isomorphic to the Chevalley groupE8 after a field extension of degree dividing2880. The
number2880 is best possible. This is satisfying in that questions aboutE8, the largest exceptional Lie group,
have often been the hardest of all questions about Lie groups.
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(Microsoft Research), Charles Radin (Univ. of Texas at Austin)

Introduction

A family of (not necessarily infinitely many) non-overlapping congruent balls ind-dimensional space of
constant curvature is called a packing of congruent balls inthe givend-space that is either in the Euclidean
d-spaceEd or in the sphericald-spaceSd or in the hyperbolicd-spaceHd. The goal of this report is to give
a state of the art description ofd-dimensional sphere packings. On the one hand, the researchon sphere
packings seems to be one of the most active areas of (discrete) geometry on the other hand, it is one of the
oldest areas of mathematics ever studied. The topics discussed in separate sections of this report are the
following ones:

- Hadwiger numbers of convex bodies and kissing numbers of spheres;
- Touching numbers of convex bodies;
- Newton numbers of convex bodies;
- One-sided Hadwiger and kissing numbers;
- Contact graphs of finite packings and the combinatorial Kepler problem;
- Isoperimetric problems for Voronoi cells, the strong dodecahedral conjecture and the truncated octahe-

dral conjecture;
- The strong Kepler conjecture;
- Bounds on the density of sphere packings in higher dimensions;
- Solidity and uniform stability.
Each section outlines the state of the art of relevant research along with some of the ”most wanted” re-

search problems. Generally speaking the material covered belongs to combinatorics, convexity and discrete
geometry however, often the methods indicated cover a much broader spectrum of mathematics including
computational geometry, hyperbolic geometry, the geometry of Banach spaces, coding theory, convex anal-
ysis, geometric measure theory, (geometric) rigidity, topology, linear programming and non-linear optimiza-
tion.

Hadwiger numbers of convex bodies and kissing numbers of spheres

LetK be a convex body (i.e. a compact convex set with nonempty interior) in d-dimensional Euclidean space
E
d, d ≥ 2. Then the Hadwiger numberH(K) of K is the largest number of non-overlapping translates ofK

that can all touchK. An elegant observation of Hadwiger [H] is the following.
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Theorem 7.0.1 For everyd-dimensional convex bodyK,

H(K) ≤ 3d − 1,

where equality holds if and only ifK is an affined-cube.

On the other hand, in another elegant paper Swinnerton-Dyer[S] proved the following lower bound for
Hadwiger numbers of convex bodies.

Theorem 7.0.2 For everyd-dimensional (d ≥ 2)convex bodyK,

d2 + d ≤ H(K).

Actually, finding a better lower bound for Hadwiger numbers of d-dimensional convex bodies is a highly
challenging open problem for alld ≥ 4. (It is not hard to see that the above theorem of Swinnerton-Dyer is
sharp for dimensions2 and3.) The best lower bound known in dimensionsd ≥ 4 is due to Talata [85], who
applying Dvoretzky’s theorem on spherical sections of centrally symmetric convex bodies succeeded to show
the following inequality.

Theorem 7.0.3 There exists an absolute constantc > 0 such that

2cd ≤ H(K)

holds for every positive integerd and for everyd-dimensional convex bodyK.

Now, if we look at convex bodies different from a Euclidean ball in dimensions larger than2, then our
understanding of their Hadwiger numbers is very limited. Namely, we know the Hadwiger numbers of the
following convex bodies different from a ball. The result for tetrahedra is due to Talata [86] and the rest was
proved by Larman and Zong [60].

Theorem 7.0.4 The Hadwiger numbers of tetrahedra, octahedra and rhombic dodecahedra are all equal to
18.

In order to gain some more insight on Hadwiger numbers it is natural to pose the following question.

Problem 7.0.5 For what integersk with 12 ≤ k ≤ 26 does there exist a3-dimensional convex body with
Hadwiger numberk? What is the Hadwiger number of ad−dimensional simplex (resp., crosspolytope) for
d ≥ 4?

The second main problem in this section is fondly known as thekissing number problem. The kissing
numberτd is the maximum number of nonoverlappingd-dimensional balls of equal size that can touch a
congruent one inEd. In three dimension this question was the subject of a famousdiscussion between Isaac
Newton and David Gregory in 1964. So, it is not surprising that the literature on the kissing number problem
is ”huge”. Perhaps the best source of information on this problem is the book [35] of Conway and Sloane. In
what follows we give a short description of the present status of this problem.

τ2 = 6 is trivial. However, determining the value ofτ3 is not a trivial issue. Actually the first complete
and correct proof ofτ3 = 12 was given by Schütte and van der Waerden [19] in 1953. The subsequent
(two pages) often cited proof of Leech [35], which is impressively short, contrary to the common belief does
contain some gaps. It can be completed though, see for example, [66]. Further more recent proofs can be
found in [29], [1] and in [72]. None of these are short proofs either and one may wonder whether there exists
a proof ofτ3 = 12 in THE BOOK at all. (For more information on this see the very visual paper [32].) Thus,
we have the following theorem.

Theorem 7.0.6 τ2 = 6 andτ3 = 12.

The race for finding out the kissing numbers of Euclidean balls of dimension larger than3 was always and
is even today one of the most visible research projects of mathematics. Following the chronological ordering,
here are the major inputs. Coxeter [1] conjectured and Bör¨oczky [27] proved the following theorem, where
Fd(α) = 2dU

d!ωd
is the Schläfli function withU standing for the spherical volume of a regular spherical(d−1)-

dimensional simplex of dihedral angle2α and withωd denoting the surface volume of thed-dimensional unit
ball.
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Theorem 7.0.7 τd ≤ 2Fd−1(β)
Fd(β) , whereβ = 1

2arcsecd.

It was another breakthrough when Delsarte’s linear programming method (for details see for example
[77]) was applied to the kissing number problem and so, when Kabatiansky and Levenshtein [59] succeeded
to improve the upper bound of the previous theorem for larged as follows. The lower bound mentioned below
was found by Wyner [87] several years earlier.

Theorem 7.0.8 20.2075d(1+o(1)) ≤ τd ≤ 20.401d(1+o(1)).

As the gap between the lower and upper bounds is exponential it was a great surprise when Levenshtein
[35] and Odlyzko and Sloane [75] independently found the following exact values forτd.

Theorem 7.0.9 τ8 = 240 andτ24 = 196560.

In addition, Bannai and Sloane [3] were able to prove the following.

Theorem 7.0.10There is a unique way (up to isometry) of arranging240 (resp.,196560) nonoverlapping
unit spheres in8-dimensional (resp.,24-dimensional) Euclidean space such that they touch anotherunit
sphere.

The latest surprise came when Musin [70], [71] extending Delsarte’s method found the kissing number
of 4-dimensional Euclidean balls. Thus, we have

Theorem 7.0.11τ4 = 24.

In connection with Musin’s result we believe in the following conjecture.

Conjecture 7.0.12There is a unique way (up to isometry) of arranging24 nonoverlapping unit spheres in
4-dimensional Euclidean space such that they touch another unit sphere.

Using the spherical analogue of the technique developed in [11] K. Bezdek [22] gave a proof of the
following theorem that one can regard as the local version ofthe above conjecture.

Theorem 7.0.13Take a unit ballB of E4 touched by 24 other (nonoverlapping) unit ballsB1,B2, . . . ,B24

with centersC1, C2, . . . , C24 such that the centersC1, C2, . . . , C24 form the vertices of a regular 24-cell
{3, 4, 3} in E4. Then there exists anǫ > 0 with the following property: if the nonoverlapping unit balls
B′1,B

′
2, . . . ,B

′
24 with centersC′1, C

′
2, . . . , C

′
24 are chosen such thatB′1,B

′
2, . . . ,B

′
24 are all tangent toB in

E
4 and for eachi, 1 ≤ i ≤ 24 the Euclidean distance betweenCi andC′i is at mostǫ, thenC′1, C

′
2, . . . , C

′
24

form the vertices of a regular 24-cell{3, 4, 3} in E4.

There is a great list of record kissing numbers in dimensionsfrom 32 to 128 in [74] and also, we refer
the interested reader to the paper [39] of Edel, Rains and Sloane for some amazingly elementary but efficient
constructions.

Touching numbers of convex bodies

The touching numbert(K) of a convex bodyK in d-dimensional Euclidean spaceEd is the largest possible
number of mutually touching translates ofK lying in Ed. The elegant paper [37] of Danzer and Grünbaum
gives a proof of the following fundamental inequality. In fact, this inequality was phrased by Petty [76] as
well as by P. S. Soltan [83] in another equivalent form sayingthat the cardinality of an equilateral set in any
d-dimensional normed space is at most2d.

Theorem 7.0.14For an arbitrary convex bodyK of Ed

t(K) ≤ 2d

with equality if and only ifK is an affined-cube.
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In connection with the above inequality K. Bezdek and Pach [15] conjecture the following even stronger
result.

Conjecture 7.0.15For any convex bodyK in Ed, d ≥ 3 the maximum number of pairwise tangent positively
homothetic copies ofK is not more than2d.

This problem is still quite open. It seems that the only published upper bound is3d − 1 in [15].
It is natural to ask for a non-trivial lower bound fort(K). Brass [30] as an application of Dvoretzky’s

well-known theorem gave a partial answer for the existence of such a lower bound.

Theorem 7.0.16For eachk there exists ad(k) such that for any convex bodyK of Ed with d ≥ d(k)

k ≤ t(K).

It is remarkable that the natural sounding conjecture of Petty [76] stated next is still open for alld ≥ 4.

Conjecture 7.0.17For each convex bodyK of Ed, d ≥ 4

d+ 1 ≤ t(K).

A generalization of the concept of touching numbers was introduced by K. Bezdek, M. Naszódi and B.
Visy [19] as follows. Themth touching number (or themth Petty number)t(m,K) of a convex bodyK of
Ed is the largest cardinality of (possibly overlapping) translates ofK in Ed such that among anym translates
always there are two touching ones. Note thatt(2,K) = t(K). The following theorem proved by K. Bezdek,
M. Naszódi and B. Visy [19] states some upper bounds fort(m,K).

Theorem 7.0.18Let t(K) be an arbitrary convex body inEd. Then

t(m,K) ≤ min
{
(m− 1)4d,

(
2d +m− 1

2d

)}

holds for allm ≥ 2, d ≥ 2. Also, we have the inequalities

t(3,K) ≤ 2 · 3d, t(m,K) ≤ (m− 1)[(m− 1)3d − (m− 2)]

for all m ≥ 4, d ≥ 2. Moreover, ifBd (resp.,Cd) denotes ad-dimensional ball (resp.,d-dimensional affine
cube) ofEd, then

t(2,Bd) = d+ 1, t(m,Bd) ≤ (m− 1)3d, t(m,Cd) = (m− 1)2d

hold for allm ≥ 2, d ≥ 2.

We cannot resist on raising the following question (for moredetails see [19]).

Problem 7.0.19Prove or disprove that ifK is an arbitrary convex body inEd with d ≥ 2 andm > 2, then

(m− 1)(d+ 1) ≤ t(m,K) ≤ (m− 1)2d.

Newton numbers of convex bodies

According to L. Fejes Tóth [44] the Newton numberN(K) of a convex bodyK in Ed is defined as the largest
number of congruent copies ofK that can touchK without having interior points in common. (Note that
unlike in the case of Hadwiger numbers here it is not necessary at all to use translated copies of the given
convex body. In fact, often it is better to use rotated or reflected ones.) For the special case whenK is a ball
we refer the reader to Section 2 of this paper. Here we focus onthe case whenK is different from a ball.
Somewhat surprisingly, in this case only planar results areknown. Namely, Linhart [65] and Böröczky [26]
determined the Newton numbers of regular convex polygons.
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Theorem 7.0.20If N(n) denotes the Newton number of a regular convexn-gon inE2, then

N(3) = 12, N(4) = 8 andN(n) = 6 for all n ≥ 5.

L. Fejes Tóth [42] proved the following - in some cases quitesharp - upper bound for the Newton numbers
of convex domains (i.e. compact convex sets with nonempty interior) inE2.

Theorem 7.0.21A convex domain with diameterD and minimum widthW cannot be touched by more than

[
(4 + 2π)

D

W
+ 2 +

W

D

]

non-overlapping congruent copies of it.

This result was improved by Schopp [81] as follows.

Theorem 7.0.22The Newton number of any convex domain of constant width inE
2 is at most7 and the

Newton number of a Reuleaux triangle is exactly 7.

We close this section with a rather natural question, which to the best of our knowledge has not been yet
studied.

Problem 7.0.23Prove or disprove that the Newton number of ad-dimensional (d ≥ 3) Euclidean cube is
3d − 1.

One-sided Hadwiger and kissing numbers

K. Bezdek and P. Brass [20] assigned to each convex bodyK in Ed a specific positive integer called the
one-sided Hadwiger numberh(K) as follows:h(K) is the largest number of non-overlapping translates of
K that touchK and that all lie in a closed supporting half-space ofK. In [20], using the Brunn-Minkowski
inequality, K. Bezdek and P. Brass proved the following sharp upper bound for the one-sided Hadwiger
numbers of convex bodies.

Theorem 7.0.24If K is an arbitrary convex body inEd, then

h(K) ≤ 2 · 3d−1 − 1.

Moreover, equality is attained if and only ifK is ad-dimensional affine cube.

The notion of one-sided Hadwiger numbers was introduced to study the (discrete) geometry of the so-
calledk+-neighbour packings, which are packings of translates of a given convex body inEd with the prop-
erty that each packing element is touched by at leastk others from the packing, wherek is a given positive
integer. As this area of discrete geometry has a rather largeliterature we refer the interested reader to [20] for
a brief survey on the relevant results. Here, we emphasize the following corollary of the previous theorem
proved also in [20].

Theorem 7.0.25If K is an arbitrary convex body inEd, then anyk+-neighbour packing by translates ofK

with k ≥ 2 · 3d−1 must have a positive density inEd. Moreover, there is a(2 · 3d−1 − 1)+-neighbour packing
by translates of ad-dimensional affine cube with density0 in Ed.

It is obvious that the one-sided Hadwiger number of any circular disk in E
2 is 4. However, the3-

dimensional analogue statement is harder to get. As it turnsout the one-sided Hadwiger number of the
3-dimensional Euclidean ball is9. One of the shortest proofs of this fact was found by A. Bezdekand K.
Bezdek [10]. Since here we are studying Euclidean balls their one-sided Hadwiger numbers we simply call
one-sided kissing numbers.

Theorem 7.0.26The one-sided kissing number of the3-dimensional Euclidean ball is9.
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As we have mentioned before Musin [71] has just announced a proof of the long-standing conjecture that
the kissing number of the4-dimensional Euclidean ball is24. Based on this result K. Bezdek [22] gave a
proof of the following.

Theorem 7.0.27The one-sided kissing number of the4-dimensional Euclidean ball is either18 or 19.

The proof of the above theorem supports the following conjecture.

Conjecture 7.0.28The one-sided kissing number of the4-dimensional Euclidean ball is18.

Contact graphs of finite packings and the combinatorial Kepler prob-
lem

Let K be an arbitrary convex body inEd. Then the contact graph of an arbitrary finite packing by non-
overlapping translates ofK in Ed is the (simple) graph whose vertices correspond to the packing elements
and whose two vertices are connected by an edge if and only if the corresponding two packing elements touch
each other. One of the most basic questions on contact graphsis to find out the maximum number of edges
that a contact graph ofn translates of the given convex bodyK can have inEd. Harborth [55] proved the
following remarkable result on the contact graphs of congruent circular disk packings inE2.

Theorem 7.0.29The maximum number of touching pairs in a packing ofn congruent circular disks inE2 is
precisely

⌊3n−
√

12n− 3⌋.

In a very recent paper [31] Brass extended the above result tothe ”unit circular disk packings” of normed
planes as follows.

Theorem 7.0.30The maximum number of touching pairs in a packing ofn translates of a convex domainK
in E2 is ⌊3n−

√
12n− 3⌋, if K is not a parallelogram, and⌊4n−

√
28n− 12⌋, if K is a parallelogram.

The analogue question in the hyperbolic plane has been studied by Bowen in [23]. We prefer to quote his
result in the following geometric way.

Theorem 7.0.31Consider circle packings in the hyperbolic plane, by finitely many congruent circles, which
maximize the number of touching pairs for the given number ofcongruent circles. Then such a packing must
have all of its centers located on the vertices of a triangulation of the hyperbolic plane by congruent equi-
lateral triangles, provided the diameterD of the circles is such that an equilateral triangle in the hyperbolic
plane of side lengthD has each of its angles equal to2πN for someN > 6.

It is not hard to see that one can extend the above result toS2 exactly in the way as the above phrasing
suggests. However, we get a more general approach if we do thefollowing: Taken non-overlapping unit
diameter balls in a convex position inE3, that is assume that there exists a3-dimensional convex polyhedron
whose vertices are center points moreover, each center point belongs to the boundary of that convex poly-
hedron, wheren ≥ 4 is a given integer. Obviously, the shortest distance among the center points is at least
one. Then count the unit distances showing up between pairs of center points but, count only those pairs
that generate a unit line segment on the boundary of the given3-dimensional convex polyhedron. Finally,
maximize this number for the givenn and label this maximum byc(n). The following theorem was found by
D. Bezdek [12] who also pointed out its interesting relationto protein folding as well as to Dürer’s unsolved
geometric problem on edge-unfolding of convex polyhedra. He calls the convex polyhedra showing up in the
theorem below ”higher order deltahedra” mainly because they form an extension of ”deltahedra” classified
earlier by Freudenthal and van der Waerden in [47].

Theorem 7.0.32c(n) ≤ 3n− 6, where equality is attained for infinitely manyn namely, for those for which
there exists a3-dimensional convex polyhedron whose each face is an edge-to-edge union of some regular
triangles of side length one such that the total number of generating regular triangles on the boundary of the
convex polyhedron is precisely2n − 4 with a total number of3n − 6 sides of length one and with a total
number ofn vertices.
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Now, we are ready to phrase theCombinatorial Kepler Problem . As its name suggests this problem
is strongly related to the Kepler Conjecture on the densest unit sphere packings inE3 (for more details see
Section 7 of this paper).

Problem 7.0.33For a givenn find the largest numberK(n) of touching pairs in a packing ofn congruent
balls in E3.

This problem is quite open. The first part of the following theorem was proved by D. Bezdek [12] the
second part by K. Bezdek [22].

Theorem 7.0.34

(i) K(4) = 6,K(5) = 9,K(6) = 12 andK(7) = 15.

(ii) K(n) < 6n− 0.59n
2
3 for all n ≥ 4.

We close this section with two upper bounds for the number of touching pairs in an arbitrary finite packing
of translates of a convex body, proved by K. Bezdek in [18] . Inorder to state these theorems in a short way
we need a bit of notation. LetK be an arbitrary convex body inEd, d ≥ 3. Then letδ(K) denote the density

of a densest packing of translates of the convex bodyK in Ed, d ≥ 3. Moreover, let Iq(K) =
(Svold−1(bdK))d

(Vold(K))d−1

be the isoperimetric quotient of the convex bodyK, where Svold−1(bdK) denotes the(d − 1)-dimensional
surface volume of the boundary bdK of K and Vold(K) denotes thed-dimensional volume ofK. Moreover,
let B denote the closedd-dimensional ball of radius1 centered at the origin inEd. Finally, let K0 =
1
2 (K + (−K)) be the normalized (centrally symmetric) difference body assigned toK with H(K0) (resp.,
h(K0)) standing for the Hadwiger number (resp., one-sided Hadwiger number) ofK0.

Theorem 7.0.35The number of touching pairs in an arbitrary packing ofn > 1 translates of the convex
bodyK in Ed, d ≥ 3 is at most

H(K0)

2
· n− 1

2d · (δ(K0)
(d−1)

d

·
( Iq(B)

Iq(K0)

) 1
d · n (d−1)

d − (H(K0) − h(K0) − 1).

Theorem 7.0.36The number of touching pairs in an arbitrary packing ofn > 1 translates of the convex
bodyK in Ed, d ≥ 3 is at most

3d − 1

2
· n− ω

1
d

d

2d+1
· n (d−1)

d ,

whereωd = π
d
2

Γ( d
2 +1)

is the volume of ad-dimensional ball of radius1 in Ed.

Isoperimetric problems for Voronoi cells

Recall that a family of non-overlapping3-dimensional balls of radii1 in Euclidean3-space,E3 is called a
unit ball packing inE3. The density of the packing is the proportion of space coveredby these unit balls.
The sphere packing problem asks for the densest packing of unit balls in E3. The conjecture that the density
of any unit ball packing inE3 is at most π√

18
= 0.74078 . . . is often attributed to Kepler that he stated in

1611. The problem of proving the Kepler conjecture appears as part of Hilbert’s 18th problem [56]. Using
an ingenious argument which works in any dimension, Rogers [79] obtained the upper bound0.77963 . . . for
the density of unit ball packings inE3. This bound has been improved by Lindsey [64], and Muder [68],
[69] to 0.773055 . . .. Hsiang [57], [58] proposed an elaborate line of attack (along the ideas of L. Fejes Tóth
suggested 40 years earlier), but his claim that he settled Kepler’s conjecture seems exaggerated. However,
so far no one has found any serious gap in the approach of Hales[50], [51], [52], [53], although no one has
been able to fully verify it either. This is not too surprising, given that the detailed argument is described in
several papers and relies on long computer aided calculations of more than 5000 subproblems. Hales shows
the following remarkable theorem.
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Theorem 7.0.37The densest packing of unit balls inE3 has density π√
18

, which is attained by the ”cannon-
ball packing”.

For several of the above mentioned papers Voronoi cells of unit ball packings play a central role. Recall
that the Voronoi cell of a unit ball in a packing of unit balls in E3 is the set of points that are not farther away
from the center of the given ball than from any other ball’s center. As it is well-known, the Voronoi cells
of a unit ball packing inE3 form a tiling of E3. One of the most attractive problems on Voronoi cells is the
Dodecahedral Conjecture first phrased by L. Fejes Tóth in [40]. According to this the volume of any Voronoi
cell in a packing of unit balls inE3 is at least as large as the volume of a regular dodecahedron with inradius
1. Very recently Hales and McLaughlin [54] announced a solution to this problem:

Theorem 7.0.38The volume of any Voronoi cell in a packing of unit balls inE3 is at least as large as the
volume of a regular dodecahedron with inradius1.

Now, we can make a step further and take a look of the followingstronger version of the Dodecahedral
Conjecture called theStrong Dodecahedral Conjecture. It was first articulated in [16].

Conjecture 7.0.39The surface area of any Voronoi cell in a packing with unit balls in E3 is at least as large
as16.6508 . . . the surface area of a regular dodecahedron of inradius1.

It is easy to see that if true, then the above conjecture implies the Dodecahedral Conjecture. The strongest
inequality known towards the Strong Dodecahedral Conjecture is due to K. Bezdek and E. Daróczy-Kiss
published in [21]. In order to phrase it properly we introduce a bit of terminology. A face cone of a Voronoi
cell in a packing with unit balls inE3 is the convex hull of the face chosen and the center of the unitball sitting
in the given Voronoi cell. The surface area density of a unit ball in a face cone is simply the spherical area
of the region of the unit sphere (centered at the apex of the face cone) that belongs to the face cone divided
by the Euclidean area of the face. It should be clear from these definitions that if we have an upper bound for
the surface area density in face cones of Voronoi cells, thenthe reciprocal of this upper bound times4π (the
surface area of a unit ball) is a lower bound for the surface area of Voronoi cells. Now, we are ready to state
the main theorem of [21].

Theorem 7.0.40The surface area density of a unit ball in any face cone of a Voronoi cell in an arbitrary
packing of unit balls ofE3 is at most

−9π + 30 arccos
(√

3
2 sin

(
π
5

))

5 tan
(
π
5

) = 0.77836 . . . ,

and so the surface area of any Voronoi cell in a packing with unit balls inE3 is at least

20π tan
(
π
5

)

−9π + 30 arccos
(√

3
2 sin

(
π
5

)) = 16.1445 . . . .

Moreover, the above upper bound0.77836 . . . for the surface area density is best possible in the following
sense. The surface area density in the face cone of anyn-sided face withn = 4, 5 of a Voronoi cell in an
arbitrary packing of unit balls ofE3 is at most

3(2 − n)π + 6n · arccos
(√

3
2 sin

(
π
n

))

n tan
(
π
n

)

and equality is achieved when the face is a regularn-gon inscribed in a circle of radius 1√
3·cos( π

n )
and

positioned such that it is tangent to the corresponding unitball of the packing at its center.

The Kelvin problem asks for the surface minimizing partition of E3 into cells of equal volume. According
to Lhuilier’s memoir [63] of 1781, the problem has been described as one of the most difficult in geometry.
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The solution proposed by Kelvin is a natural generalizationof the hexagonal honeycomb inE2. Take the
Voronoi cells of the dual lattice giving the densest sphere packing. This gives truncated octahedra, the Voronoi
cells of the body centered cubic lattice. A small deformation of the faces produces a minimal surface, which
is Kelvin’s proposed solution. Just recently Phelan and Weaire [78] produced a remarkable counter-example
to the Kelvin conjecture. Their work indicates also that Kelvin’s original question is even harder than it
was expected. In fact, the following simplier and quite fundamental question seems to be still open. One
can regard this as the isoperimetric inequality for parallelohedra and one can call the conjecture below the
Truncated Octahedral Conjecture. (Recall that a parallelohedron is a3-dimensional convex polyhedron
that tilesE3 by translation.)

Conjecture 7.0.41The surface area of any parallelohedron of volume1 in E3 is at least as large as the
surface area of the truncated octahedral Voronoi cell of thebody-centered cubic lattice of volume1 in E3.

The strong Kepler conjecture

In this section we propose a way to extend Kepler’s conjecture to finite packings of congruent balls in3-space
of constant curvature that is in Euclidean3-spaceE3, in spherical3-spaceS3 and in hyperbolic3-spaceH3.
The idea goes back to the theorems of L. Fejes Tóth [41] inE2, J. Molnár [67] inS2 and K. Bezdek [13], [14]
in H2 which in short, can be phrased as follows:

Theorem 7.0.42If at least two congruent circular disks are packed in a circular disk in the plane of constant
curvature, then the packing density is always less thanπ√

12
.

The hyperbolic case of this theorem proved by K. Bezdek in [13] (see also [14]) seemed quite unexpected
because there are (infinite) packings of congruent circulardisks inH2 in which the density of a circular disk
in its respective Voronoi cell is significantly larger thanπ√

12
. Also, we note that the constantπ√

12
is best

possible in the above theorem. Last we have to mention that since the standard methods do not give a good
definition of density inH2 (in fact all of them fail to work as it was observed by Böröczky [25]) and since
even today we know only a rather ”fancy” way of defining density in hyperbolic space (see the work of
Bowen and Radin [24]) it seems important to study finite packings in bounded containers of the hyperbolic
space where there is no complication with the proper definition of density. All this supports the idea of the
following conjecture that we call theStrong Kepler Conjecture:

Conjecture 7.0.43The density of at least two non-overlapping congruent ballsin a ball of the 3-space
of constant curvature (having radius strictly less thanπ2 in the case ofS3) is always less than π√

18
=

0.74048 . . . .

The following theorem proved by K. Bezdek [22] supports the above conjecture.

Theorem 7.0.44The density of at least two non-overlapping congruent ballsin a ball of the 3-space of
constant curvature (having radius strictly less thanπ2 in the case ofS3) is always less than Rogers’ upper
bound for the density of packings of congruent balls inE3 that is less than0.77963 . . . .

Bounds on the density of sphere packings in higher dimensions

Recall that a family of non-overlappingd−dimensional balls of radii1 in thed−dimensional Euclidean space
Ed is called a unit ball packing ofEd. The density of the packing is the proportion of space covered by these
unit balls. The sphere packing problem asks for the densest packing of unit balls inEd. Indubitably, of all
problems concerning packing it was the sphere packing problem which attracted the most attention in the
past decade. It has its roots in geometry, number theory and information theory and it is part of Hilbert’s 18th
problem. The reader is referred to [35] (especially the third edition, which has about 800 references covering
1988-1998) for further information, definitions and references. In what follows we report on a few selected
developments some of which are fantastic recent news.
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The Voronoi cell of a unit ball in a packing of unit balls inEd is the set of points that are not farther away
from the center of the given ball than from any other ball’s center. As it is well-known the Voronoi cells of a
unit ball packing inEd form a tiling ofEd. One of the most attractive results on the sphere packing problem
was proved by C. A. Rogers [79] in 1958. It was rediscovered byBaranovskii [4] and extended to spherical
and hyperbolic spaces by Böröczky [27]. It can be phrased as follows. Take a regulard−dimensional simplex
of edge length2 in Ed and then draw ad−dimensional unit ball around each vertex of the simplex. Letσd
denote the ratio of the volume of the portion of the simplex covered by balls to the volume of the simplex.
Then the volume of any Voronoi cell in a packing of unit balls in E

d is at leastωd

σd
, whereωd denotes the

volume of ad−dimensional unit ball. This has the following immediate corollary.

Theorem 7.0.45The (upper) density of any unit ball packing inEd is at mostσd.

Daniel’s asymptotic formula [80] yields that

σd =
d

e
2−(0.5+o(1))d (as d→ ∞).

Then 20 years later, in 1978 Kabatjanskii and Levenshtein [59] improved this bound in the exponential order
of magnitude as follows. They proved the following theorem.

Theorem 7.0.46The (upper) density of any unit ball packing inEd is at most

2−(0.599+o(1))d (as d→ ∞).

In fact, Rogers’ bound is better than the Kabatjanskii-Levenshtein bound for4 ≤ d ≤ 42 and above that
the Kabatjanskii-Levenshtein bound takes over ([35], p. 20).

There has been some very important recent progress concerning the existence of economical packings.
On the one hand, improving earlier results, Ball [2] proved through a very elegant completely new variational
argument the following statement. (See also [48] for a similar result of W. Schmidt on centrally symmetric
convex bodies.)

Theorem 7.0.47For eachd, there is a lattice packing of unit balls inEd with density at least

d− 1

2d−1
ζ(d),

whereζ(d) =
∑∞
k=1

1
kd is the Riemann zeta function.

On the other hand, for some small values ofd, there are explicit (lattice) packings which give densities
(considerably) higher than the bound just stated. The reader is referred to [35] and [73] for a comprehensive
view of results of this type.

All these explicit constructions raise the well-known challenging question whether one can find a smaller
upper bound than Rogers’ bound for the density of unit ball packings, especially in low dimensions. The next
theorem due to K. Bezdek [17] does exactly this by improving Rogers’ upper bound for the density of unit
ball packings in Euclideand−space for alld ≥ 8. Since this result extends also some of the results of Section
7 to higher dimensions we phrase it in details. For this we need a bit of notation. As usual, let lin(. . . ),
aff(. . . ), conv(. . . ), Vold(. . . ), ωd, SVold−1(. . . ), dist(. . . ), ‖ . . . ‖ ando refer to the linear hull, the affine
hull, the convex hull inEd, thed−dimensional Euclidean volume measure, thed−dimensional volume of a
d−dimensional unit ball, the(d − 1)−dimensional spherical volume measure, the distance function in Ed,
the standard Euclidean norm and to the origin inE

d.
Let conv{o,w1, . . . ,wd} be ad−dimensional simplex having the property that the linear hull lin{wj −

wi|i < j ≤ d} is orthogonal to the vectorwi in Ed, d ≥ 8 for all 1 ≤ i ≤ d− 1 that is let

conv{o,w1, . . . ,wd}

be ad−dimensional orthoscheme inEd moreover, let

‖wi‖ =

√
2i

i+ 1
for all 1 ≤ i ≤ d.
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It is clear that in the right triangle△ wd−2wd−1wd with right angle at the vertexwd−1 we have the inequality

‖wd − wd−1‖ =
√

2
d(d+1) <

√
2

(d−1)d = ‖wd−1 − wd−2‖ and therefore∠wd−1wd−2wd <
π
4 . Now, in

the plane aff{wd−2,wd−1,wd} of the triangle△ wd−2wd−1wd let

⊳ wd−2wdwd+1

denote the circular sector of central angle∠wdwd−2wd+1 = π
4 − ∠wd−1wd−2wd and of centerwd−2

sitting over the circular arc with endpointswd,wd+1 and radius‖wd−wd−2‖ = ‖wd+1 −wd−2‖ such that
⊳ wd−2wdwd+1 and△ wd−2wd−1wd are adjacent along the line segmentwd−2wd and are separated by
the line ofwd−2wd. Then let

D(wd−2,wd−1,wd,wd+1) =△ wd−2wd−1wd∪ ⊳ wd−2wdwd+1

be the convex domain generated by the triangle△ wd−2wd−1wd with constant angle

∠wd−1wd−2wd+1 =
π

4
.

Now, let
W = conv({o,w1, . . . ,wd−3} ∪D(wd−2,wd−1,wd,wd+1))

be thed−dimensional wedge (or cone) with(d− 1)−dimensional base

QW = conv({w1, . . . ,wd−3} ∪D(wd−2,wd−1,wd,wd+1)) and apexo.

Finally, if B = {x ∈ E
d| dist(o,x) = ‖x‖ ≤ 1} denotes thed−dimensional unit ball centered at the origin

o of andS = {x ∈ Ed| dist(o,x) = ‖x‖ = 1} denotes the(d − 1)−dimensional unit sphere centered ato,
then let

σ̂d =
SVold−1(W ∩ S)

Vold−1(QW )
=

Vold(W ∩B)

Vold(W )

be the the surface density (resp., volume density) of the unit sphereS (resp., of the unit ballB) in the wedge
W . For the sake of completeness we remark that as the regulard−dimensional simplex of edge length2 can
be dissected into(d+ 1)! pieces each being congruent to conv{o,w1, . . . ,wd} therefore

σd =
Vold(conv{o,w1, . . . ,wd} ∩B)

Vold(conv{o,w1, . . . ,wd})
.

Now, we are ready to state the main result of [17]. Recall thatthe surface density of any unit sphere in its
Voronoi cell in a unit sphere packing ofEd is defined as the ratio of the surface area of the unit sphere tothe
surface area of its Voronoi cell.

Theorem 7.0.48The surface area of any Voronoi cell in a packing of unit ballsin thed−dimensional Eu-
clidean spaceEd, d ≥ 8 is at leastd·ωd

bσd
, that is the surface density of any unit sphere in its Voronoicell in

a unit sphere packing ofEd, d ≥ 8 is at most̂σd. Thus, the volume of any Voronoi cell in a packing of unit
balls in Ed, d ≥ 8 is at leastωd

bσd
and so, the (upper) density of any unit ball packing inEd, d ≥ 8 is at most

σ̂d < σd.

In fact, K. Bezdek [22] extended the above theorem to spherical space (Sd) as well as to hyperbolic
space (Hd) in the following local sense. Consider packings of congruent balls of small radii only. Then for
sufficiently small radiir of the given spaceSd (resp.,Hd) one can define the quantitŷσSd(r) = Vold(W∩B)

Vold(W )

(resp.,̂σHd(r) = Vold(W∩B)
Vold(W ) ) in a way very similar to the Euclidean case. (Here we simply omit the obvious

details.) With this notation the following theorem holds.

Theorem 7.0.49Consider an arbitrary packing of spheres of radiusr in Sd (resp.,Hd) with d ≥ 8. Then
there exists anr(d) > 0 such that the (volume) density of each ball (of the given packing) in its respective
Voronoi cell is at most̂σSd(r) (resp.,σ̂Hd(r)) provided thatr ≤ r(d).



74 Five-day Workshop Reports

Further improvements on the upper boundσ̂d of K. Bezdek for the dimensions from4 to 36 have been
obtained very recently by Cohn and Elkies [33]. They developed an analogue for sphere packing of the linear
programming bounds for error correcting codes, and used it to prove new upper bounds for the density of
sphere packings, which are better than K. Bezdek’s upper boundsσ̂d for the dimensions 4 through 36. Their
method together with the best known sphere packings yield the following remarkable theorem in dimensions
8 and 24.

Theorem 7.0.50The density of the densest unit ball packing inE
8 (resp.,E24) is at least0.2536 . . . (resp.,

0.00192 . . . ) and is at most0.2537... (resp.,0.00196 . . . ).

Cohn and Elkies [33] conjecture that their approach can be used to solve the sphere packing problem in
E8 (resp.,E24).

Conjecture 7.0.51TheE8 root lattice (resp., the Leech lattice) that produces the corresponding lower bound
in the previous theorem in fact, represents the largest possible density for unit sphere packings inE8 (resp.,
E24).

If linear programming bounds can indeed be used to prove optimality of these lattices, it would not come
as a complete surprise, because for example, the kissing number problem in these dimensions was solved
similarly (for more details see Section 2).

Last but not least we mention the following striking result of Cohn and Kumar [34] according to which
the Leech lattice is the densest lattice packing inE24. (The densest lattices have been known up to dimension
8.)

Theorem 7.0.52The Leech lattice is the unique densest lattice inE24, up to scaling and isometries ofE24.

We close this section with a short summary on the recent progress of L. Fejes Tóth’s [45] ”sausage
conjecture” that is one of the main problems of the theory of finite sphere packings. According to this
conjecture if inEd, d ≥ 5 we taken ≥ 1 non-overlapping unit balls, then the volume of their convexhull is at
least as large as the volume of the convex hull of the ”sausagearrangement” ofn non-overlapping unit balls
under which we mean an arrangement whose centers lie on a lineof Ed such that the unit balls of any two
consecutive centers touch each other. By optimizing the methods developed by Betke, Henk and Wills [7],
[8] finally, Betke and Henk [6] succeeded to prove the sausageconjecture of L. Fejes Tóth in any dimension
of at least 42. Thus, we have the following natural looking but, far not trivial theorem.

Theorem 7.0.53The sausage conjecture holds inEd for all d ≥ 42.

It remains a highly interesting challange to prove or disprove the sausage conjecture of L. Fejes Tóth for
the dimensions between 5 and 41.

Conjecture 7.0.54Let 5 ≤ d ≤ 41 be given. Then the volume of the convex hull ofn ≥ 1 non-overlapping
unit balls in Ed is at least as large as the volume of the convex hull of the ”sausage arrangement” ofn
non-overlapping unit balls which is an arrangement whose centers lie on a line ofEd such that the unit balls
of any two consecutive centers touch each other.

Solidity and uniform stability

The notion of solidity, introduced by L. Fejes Tóth [43] to overcome difficulties of the proper definition of
density in the hyperbolic plane, has been proved very usefuland stimulating. Roughly speaking a family of
convex sets generating a packing is said to be solid if no proper rearrangement of any finite subset of the
packing elements can provide a packing. More concretely, a circle packing in the plane of constant curvature
is called solid if no finite subset of the circles can be rearranged such that the rearranged circles together
with the rest of the circles form a packing not congruent to the original. An (easy) example for solid circle
packings is the family of incircles of a regular tiling{p, 3} for any p ≥ 3. In fact, a closer look of this
example led L. Fejes Tóth [46] to the following simple sounding but difficult problem: he conjectured that
the incircles of a regular tiling{p, 3} form a strongly solid packing for anyp ≥ 5, i.e. by removing any circle
from the packing the remaining circles still form a solid packing. This conjecture has been verified forp = 5
by Böröczky [28] and Danzer [D] and forp ≥ 8 by A. Bezdek [9]. Thus, we have the following theorem.
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Theorem 7.0.55The incircles of a regular tiling{p, 3} form a strongly solid packing forp = 5 and for any
p ≥ 8.

The outstanding open question left is the following.

Conjecture 7.0.56The incircles of a regular tiling{p, 3} form a strongly solid packing forp = 6 as well as
for p = 7.

In connection with solidity and finite stability (of circle packings) the notion of uniform stability (of
sphere packings) has been introduced by A. Bezdek, K. Bezdekand R. Connelly [11]. According to this a
sphere packing (in the space of constant curvature) is said to be uniformly stable if there exists anǫ > 0 such
that no finite subset of the balls of the packing can be rearranged such that each ball is moved by a distance
less thanǫ and the rearranged balls together with the rest of the balls form a packing not congruent to the
original one. Now, suppose thatP is a packing of (not necessarily) congruent balls inEd. Let G be the
contact graph ofP , where the centers of the balls serve as the vertices ofG and an edge is placed between
two vertices when the corresponding two balls are tangent. The following basic principle can be used to show
that many packings are uniformly stable.

Theorem 7.0.57Suppose thatEd can be tiled face-to-face by congruent copies of finitely many convex poly-
topesP1,P2, . . . ,Pn such that the vertices and edges of that tiling form the vertex and edge system of the
contact graphG of the packingP of some balls inEd. If eachPi is strictly locally volume expanding with
respect toG, then the packingP is uniformly stable.

By taking a closer look of the Delaunay tilings of some lattice sphere packings one can derive the follow-
ing corollary (for more details see [11]).

Theorem 7.0.58The densest lattice sphere packingsA2, A3, D4, D5, E6, E7, E8 up to dimension 8 are all
uniformly stable.

Last we mention another corollary (for details see [11]), which was observed also by Bárány and Dolbilin
[5] and which supports the above mentioned conjecture of L. Fejes Tóth.

Theorem 7.0.59Consider the triangular packing of circular disks of equal radii in E2 where each disk is
tangent to exactly six others. Remove one disk to obtain the packingP ′. Then the packingP ′ is uniformly
stable.
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Background

Symplectic geometry was invented by Hamilton in the early nineteenth century, as a mathematical framework
for both classical mechanics and geometrical optics. Physical states in both settings are described by points
in an appropriate phase space (the space of coordinates and momenta). Hamilton’s equations associate to
any energy function (“Hamiltonian”) on the phase space a dynamical system. Hamilton realized that his
equations are invariant under a very large group of symmetries, called canonical transformations or, in modern
terminology, symplectomorphisms. A symplectic manifold is a space which is locally modeled by the phase
spaces considered by Hamilton. In mathematical terms, a symplectic manifold is a manifoldM with a closed,
non-degenerate 2-formω. A smooth functionH ∈ C∞(M) defines a vector fieldXH onM by Hamilton’s
equations,

dH = −ω(XH , ·).
New techniques have transformed symplectic geometry into adeep and powerful subject of pure mathematics.
One concept of symplectic geometry that has proved particularly useful in many areas of mathematics is the
notion of amoment map. To recall the original setting for this notion, letM be a symplectic manifold, and
G a Lie group acting onM by symplectomorphisms. A moment map for this action is an equivariant map
Φ: M → g∗ with values in the dual of the Lie algebra, with the property that the infinitesimal generators of
the action, corresponding to Lie algebra elementsξ ∈ g, are the Hamiltonian vector fieldsX〈Φ,ξ〉. The linear
momentum and angular momentum from classical mechanics maybe viewed as moment maps, corresponding
to translational and rotational symmetries, respectively.

In the past thirty years, tremendous progress has been made in the study of moment maps and related
areas: symplectic quotients, geometric quantization, localization phenomena, and toric varieties. This has had
applications to the study of moduli spaces, representationtheory, special metrics, and symplectic topology.

In recent years, moment maps have been generalized in many different directions and have led to ad-
vances in geometries related to symplectic geometry. Theseinclude Poisson geometry, Kähler geometry,
hyper-Kähler geometry, contact geometry, and Sasakian geometry. While some headway has been made in
understanding moment maps in these fields, there remain manyopen questions. One of the goals of this
workshop was to explore phenomena that are well understood in symplectic geometry but are not as well
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understood in these new settings, and to seek potential applications of this new direction of research. For this
purpose we brought together experts from these fields, thus generating a fruitful exchange of ideas, which
also enabled us to formulate and discuss interesting open problems.

Objectives of the workshop

Let us review some of the achievements in and applications ofequivariant symplectic geometry in the past
few years. We will then indicate some of the open questions that were our motivation for holding the work-
shop.

We first recall some terminology. Let a Lie groupG act on a symplectic manifold(M,ω). As we already
recalled, amoment mapis an equivariant mapΦ: M → g∗ to the dual of the Lie algebra such that theG
action is generated by the Hamiltonian vector fields of the components ofΦ. The symplectic quotientis
Φ−1(0)/G. Localizationformulas express global invariants ofM in terms of local data at the fixed point set
of an abelian subgroup ofG. WhenG is a torus of half the dimension ofM andM is compact,(M,ω,Φ) is
a toric manifold.

A contact structureis an odd dimensional counterpart of a symplectic structure. Similarly, aSasakian
structureis an odd dimensional counterpart of a Kähler structure, and a3-Sasakian structureis an odd dimen-
sional counterpart of a hyper-Kähler structure. The goal of the workshop was to obtain a better understanding
of moment maps and their applications in these other geometries.

The development of equivariant symplectic geometry over the last two decades was greatly motivated
by attempts to understand the topology of moduli spaces of stable bundles over Riemann surfaces. The
symplectic and Morse theoretic approach to the problem was pioneered by Atiyah and Bott in 1983, when
they produced a set of generators for the cohomology ring of the moduli spaceM(n, d) of semi-stable rank
n, degreed holomorphic vector bundles over a Riemann surface, forn andd co-prime.

Given a Hamiltonian group action of a Lie groupG on a compact symplectic manifoldM , with moment
mapΦ: M → g∗ such that0 is a regular value forΦ, there is a natural map from the equivariant cohomology
H∗G(M) to the cohomology of the reduced space,H∗(Φ−1(0)/G), obtained as the restrictionH∗G(M) →
H∗G(Φ−1(0)) followed by the isomorphismH∗G(Φ−1(0)) → H∗(Φ−1(0)/G). Kirwan refined the Morse-
theoretic methods of Atiyah and Bott to prove that this map,κ : H∗G(M) → H∗(Φ−1(0)/G), is surjective.
This enables one to compute Betti numbers of symplectic quotientsΦ−1(0)/G. The non-abelian localization
theorem of Jeffrey and Kirwan gives an explicit formula for the kernel ofκ. Jeffrey and Kirwan used their
version of the non-abelian localization formula, and a description ofM(n, d) as a finite-dimensional quotient
of a so-called “extended moduli space”, to obtain a mathematically rigorous proof of Witten’s formulas for
the intersection pairings in the cohomology ofM(n, d).

In 1998, Alekseev, Malkin and Meinrenken introduced quasi-Hamiltonian spaces and Lie group valued
moment maps. They expressed the moduli space of flatG-connections as a quasi-Hamiltonian quotient of
a productG2 × · · · × G2, and were thus able to recover Witten’s formulas for intersection numbers in the
cohomology of moduli spaces. In the moduli space case, quasi-Hamiltonian spaces enable one to avoid the
use of extended moduli spaces; more generally, quasi-Hamiltonian spaces enlarge the collection of situations
to which similar techniques can be applied.

In 2002, Bott, Tolman and Weitsman proved surjectivity of Kirwan’s mapκ : H∗LG(M) → H∗(Φ−1(0)/G)
in the case whereLG is the loop group of a compact Lie groupG, M is a Banach manifold andΦ a proper
moment map. As a consequence one obtains that, while Kirwan’s map is not surjective for quasi-Hamiltonian
spaces, its image together withfinitely manycohomology classes generates the cohomology ring of the quo-
tient. This work is related to Tolman and Weitsman’s earlierwork (1998) determining the kernel of the
Kirwan mapκ and thereby the structure of the cohomology ring of the symplectic quotientH∗(Φ−1(0)/G)
whenG is a finite-dimensional Lie group.

In 2003, Xu introduced quasi-symplectic groupoids. This approach enables him to unify into a single
framework various moment map theories, including ordinarysymplectic moment maps and group valued
moment maps.

Moment maps and symplectic quotients can be defined in other categories, such as contact or hyper-
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Kähler. However, the topology of quotients in these categories remains elusive. As noted in a recent book by
Ginzburg, Guillemin, and Karshon, phenomena such as Kirwansurjectivity and localization are often due to
the underlying moment map and group action more than to the geometry. However, we do not yet understand
these phenomena for contact or hyper-Kähler manifolds. For example, Kirwan surjectivity fails for contact
structures, and it is not yet clear why or how. Surjectivity is conjectured for hyper-Kähler quotients, and
known to be true for many classes of examples, but a general theorem has not been proved. An interesting
example of a hyper-Kähler quotient is the moduli space of rank 2 parabolic Higgs bundles. Hausel and Thad-
deus have produced generators and relations for the cohomology ring of this space. This work is analogous
to the work of Jeffrey and Kirwan on the moduli spaceM(n, d). Another usage of hyper-Kähler quotients is
that they provide examples of Einstein manifolds.

In 1988 Delzant classified symplectic toric manifolds. These turn out to be symplectic quotients ofCN .
In particular, they inherit a complex structure fromCN , making them into smooth Kähler toric varieties.
The images of their moment maps are simple rational polytopes satisfying certain integrality conditions. The
polytope determines the toric manifold together with its symplectic form and torus actions. This theorem
of Delzant, while simple in retrospect, inspired a lot of interesting mathematics. For example, the removal
of the integrality condition on simple rational polytopes leads to orbifold singularities. Symplectic toric
orbifolds were classified in 1997 by Lerman and Tolman in terms of simple rational polytopes with positive
integers attached to facets. Delzant’s work inspired Banyaga and Molino to initiate the study ofcontacttoric
manifolds. The classification of contact toric manifolds has been recently completed by Lerman. Lerman
used this classification to prove conjectures of Toth and Zelditch on toric integrable geodesic flows. Most,
but not all, of the contact toric manifolds turn out to be Sasakian. These contact toric manifolds are classified
by rational polyhedral cones.

Yet another direction inspired by Delzant’s work is that of hyper-Kähler toric manifolds. These mani-
folds were first studied by Bielawski and Dancer, who defined them to be hyper-Kähler quotients of a flat
quaternionic vector space. They obtained a formula for the Betti numbers of these manifolds in terms of the
corresponding arrangements of hyperplanes. Bielawski also showed that these are all complete hyper-Kähler
manifolds with torus symmetries of maximal dimension. At the same time, Bielawski obtained a classifica-
tion of toric 3-Sasakian manifolds. In 2000, Konno computedthe full cohomology ring of a hyper-Kähler
toric manifold in terms of the hyperplane arrangement. In a later paper Konno computed the total Chern
classes of these manifolds.

An important use of toric varieties, in both complex and symplectic geometry, is to provides a large
“hands-on” family of examples. In particular, they have been used in searches for examples of special Kähler
metrics.

A formula for the Kähler metric on a toric manifold, in termsof natural linear functions on the polytope,
was obtained by Guillemin in 1994. Guillemin’s work, in turn, inspired Abreu, who studied other metrics on
symplectic toric manifolds. For example, Abreu obtained anexplicit description of Bochner-Kähler metrics
studied by Bryant. He also obtained a combinatorial formulafor their scalar curvature and used it to explicitly
construct Kähler metrics that are extremal in the sense of Calabi. One question that remains open is to obtain
explicit formulas for Kähler-Einstein metrics onCP2 blown up at three generic points; such metrics are only
known to exist.

Recently a great deal of progress has been made by Boyer, Galicki and their collaborators in proving the
existence of Sasakian-Einstein metrics on a large class of contact manifolds. These metrics, however, are not
known explicitly. One expects that an analogue of Guillemin’s formula for Kähler metrics on symplectic toric
manifolds to hold for the Sasakian toric manifolds. These metrics are unlikely to be Einstein (this follows
from very recent work of Guillemin and Burns). However, it might be possible to construct the Sasakian-
Einstein metrics explicitly in terms of polyhedral cones.

There have been a variety of other applications of moment maps to the study of special metrics. Futaki
and Tian used localization to compute an invariant which provides an obstruction to the existence of con-
stant scalar curvature metrics in a fixed Kähler class. For atoric variety, Mabuchi expressed this invariant
in terms of the corresponding polytope. Claude Lebrun and Michael Singer used moment maps to explore
scalar-flat Kähler metrics on ruled surfaces. “Extremal” metrics and “central” metrics are ones for which
certain elementary symmetric functions of the Ricci curvature are moment maps for Killing fields. An out-
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standing conjecture is whether the existence of constant scalar curvature metrics, or Kähler-Einstein metrics,
is equivalent to certain notions of “stability”. Results inthis direction have been obtained by Tian (1997) and
Tian-Chen (as announced very recently). Another part of this conjecture was recently proved by Donaldson
for the special case of toric manifolds in complex dimension2. In a different direction, one can exhibit the
scalar curvature as a moment map in an infinite dimensional setting. This description is due to Mabuchi and
was used by Donaldson. It is analogous to Atiyah and Bott’s influential work on the Yang Mills functional.

One of our motivating goals was to determine which invariants developed in symplectic geometry for
understanding symplectic quotients (for example their cohomology ring) carry over to the settings of hyper-
Kähler, contact, Sasakian, and 3-Sasakian geometries. Inparticular, we proposed to explore the question of
surjectivity in contact and hyper-Kähler geometry. Additionally, we aimed to study natural metrics on such
quotients and to use this to seek explicit descriptions for special metrics on Kähler and Sasakian manifolds.

At the workshop, besides an under-representation of the odddimensional structures (contact, Sasakian, 3-
Sasakian), the lectures and discussions addressed many aspects of moment maps in a wide variety of contexts:
Kähler geometry and special metrics, applications to symplectic topology, approaches through Lie groupoids,
algebraic geometric, several aspects of hyper-Kähler geometry, and more.

Activities of the workshop

The formal activities during the workshop included research talks, survey lectures on special topics, and two
problem sessions, aimed as forums for discussion. We believe that this format has been highly successful and
very stimulating. Below, we will summarize some of the new developments and open questions presented at
the workshop.

Moment maps and symplectomorphism groups

Let (M,ω) be a symplectic manifold, andDiffω(M) its group of symplectomorphisms. The groupDiffω(M)
contains an important subgroupDiffHam(M) of Hamiltonian diffeomorphisms, i.e., the subgroup generated
by time-one flows of Hamiltonian vector fields. The topology of the groupsDiffHam(M) andDiffω(M) has
been the subject of intense research over the past few years.

Miguel Abreu (Instituto Superior Tecnico, Lisbon) (joint work with Granja and Kitchloo) reported
on recent progress on the topology ofDiffω(M). The basic new input goes back to Donaldson, and uses
the moment map geometry for the action of a symplectomorphism group on the space of compatible almost
complex structures. In conjunction with his earlier work [1] with McDuff, employing Gromov’s technique of
pseudo-holomorphic curves, this approach turns out to be particularly successful for a class of 4-dimensional
symplectic manifolds, including rational ruled surfaces.

Susan Tolman (University of Illinois at Urbana-Champaign)(joint work with McDuff) described ex-
citing new results on the fundamental group of symplectomorphism groups of4-dimensional symplectic toric
varietiesM , i.e., spaces carrying an effective Hamiltonian action of atorus of dimension12dimM = 2. A
well-known theorem of Delzant (see e.g. [11]) states that such spaces are completely determined (up to equiv-
ariant symplectomorphism) by the convex polytope inR2 given as their moment map image. Moreover, one
can specify exactly which polytopes arise as moment polytopes of Delzant spaces. In their work, McDuff-
Tolman discovered a relationship between the topology of the symplectomorphism group of such spaces with
the shape of the moment polytope. This then leads to the following problem: Which Delzant polytopes ad-
mit a linear function so that the center of mass of the polytope depends linearly on the facet position? The
solution to this problem allows them to prove that, for all but a few exceptional cases, the inclusion of the
(compact) group of Kähler automorphism into the group of symplectomorphism induces an isomorphism of
fundamental groups.

Victor Guillemin (M.I.T.) (joint work with Sternberg) described a very different aspect of symplecto-
morphism groups. He explained that for certain maps from finite dimensional manifolds into the group of
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symplectomorphisms, there is an intriguing notion of a moment map even if there is no Hamiltonian group
action! In his beautiful talk, he motivated how this type of generalized moment map fits with Weinsteins
symplectic category[27]. This is the “category” with objectsObj symplectic manifoldsM , and morphisms
Mor(M1,M2) the canonical relations, meaning, Lagrangian submanifolds ofM−1 ×M2. (Here “category”
is put in quotes, since composition is not always defined.) Concrete applications of this theory arise in micro-
local analysis, in the study of families of Fourier integraloperators.

Moment maps and Poisson geometry

Poisson manifolds are manifoldsM equipped with a Poisson bracket{·, ·} on the algebra of smooth functions
onM . Symplectic manifolds are special cases of Poisson manifolds, where the bracket is given as

{f, g} = Xf (g).

A Poisson structure determines a singular foliation (in thesense of Sussmann) whose leaves are symplectic
manifolds.

Rui Fernandes (Instituto Superior Tecnico, Lisbon)(joint work with Crainic). The Poisson bracket
descends to a canonical Lie bracket on the space of 1-forms onany Poisson manifold. In this way, the cotan-
gent bundleT ∗M acquires the structure of aLie algebroid. A global object ‘integrating’ this Lie algebroid is
a symplectic groupoid, i.e., a groupoid

S ⇉ M,

whereS carries a symplectic structure such that both groupoid mapsare Poisson maps, and such that the
symplectic form is compatible with the groupoid multiplication. Not all Poisson manifolds admit such a
symplectic realization. The precise obstructions were found a few years ago by Fernandes-Crainic [10]. In
his BIRS lecture, Fernandes explained how this theory extends to the presence of Poisson group actions. He
showed that ifM admits a symplectic realizationS, then the induced action onS is Hamiltonian with a
canonical moment map. (This moment map satisfies a cocycle condition, and is a coboundary if and only if
the action onM admits a moment map.) Finally, Fernandez explained in whichsense ’symplectic realization’
commutes with ’reduction’.

Anton Alekseev (University of Geneva)(joint work with Meinrenken [3]). APoisson Lie groupis a
Lie groupK with a Poisson structure for which the product map is Poisson. This condition defines a Lie
bracket on the dual of the Lie algebrak∗, which integrates to the so-calleddual Poisson Lie groupK∗. If K
carries the zero Poisson structure, then the dual Poisson Lie group isk∗ with the Kirillov Poisson structure. A
construction of Lu-Weinstein [23] shows that any compact Lie groupK admits a canonical Poisson Lie group
structure. Later, Ginzburg-Weinstein [14] proved that, inthis case, the dual Poisson Lie groupK∗ is Poisson
diffeomorphic tok∗. However, no explicit form of such a diffeomorphism was known. Alekseev explained
that for the groupK = U(n), there is a distinguished and very concrete Ginzburg-Weinstein diffeomorphism

u(n)∗ → U(n)∗.

The proof of this result (which verifies a conjecture of Flaschka-Ratiu [13]) is based on a study of Gelfand-
Zeitlin systems onu(n)∗ andU(n)∗, respectively. As a corollary, one obtains the following interesting result:
There is a canonical diffeomorphism

γ : Herm(n) → Herm+(n)

from hermitian matrices to positive definite Hermitian matrices, with the property that the eigenvalues of the
kth principal submatrix ofγ(A) are the exponentials of those of thekth principal submatrix ofA.

Groupoids and generalized moment maps

Markus Pflaum (Goethe Universität, Germany)Differentiable groupoids can be interpreted as an interpo-
lation between the notion of a manifold and the notion of a Liegroup. In this survey talk, Markus Pflaum gave
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a general introduction to the theory of Lie groupoids (cf. [12]), and explained two major applications of this
theory in symplectic geometry. The first application deals with the integrability of Poisson manifolds by sym-
plectic groupoids (cf. Fernandes’ lecture). The second application is Moerdijk’s approach [24] to orbifolds
via proper étale Lie groupoids, which is an important ingrediant in the work by Pflaum–Posthuma–Tang on
the deformation quantization and index theory for orbifolds.

Henrique Bursztyn (University of Toronto) presented a survey lecture on generalized moment maps (cf.
[9]). He explained how, quite generally, any Poisson map between Poisson manifolds defines an infinitesi-
mal ’Lie algebroid’ action, and hence may be viewed as a moment map. This includes ordinaryk∗-valued
moment maps, but also Lu’s [22] non-linear moment maps taking values in a dual Poisson Lie groupK∗.
To include more exotic types of moment maps, one has to go beyond Poisson structures to so-calledtwisted
Dirac structures. In particular, any compact Lie group carries a natural twisted Dirac structure, and the as-
sociated moment map theory defines the q-hamiltonian spacesof Alekseev-Malkin-Meinrenken [2]. Among
the advantages of this approach is that the somewhat mysterious ’minimal degeneracy conditions’ become
very natural. Furthermore, the techniques work well also for non-compact Lie groups, as well as for complex
Lie groups.

Topology of symplectic quotients

Let (M,ω) be a symplectic manifold, equipped with a Hamiltonian action of a Lie groupK, with moment
map Φ. A standard result of Marsden-Weinstein asserts that undersuitable assumptions, thesymplectic
quotient

M//G = Φ−1(0)/G

inherits a symplectic structure from the 2-form onM . It is a fundamental problem in symplectic geometry to
understand the geometry and topology ofM//G in terms of the equivariant geometry of the original spaceM .

Greg Landweber (University of Oregon)(joint work with Harada [18]). In this survey lecture, Landwe-
ber gave a general overview of equivariantK-theory (the generalized cohomology theory given as the
Grothendieck ring of equivariant vector bundles) in the context of Hamiltonian group actions. He explained
theK-theory analog of the Atiyah-Bott Lemma, which says that theK-theory analogue of the equivariant
Euler class is not a zero divisor. As a result, one obtains aK-theoretic analogue of the Kirwan surjectivity
theorem. As Landweber remarks, the torsion inK-theory is better behaved than that in cohomology with
integer coefficients. Essentially,K-theory eliminates just enough torsion for Atiyah and Bott’s arguments to
work.

Liviu Mare (University of Regina) (joint with Harada, Holm and Jeffrey [17]). Classical results of
Atiyah [6], Guillemin-Sternberg [15] and Kirwan [19] say that for any compact torusT , and any Hamiltonian
T -space with proper moment map, the image of the moment map is aconvex polyhedron, and the fibers of
the moment map are connected. Atiyah-Pressley [8] proved a similar convexity result for the maximal torus
T̃ in the standard extension of the based loop groupΩG for a compact, simply connected Lie group. The
main result presented in this lecture says that also in this case, the fibers of the moment map are connected.

Nick Proudfoot (UT Austin) ([25] ) SupposeG is a reductive algebraic group, acting on a varietyQ.
Then the cotangent bundleT ∗Q has an algebraic symplectic form, and the liftedG-action is Hamiltonian
with an algebraic moment map. In his talk, Proudfoot discussed the relation between the symplectic quotient
of T ∗Q, with various GIT (geometric invariant theory) quotients of Q.

Kähler geometry and special metrics

A Kähler manifold is a manifold with compatible complex andsymplectic reduction. The presence of a com-
plex structure leads to stronger versions of some of the results of moment map geometry.
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Reyer Sjamaar (Cornell University) (joint work with V. Guillemin [16]). For Hamiltonian torus ac-
tions onKähler manifolds, Atiyah [6] had proved an important refinement of the convexity theorem: Not
only is the image of the moment map a convex polytope, but in fact the moment map image of any orbit
closure is convex. (Note that orbit closures need not be smooth submanifolds.) Brion generalized the result
to actions of a complex reductive group. The results presented in this lecture generalize this result even fur-
ther, to actions of a maximal solvable subgroup. Two interesting examples of Borel-invariant subvarieties of
a Hamiltonian KählerG-manifold are: (1) Generalized Schubert varieties (introduced by Białnicky-Birula,
and (2) the co-called facial varieties. That is, for each face of the moment polytope there is a certain variety
whose moment map image is the given face. (In general, there is noG-invariant subvariety with this property.)

Vestislav Apostolov (UQAM)(joint work with Calderbank, Gauduchon, and Tonnesen-Friedman [5]). In
recent work, Apostolov and his coauthors introduced the notion of Hamiltonian 2-forms on K̈ahler manifolds.
These are closed differential forms of bi-degree(1, 1), defined as solutions of a certain linear differential
equation on the Kähler manifold. Hamiltonian 2-forms arise, for example, in the theory of Bochner-flat
or conformally Einstein Kähler manifolds. Apostolov’s lecture was concerned with the local and global
classification of Hamiltonian 2-forms. As applications, heobtained new examples of so-calledorthotoric
Kähler-Einstein manifolds.

Hyper-K ähler geometry

Hiroshi Konno (University of Tokyo) gave a survey lecture on the geometry and topolgy of hyper-K¨ahler
quotients. Examples for such quotients include: toric hyper-Kähler manifolds, hyper-Kähler polygon spaces,
the moduli space of torsion free sheaves onC2, and Nakajima quiver varieties.

Tamas Hausel (UT Austin)explained techniques for the computation of cohomology groups of hyper-
Kähler manifolds, such as moduli space of instantons, quiver varieties, representation varieties, and moduli of
Higgs bundles. The techniques are: (i) global analysis to determine the space ofL2-harmonic forms (this ap-
proach is motivated by Sen’s conjecture); (ii) circle-equivariant cohomology techniques (motivated by ideas
of Nekrasov-Shatashvili-Moore) and (iii) calculation of zeta functions by arithmetic harmonic analysis (mo-
tivated by mirror symmetry).

Graeme Wilkin (Brown University) (joint work with Daskalopoulos and Wentworth). In their 1982
paper, Atiyah and Bott [7] used Morse theory of the Yang-Mills functional to study the topology of the
moduli space of semistable vector bundles over a Riemann surface. Wilkin described a similar technique for
the moduli space of rank 2 semi-stable Higgs bundles. A complication in this example is that the moduli
spaces are singular, and hence the method has to refined to take the singularities into account. A main result
of this approach is a proof of Kirwan hyper-Kähler surjectivity for some rank-2 Higgs bundles.

Moment maps and path integrals

Jonathan Weitsman (Santa Cruz). Quantum field theory is a source for many exciting predictions in mathe-
matics, mostly based however on non-rigorous ’functional integral teachniques’. A prototype is Witten’s for-
mulas [28] for intersection pairings, based on path integral calculations for the Yang-Mills functional (norm
square of the moment map). In his talk, Weitsman indicated that in some case, these path integral arguments
can in fact be made rigorous. The main techique is a new construction of measures on Banach manifolds
associated to supersymmetric quantum field theories. As examples, he discussed the Wess-Zumino-Novikov-
Witten model for maps of Riemann surfaces into compact Lie groups, as well as 3-dimensional gauge theory.

Open problems

In addition to the traditional lectures, we ran two problem sessions during our week at Banff. These sessions
were meant to foster discussion and to identify open problems relevant to the workshop. Each session had a
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moderator who solicited the open problems from the audienceand transcribed them onto the board. We used
a format very similar to the problem sessions run at the workshops at the American Institute of Mathematics
[4]. We present here the record of the problems discussed at these sessions.

Compactification of cotangent bundles

Problem 8.0.1 (N. Kitchloo) LetX be a compact manifold. Does the symplectic manifold(T ∗X,ω) have a
“natural” compactification(Y, ω̃) so thatω̃|T∗X = ω?

Several commented that this question is a bit misleading, sinceT ∗X has infinite volume. We may modify
it to ask about the disc bundle inT ∗X .

Nick Proudfoot pointed out that this is equivalent to askingwhether or notX is a Lagrangian submanifold
of some compact symplectic manifold.

Eugene Lerman noted that this is true forX = S3, and is true more generally ifX is a Riemannian
manifold with a periodic geodesic flow: then we may “cut”T ∗X with respect to the energy functional. For
example, we may do this whenX = S3 or whenX is a Zoll surface. Of course, if not all periods are the
same, one may end up with an orbifold.

If X is a complex manifold, there is a naturalS1 action on the fibres; however, this action is not symplec-
tic.

Allen Knutson commented about the case whenX is a real algebraic variety. ThenX is the real locus of
X(C), a complex algebraic variety. LetY be a desingularization of the closure ofX(C) in projective space.
Note that the singularities are all far fromX . ThenX still sits inside as a Lagrangian submanifold.

Eugene Lerman pointed out that we may takeY to be Thom space ofT ∗X or the one-point compacti-
fication. If we view this as a symplectic stratified space,X is a Lagrangian submanifold. This may not be
“natural”.

Markus Pflaum mentioned that a similar question was addressed in [21].

Circle actions and the Hard Lefschetz Property

Let (M,ω) be a2n-dimensional compact symplectic manifold. Consider the map

L : Hi(M) → Hi+2(M)

c 7→ [ω] ∪ c.

We say thatM satisfies theHard Lefschetz propertyif

Lk : Hn−k(M) → Hn+k(M)

is an isomorphism for each0 ≤ k ≤ n.
Participants note: All compact Kähler manifolds satisfy Hard Lefschetz. Specifically, ifM is a projec-

tive variety, thenω is the restriction of the Fubini-Study form on projective space, so the Kähler class is
the Poincaré dual of a hyperplane section. SoL is the intersection with this hyperplane section, and Hard
Lefschetz holds.

Problem 8.0.2 (Y. Karshon) Suppose that(M,ω) admits a HamiltonianS1 action with isolated fixed points.
Does(M,ω) satisfy the Hard Lefschetz property?

This problem has been around for at least 13-14 years; Yael isn’t sure of its origin.
Reyer Sjamaar comments that his student Yi Lin has worked on arelated question. Symplectic quotients

often inherit nice properties from the original manifold: if the original manifold is Kähler, so is its symlectic
quotient. Yi Lin has shown that symplectic quotientsdo not inherit the Hard Lefschetz property.

Nick Proudfoot asked why having an action should say anything about Hard Lefschetz. Yael Karshon
replied that having a Hamiltonian action with isolated fixedpoints is a very strong assumption.

Reyer Sjamaar pointed out that, by a result of Susan Tolman and Jonathan Weitsman, if theS1 action is
in addition semi-free, thenH∗(M) is isomorphic as a ring toH∗((P 1)k). Under the isomorphism,[ω] maps
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to the class that is the product of Fubini-Study 2-forms and takes the first Chern class to the first Chern class.
Thus the Hard Lefschetz property holds for these examples.

Nitu Kitchloo asked if it makes any difference ifω is integral. Then we may classifyω by a map toCP∞.
This gives a principleS1 bundleP overM , and Hard Lefschetz is equivalent toH∗(P ) being a “very small”
cohomology ring. This follows from the Leray-Serre spectral sequence for the cohomology of the total space.

Sue Tolman points out that an easier version of this problem is as follows.

Problem 8.0.3 (S. Tolman)Are the Betti numbers ofM unimodal? That is, do they satisfy

β1 ≤ β3 ≤ · · · ≤ βhalf

and
β2 ≤ β4 ≤ · · · ≤ βhalf?

Z2-graded (“super”) symplectic manifolds and reduction

LetM be aZ2-graded symplectic manifold (for a reference, see [20]). That is,M is locally a manifold, and
over each open setU , we have a trivial bundleE = V ×U . The “functions” onU areC∞(U)⊗Λ∗(V ). The
“odd” variables live in “flat” directions corresponding toV (“ectoplasm has no topology!”). This is one way
to define a super manifold. Extend this to global structure bypatching. Asymplectic form in this setting is
anti-symmetric on the even (standard) directions and symmetric on the odd (V ) directions.

Consider the case where the space of odd variable seems NOT flat. TakeM = pt. Then we have only an
odd vector spaceV and the “symplectic form” is a Euclidean metric (inner product). ForG ⊆ SO(V ) acting,
we can define a moment map. It seems that the “symplectic quotient” will not necessarily be aZ2-graded
symplectic manifold in the above sense.

Now consider the “quantization,” which is the space of functions on the manifold. This is the spinor
representationS(V ) of the Clifford algebra of V. Now restrict to the G-invariantpart to “reduce” the “quan-
tization.”

Problem 8.0.4 (S. Wu)What is the classical analogue of “reduction” so that quantization commutes with
reduction? How may we generalize the concept of graded symplectic manifolds to include such examples?

Problem 8.0.5 (S. Wu)Give examples of mixed odd/even cases.

A partial answer to this second question was given by Greg Landweber: coadjoint orbits of Lie super-
groups fall into this situation.

Symplectic reduction and GIT quotients

LetM be a Kähler manifold andG a connected complex non-reductive affine algebraic group acting onM .
LetK be the maximal compact, but note thatG 6= KC. K acts onM by isometries.

For example,G could be the group ofn× n invertible upper triangular matrices, and then we haveK the
compact torus(U(1))n.

Problem 8.0.6 (A. Knutson) Is there a notion ofK-equivariant moment map

Φ : M → G/K

so that the symplectic quotient ofM byK is homeomorphic to the GIT quotient ofM byG, when the GIT
quotient makes sense?

Jonathan Weitsman commented that a reference might be M. Leingang’s thesis, which contains a gener-
alization of [2] to moment maps with values in symmetric spaces. However, this may be restricted to the case
whenG is reductive.

Allen Knutson continued that Problem 8.0.6 is perhaps most interesting whenG is unipotent, and in this
case,K = 1. So in this case, can we view the GIT quotient ofM byG as a real symplectic submanifold of
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M? Topologically, the stable set is aG-bundle, which topologically has a continuous section. In this case,
topologically, the GIT quotient is a submanifold. Here the GIT quotient is a quotientM s → M s/G, and
sinceG is contractible, this fibration has a continuous section.

Reyer Sjamaar pointed out that ifG is the maximal unipotent of a reductive group̃G which also acts on
M , then this GIT quotientM//G exists, and there is a nice choice of such a sectionM s →M s/G. Namely,
take the inverse imageφ−1(C), whereC is a Weyl chamber for̃G, andφ is a moment map for a compact real
form of G̃.

In a later discussion, Allen Knutson and Gideon Maschler found a natural answer at least to the question,
“Is there a moment map?” The issue of existence of a quotient needs further exploration.

Ricci curvature and proper moment maps

LetM be a complete Kähler manifold equipped with a Hamiltonian isometric action of compact Lie group
with compact fixed point set and moment map bounded in some direction. Generally the moment map is not
proper.

Problem 8.0.7 (R. Bielawski) If we assume that Ricci curvature is non-negative (or even zero), then is the
moment map proper?

EXAMPLE: (Nick Proudfoot) The circleS1 acting onC2 = C(1) ⊕C(−1) is a counterexample to the problem
without the assumption that the moment map is bounded in somedirection.
EXAMPLE: The circleS1 acting onC

2 = C(1) ⊕ C(0) is a counterexample to the problem without the
assumption that the fixed point set is compact.

EXAMPLE: (Roger Bielawski) The statement fails without the Ricci curvature hypothesis:

Figure 8.1:S1-invariant complete Kähler metric onC with bounded moment map.

Symplectically, this is a disc. Since the volume of the manifold is finite, the moment is map bounded and so
not proper as a map toR. This can be done while making the metric complete.

Some partial results: the answer is yes (even without the curvature assumption), if the injectivity radius
of M has a positive lower bound. The answer is also yes for circle actions such that the fixed point setF is
connected and the cohomology class of the Kähler form restricted toF is a multiple of the first Chern class
of F .

The motivation for this problem is the following. Given a real analytic compact Kähler manifoldM , there
exists a unique hyper-Kähler metric on a neighborhood of the manifoldM in its cotangent bundleT ∗M (due
to Feix and independently to Kaledin). This extends the given metric, and the standardG = S1-action (on the
fibres) is isometric and Hamiltonian. The holomorphic symplectic form onT ∗M comes from the standard
symplectic form onM . The fixed point set of this action isM , the moment map is bounded below, and the
Ricci curvature is zero. In general, we know very little about completeness of these metrics.

If the moment map is proper, then M must have NEF tangent bundle. Up to the Campana-Peternell
conjecture in algebraic geometry, this implies that ifM is projective, thenM fibers over its Albanese variety
with rational homogeneous fibers.

Proving the above statement would provide a necessary condition for completeness of the metric onT ∗M .
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Topology of the symplectomorphism group

Suppose(M,ω) is a compact symplectic manifold, and that the Chern classc1(M) ∈ H2(M ; Z) is a negative
(or non-positive) multiple of[ω] ∈ H2(M ; R).

According to Sue Tolman, this implies that there are no HamiltonianS1 actions on M. The idea of the
proof is to look at the maximum and minimum of theR-valued moment map. TheS1 equivariant cohomology
of a point consists of weights, so it makes sesnse to describethem as positive and negative. The restriction of
the equivariant first Chern classc1 to the maximum fixed point set must be negative, and at the minimum the
restriction is positive. This restriction ofc1 is the sum of the isotropy weights.

Problem 8.0.8 (M. Abreu) Whenc1 is a non-positive multiple of the class of the symplectic form, is the
group of Hamiltonian diffeomorphisms,Ham(M), contractible?

Problem 8.0.9 (M. Abreu) Whenc1 is a negative multiple of the class of the symplectic form, isthe identity
component of the group of symplectic diffeomorphisms,Symp0(M), contractible?

The motivation here is that, under these hypotheses and according to the above argument of Sue Tolman,
Ham(M) has no compact subgroups. One would believe that any topology of Ham(M) is related to some
compact subgroup. The torusT 2n, with curvaturec1 = 0, motivates the two different statements for the
problem.

Note that for surfacesΣ, we have the following cases:

• WhenΣ = S2, c1 > 0 andHam(M) is not contractible, in fact it is homotopy equivalent toSO(3);

• WhenΣ = T 2, c1 = 0 andHam(Σ) is contractible; and

• WhenΣ = Σg has genusg > 1, thenc1 < 0 andSymp0(Σ) is contractible.

Thus, for surfaces, the statements hold.
A related problem is the following.

Problem 8.0.10 (M. Abreu) Is the group of compactly supported symplectomorphisms ofR2n contractible?

Smale answered this question in the affirmative forn = 1, and Gromov proved the result forn = 2.

Sasaki-Einstein metrics

Recently the physicists, Gauntlett, Martelli, Sparks, andWaldram have constructed explicit Sasakian-Einstein
metrics onS2×S3. These even include irregular Sasakian-Einstein metrics, where the flow of the Reeb vector
field has non-closed orbits. They are the first examples of such metrics and actually give counterexamples to
a conjecture of Cheeger and Tian. The metrics are related to local Kähler-Einstein metrics found in the late
1980’s by Page and Pope, and generalize to higher dimensions. It was then shown by Martelli and Sparks that
these Sasakian-Einstein metrics are related to toric contact geometry. It turns out that for a certain choice of
contact form, the characteristic foliation is regular and the base space is a Hirzebruch surface, and for another
choice of contact 1-form one gets the Sasakian-Einstein metrics.

Problem 8.0.11 (C. Boyer)Is it possible to develop a general theory of these structures?

Boyer believes that such Sasakian-Einstein metrics shouldexist on thek-fold connected sums ofS2×S3,
but currently there is little hope of getting explicit metrics. One must prove existence theorems. This is the
hard part as there are some real subtleties. First the regular contact structure over Hirzebruch surfaces does
not give positive Ricci curvature, because generally Hirzebruch surfaces are not Fano. For quasi-regular
contact structures, this can be overcome using certain branch divisors to shift the orbifold canonical divisor
to be Fano. Boyer does not yet understand how this works in theirregular case though. Given this, the
techniques that we have been using to prove the existence of Sasakian-Einstein metrics do not work here.
The singularities of the pair(variety, orbifold anticanoncal divisor) are not Kawamata log terminal.

Apostolov mentioned a recent paper [26] where Wang and Zhu prove that Kähler-Einstein metrics exist
on toric Fano manifolds if and only if the Futaki invariant vanishes. Thus, the program is to generalize the
Futaki type invariants to the Sasakian setting. Hopefully one can describe these Sasakian Futaki invariants as
functions of the weight vector one gets by writing an arbitrary Reeb vector as a linear combination of a basis
for the Lie algebra of the torus.
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Chapter 9

Critical Scaling for Polymers and
Percolation (05w5025)

May 28 – June 2, 2005

Organizer(s): David Brydges (University of British Columbia), Jennifer Chayes (Mi-
crosoft Research), Gordon Slade (University of British Columbia)

Background

Equilibrium statistical mechanics is the mathematical framework created by Gibbs for predicting macroscopic
properties of matter from a microscopic description. Within this framework thermodynamic functions of
state such astemperatureandentropyare defined in such a way as to satisfy the laws of thermodynamics. In
principle the formalism determines the model specific relation called the equation of state. The first example
of such a prediction is the famous ideal gas lawP = (n/V )RT relating pressureP to the number of
atoms/volume and temperatureT . This is the equation of state for an assembly of non-interacting particles.
This equation of state is notable for having no singularities: in the physical domainT > 0 the pressure is
a smooth function of temperature. However interacting systems will not in general relate thermodynamic
variables in a smooth way and therefore the equation of statehas singularities which reflect phase transitions.
For example the density of water changes discontinuously asa function of temperature at the boiling point.
In practice the determination of the complete equation of state is not realistic for systems with interactions,
but the nature of the singularities, the exponents of power law divergences at these singularities, are more
accessible. Thus these singularities have been the focus ofresearch.

The basic setup for equilibrium statistics is a probabilityspaceΩ whose pointsω ∈ Ω are possible
configurations of the physical system and a probability measure called theGibbsmeasure which has the form

1

Z
e−βH(ω) × Uniform Measure

whereβ is proportional to the inverse temperature andH is the energy of the system in configurationω. Z
normalises the Gibbs measure so that it is a probability measure.Z is called the partition function (ofβ and
parameters inH).

In the context of polymer physics we are interested in the thermodynamic properties of large molecules
calledpolymersformed by atoms or smaller molecules arranged in a chain or other topologies such as trees
(branched polymers) or rings. The subunits from which the polymer is formed are calledmonomers.

The goal of the physical chemist is to predict the propertiesof the polymer starting with knowledge of
the forces acting between the monomers. The desired properties include the average size of the polymer
as a function of the number of monomers in the polymer, when the number is large. Size is measured by
diameter or, in the case of chains, end-to-end distance. This size can exhibit discontinuities when parameters
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such as temperature are varied. In other words a long chain molecule such as DNA can suddenly change its
conformation and therefore its size. These discontinuities are calledtheta phase transitions.

The medium in which the polymer is immersed is called thesolvent. Instead of starting with detailed
information on the solvent molecules and the forces that actbetween them and the monomer it is common
to leave out any explicit description of the solvent and suppose that the forces experienced by the monomers
have been adjusted to take into account the effect of the solvent. In physics this is expressed by the words “the
interactions are equivalent to a simplified model with aneffective interaction”. The idea is that a complicated
model may have a large scale structure that is the same as a simpler model and we may hope to classify all
models into equivalence classes labeled by these simpler models. For example, consider a polymer modeled
as a simple random walk: there is a first monomer atX0 = 0 and then the next one in the chain occupies
a positionX1 randomly chosen nearX0 according to some probability densityp and then the one after that
X2 is chosen independently according to the same density but centred onX1, . . . , i.e. we have a Markov
chainX0, X1, . . . of random variables whose law satisfiesP (Xi+1 = x|Xi = y) = p(x − y). The density
p(x− y) is likely to be very complicated, being determined by microscopic chemistry. However the theorem
of Donsker [16] tells us that if we scale the random variablesso as to see only the large scale structure by
looking at the chain from far away,

Yt = lim
T→∞

T−νX⌊Tt⌋, ν =
1

2
,

then the form ofp is not important. All that will matter is the matrix of secondmoments ofp. This is called
taking thescaling limit. No matter how we choosep the scaling limit will be a continuous random pathY (t)
called Brownian motion. The probability law of Brownian motion is completely determined by the matrix of
second moments. All different choices ofpwith the same second moments give rise to the same scaling limit.
One can take this a step further and show that there is a direction-dependent scaling such that the scaling limit
is isotropic, i.e., standard Brownian motion. In this modelwe see a good example of the notion of acritical
exponent, namelyν. The existence of the scaling limit forν = 1/2 implies that the typical random walk with
n monomers will have an end-to-end distance ofO(n1/2).

The Donsker theorem is an ultimate version of the Central Limit Theorem, but the theory of scaling limits
starts where the central limit theorem ends. For example, modeling a polymer by simple random walk is
rather optimistic: we know that different monomers cannot occupy the same position so we ought at least to
consider that, and adopt as a better model, aself avoiding walk. More generally we should consider attractive
and repulsive interactions. The simple random walk model isthe analogue of the ideal gas mentioned in the
first paragraph. Once we introduce interactions the existence of a scaling limit for someν is still largely
Terra Incognita. We think the scaling limits exist because we can prove they do in a small number of cases
and because this belief now permeates theoretical physics.Almost all theoretical physicists work on models
which are vast simplifications of reality. They do so becausethey think their models classify the large scale
structures of reality. The long term health of their enterprise will be improved if we succeed in adding to
the list of cases where this can be proved to be true. As with any hard problem, the struggle is spinning
off new developments in mathematics and has formed a nice community of researchers with very different
backgrounds.

Self-avoiding walkis the archetypical problem that embodies a combinatorial aspect of polymer physics.
In this model we generally start with a simple cubic latticeZd, hoping that the scaling limit will make the
lattice invisible. The points inZd are called sites and they represent the possible positions of a monomer. A
long chain molecule consisting ofn monomers is represented as a sequenceω = (ω0, . . . , ωn). We define
the energyH(ω) of the polymerω to be infinite ifω has a self-intersection and zero otherwise. This reduces
the role ofβ in the Gibbs measure to casesβ = 0, in which case the Gibbs measure is the standard measure
on simple random walk andβ > 0, in which case the Gibbs measure is the uniform measure on thesubset of
Ω consisting of self-avoiding walks (SAW). These are the sequencesω = (ω0, . . . , ωn) consisting ofdistinct
nearest neighbour sites. Thus the temperature appears in a trivial way in this model. The fundamental
question for this model is what is the right scaling: does there existν such that the scaling limit exists and
what is that limit? How does the end-to-end distance of self-avoiding walk grow as a function ofn?

Percolationis the archetypical model for a phase transition. We again start with the simple cubic lattice
Z
d. An unordered pair{x, y} of nearest neighbour sites is called an edge. Each edge can beeitheropen

or closed. Think of open as meaning that fluid can pass fromx to y and closed as meaning that it cannot.
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A configurationω of percolation is a possible choice of open/ closed for everyedge. We make this choice
independently for each edge; edge{x, y} is open with probabilityp and closed with probability1 − p. In
this model the connection to Gibbs measures is not apparent but there is a connection called theFortuin−
Kasteleyn representation which will not be discussed here.p plays the role of temperature as follows: the
sites of the lattice fall into clusters connected by open edges. One can ask whether there is an infinitely
large cluster. Ford > 1 there is a critical probabilitypc(d) such that forp > pc there is an infinitely large
cluster whereas forp < pc all clusters are finite. Thus the probability that the originlies in an infinite cluster
is zero for an intervalp ∈ [0, pc) and non-zero forp ∈ (pc, 1].1 The outstanding open questions concern
the existence and values of critical exponents. An example of a critical exponent is the expected size of the
cluster containing the origin as a function(p − pc)

β for p > pc. In d = 3 dimensions the existence ofν and
β has not been proved.

One may wonder what this model has to do with polymers. At the outset it was a separate subject but
now both models are slowly becoming united in a larger framework of random geometry and there is a
commonality of concepts and techniques.

Scaling limits in two dimensions

The 1984 paper by Belavin et al. [8] theory started two decades of progress by theoretical physicists in two
dimensional statistical mechanics based on conformal fieldtheory (CFT) and more recently also string theory
and quantum gravity. In addition there are exact but non-rigorous solutions to lattice models based on the
Bethe Ansatz and Yang Baxter equations. We conflate these subjects under the initials CFT.

The book [15] provides a good review: the range of statistical mechanical models for which critical
exponents can be calculated (in advance of knowing if they exist!) is remarkable. Mathematicians have yet
to find their Euclid for CFT and so they have to regard these calculations as conjectures. There are partial
axiomatic programs, for example [18].

The methods of conformal field theory give information on correlations but less directly on random geom-
etry. The family of stochastic processes SLEκ studied in the work of Lawler Schramm and Werner over the
last five years describes the geometric objects within statistical mechanical models. For example, as reviewed
in the lecture by Lawler and in [34], the distribution on simple random curves prescribed by SLE(8/3) is the
only possible scaling limit for SAW if the scaling limit exists and is conformally invariant. SLEκ is effective
for calculations and some scaling exponents such asν have been verified to be equal to the values provided
by Nienhuis [39] by CFT (actually by first mapping to Solid on Solid models). Thus there is still a very hard
open question to show that the discrete process approaches aconformally invariant limit. Another fundamen-
tal question is to give the ”correct” parametrization of thepath which would correspond to the limit of the
natural discrete parametrization. This was discussed at this meeting by Lawler and in detail by Kennedy who
has examined it by Monte Carlo simulations. Here is a brief summary of Kennedy’s lecture.

“SLE8/3 is believed to describe the scaling limit of the two-dimensional self-avoiding walk. However,
these two processes have different natural parameterizations. SLE is parameterized by the capacity of the
curve, and the length of the SAW leads to a natural parameterization in the scaling limit. One can reparam-
eterize the SAW using its capacity. Monte Carlo simulationswere presented which indicate that with this
parameterization the SAW process agrees with the SLE process. A more interesting question is to find the
parameterization of the SLE that would make it agree with theSAW with its natural parameterization. Lawler
gave several properties such a parameterization should have - local dependence on the curve, additivity and
an appropriate transformation property under conformal maps which reflects the Hausdorff dimension of the
curves. A possible candidate is what probabilists call the “pth variation” wherep is taken to be1/ν. Monte
Carlo simulations presented showed that while this parameterization makes the SLE agree with the SAW
for one random variable, for another random variable there is roughly 6% discrepancy. Understanding the
source of this difference is an important open problem for future simulations. Several lines of attack have
been developed as a result of conversations with other participants at the conference.”

For percolation the geometrical object is the boundary of a percolation cluster for the critical model.
Recalling that the critical clusters in percolation are known to be finite in dimension two one needs a method

1In dimensiond = 2 and in very large dimensions it is known that there is no infinite cluster atpc.
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to constrain them to be as large as the scaling limit scaleL as the scaling limitL→ ∞ is taken. This can be
achieved by by using boundary conditions that force a percolation boundary to pass from one side a region
of scaleL to the other. The scaling limit of the resulting boundary curve has been identified with SLE6.
Remarkably, existence and conformality in the scaling limit was established by Smirnov, not for the whole
model, but for expectations of a specific crossing probability [45].

In this conference Camia gave a report on his work with Newmanin which the full scaling limit and
conformality of percolation has been established. The crucial point is that this work considers the set of all
interfaces as opposed to one forced by boundary conditions.This is fundamental progress because one wants
to make contact with the methods of CFT which are based on random fields and one wants to identify the
interfaces with contours of the random field. Here is a brief summary of the talk by Camia.

“In my talk, I discussed some aspects of the convergence of critical percolation interfaces to their con-
tinuum scaling limits, following a recent joint paper with Charles M. Newman [14]. More specifically, I
looked at the “percolation exploration path,” conjecturedby Oded Schramm to converge to SLE(6) and used
by Stanislav Smirnov and Wendelin Werner to rigorously obtain various critical exponents for percolation,
and at the set of all percolation interfaces. Percolation isso far the only model for which one can go beyond a
single interface and prove the scaling limit of the set of allinterfaces. This gives rise to a “full” scaling limit
in terms of fractal, continuous loops in the plane. Similar objects should arise when taking the full scaling
limit of other models, like Ising and Potts models, and should be described by conformal loop ensembles
(CLE) as described by Scott Sheffield and Wendelin Werner in their talks. Such relations, for models other
than percolation, are still conjectural. In the case of percolation, the full scaling limit was first constructed in
a joint paper with C.M. Newman [13].

The field is rapidly moving forward, and various talks at the meeting showed that the understanding of
the continuum counterpart of various discrete models is reaching its maturity. There is hope that this will lead
in the future to proofs that the beautiful continuum objectsdescribed by Sheffield and Wendelin are indeed
the continuum scaling limits of discrete models, extendingthe results known for percolation to Ising, Potts
and O(N) models.”

The importance of making complete contact with CFT is illustrated by “Duplantier duality”. Using CFT
Duplantier noticed that, in the scaling limit, for a spin model or percolation, there must be a relation between
the SLE that describes the boundary of a cluster and the SLE that describes the outer boundary of a cluster,
namely Duplantier dualityκ → 16/κ. The continuing inspiration coming from these lines of thought is
evident in this summary of his lecture.

“I presented a unified heuristic point of view on the Stochastic Loewner Evolution (SLE). It consisted in
relating critical exponents for conformally invariant random paths in the plane to similar ones on a random
surface with fluctuating metric. The key ingredient was the so-called Knizhnik, Polyakov, and Zamolod-
chikov (KPZ) relation between these exponents. The status of this relation is to be considered as true in
theoretical physics, but conjectural from the point of viewof rigorous mathematics. The machinery it pro-
vides, however, is strikingly efficient. Any exponent from SLE can be predicted this way. This was illustrated
in several instances:

The dualityκ→ 16/κ which is believed to map hulls of SLEs to their external boundaries is reflected by
a similar duality built in the two analytical determinations of the inverse KPZ map.

The pressure effect on an SLE path coming from a drift term of strengthρ in the Brownian source of
the Loewner equation of that path (theSLE(κ, ρ)), can be analyzed through the KPZ relation in terms of an
equivalent number of multiple SLEs, or of a certain equivalent number of Brownian paths.

The “shadow exponents” describing the probability that some Brownian paths screen some others from
the exterior can also be calculated systematically in termsof these Quantum Gravity equivalences.

The multifractal harmonic and rotational spectra of the SLEcurves have been obtained from that ap-
proach.

A challenge is now to establish the proper rigorous form of this fundamental tool coming from conformal
field theory.”

And here is a summary of Cardy’s lecture which also underlines the need for a complete understanding of
CFT.
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“There has been a very fruitful interdisciplinary connection formed between the study of critical behaviour
by theoretical physicists and the approach to random spatial processes of probabilists. In recent years this
has been brought to the fore by the spectacular progress by mathematicians using ideas such as SLE, which
have reinterpreted and put on a more systematic basis the earlier results of the physicists in conformal field
theory, inspired by ideas which were born in string theory. Now this subject is reaching a point where there
is a mutual flow back and forth between the SLE ideas and CFT. Mytalk gave a very simple example of
this interdisciplinary thinking, concentrating on a smallresult which, however, both illuminates what should
be the correct extension of SLE to many random curves, and also on the physics side relates to potentially
measurable phenomena in the quantum Hall effect.”

Conformal Field Theory is the study of correlation functions for a random field on a Riemann surface.
The simplest example is called the (massless) Gaussian fieldon the complex planeC. This may also be the
fundamental example since a method called the Coulomb gas representation is used to write correlations of
other CFT’s in terms of the Gaussian field. One immediately discovers that the Gaussian free fieldφ is not
actually a random field, but instead is a generalized random function. This means that for each test function
f on the plane there is a random variableφ(f) which would be given byφ(f) =

∫
φ(x)f(x) dx except that

φ(x) does not exist because there is too much oscillation at arbitrary small scales. This would seem to be a
major obstacle to making a connection between SLE and the free field based on the idea mentioned above:
that scaling limits of interfaces should be contours of a conformal field. Thus we were excited by the lectures
of Sheffield and Werner in which contours of the free field weredefined and related to variants of SLEκ. Here
is summary of the lecture given by Werner who gave a talk basedon joint work with Scott Sheffield.

“Motivated by identifying and understanding better the possible conformally invariant scaling limits of
various 2-dimensional models such as O(N) models or the Ising model, we define a natural property that these
continuous limits should satisfy:

We are considering random collections of disjoint simple non-nested loops in a domainD. A sample is
therefore a collection of loops(γj , j ∈ J). We assume conformal invariance so that one can define for any
simply connected domain such a lawPD (in a conformally invariant way).

Suppose now thatD′ ⊂ D. Then, one can define two sets of loops: Those that stay inD′ (for which we
say thatj ∈ J̃) and those that exitD′ (for which j ∈ I). One defines̃D = D′ \ ∪j∈Iγj . Roughly speaking
the condition is that conditionally oñD, the law of(γj , j ∈ J̃) is P eD.

If this is true for allD′, then we say that(γj) is a conformal loop ensemble.
We study various properties of these loop-ensembles. In particular, we show that
1) The outer boundaries of loop-soup clusters (related to the Brownian loop-soup introduced in joint work

with Greg Lawler) are examples of such loop-ensembles. These examples are parametrized by the intensity
of the loop-soupc. This works for allc ≤ c0 wherec0 is a critical intensity.

2) In fact these are the only conformal loop-ensembles.
3) The level-lines of the Gaussian Free Field studied by Schramm and Sheffield are other examples of

such conformal loop-ensembles and they coincide with thec0 case in 1).
4) One can construct all these conformal loop-ensembles viaSLE related processes, the SLE(κ, κ − 6)

processes and the relation betweenκ andc is c = (3κ− 8)(6 − κ)/2κ whereκ ∈ (8/3, 4]”.

High Dimensions

For dimensions above two nothing is known about the scaling limits of self-avoiding walk and percolation
until one gets to thecritical dimension, which is four in the case of self-avoiding walk and six in thecase
of percolation. Above the critical dimension there is a method called theLace Expansionwhich one can
read about in the lecture notes of Slade [44]. The range of usefulness of this tool has expanded very greatly
from the original application [12] to a variant of self-avoiding walk. In this conference Sakai reported on
a first time application to the Ising model. The significance of this application is that it provides a way to
prove “universality” which is the conjecture that drives much of theoretical physics: that the scaling limit is
independent of details of the local interactions: refer to the discussion at the beginning of Donsker’s theorem.
Sakai’s success should encourage us to look for ways to extend it to other spin models. Here is a summary of
the lecture by Sakai.
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“In this talk, I describe a lace expansion for the Ising model, which can be applied to prove Gaussian in-
frared asymptotics for the critical two-point function forIsing ferromagnets above four dimensions, assuming
that the dimensiond or the range of the spin-spin coupling is sufficiently large [42, 43]. As a consequence,
the other observables also exhibit the mean-field behavior for d > 4 [1, 3, 4, 5]. The main point is that the
proof of these results does not require the reflection positivity [17].

For reflection-positive models, it is known that the two-point function obeys a Gaussian infrared bound
for d > 2. Although the nearest-neighbor model satisfies the reflection positivity, other finite-range models
(e.g., the next-nearest-neighbor model) do not. Since local details of the models should not affect the critical
behavior (i.e., universality), all these finite-range models must exhibit the same mean-field behavior ford > 4,
no matter whether the reflection positivity holds or does not. Therefore, our approach using the lace expansion
is more robust.

The lace expansion has been used for stochastic-geometrical models, such as self-avoiding walk (e.g.,
[12, 21]), lattice trees and lattice animals (e.g., [20]), percolation (e.g., [19]), oriented percolation (e.g., [38])
and the contact process (e.g., [41]), to prove a Gaussian infrared bound or asymptotics of the critical two-point
function above the upper-critical dimension. The lace expansion gives rise to a recursion equation similar to
the one for the random-walk Green’s function, and this is thefoundation of the Gaussian behavior for the
two-point function. The lace expansion for the Ising model has just been proved for the first time [42].”

Applications of the Lace expansion to percolation are also in the news. The important development is
the analysis of a cluster constrained to be very large. The idea is that in critical percolation no cluster is
infinite but the slightest increase in the density of occupied bonds will cause the critical clusters to link up
into an infinite cluster. In some sense one can therefore see the infinite cluster before it has appeared. Here
is a summary of the lecture of van de Hofstad based on joint work with Frank den Hollander, Antal Járai and
Gordon Slade.

“The incipient infinite cluster (IIC) describes the infinitecluster which is on the verge of arising in critical
percolation models. Kesten [31] first constructed the incipient infinite cluster for two-dimensional percola-
tion. Kesten’s IIC describes the infinite cluster which is onthe verge of appearing at the critical value, and is
constructed by conditioning the origin to be connected to infinity by an appropriate limiting procedure. This
construction of the IIC is different in spirit as the one suggested by Aizenman in [2], which is closely related
to the scaling limit and the behaviour of all critical clusters in a large cube simultaneously, and is also studied
in [22, 23] in the high-dimensional case.

We discuss Kesten’s results in two dimensions, as well as theextension by Járai [27, 28] for the two-
dimensional case and give some of its properties, such as itsdimension and its backbone dimension, which
follow from the connection to SLE6 (see [31, 33]).

We also present the constructions of Kesten’s IIC for percolation above the upper critical dimension. We
will give 2 different constructions for the IIC for sufficiently spread-out percolation above six dimensions,
and 3 different constructions for the sufficiently spread-out oriented percolation IIC above 4+1 dimensions.
We will also discuss properties of the IIC, such as its dimension and, in the oriented case, its scaling limit.
The high-dimensional results are taken from the papers [24,26, 25].

One reason to study Kesten’s IIC is that it is the natural context for a random walk on a critical clus-
ter. Random walk on a super-critical cluster is expected to converge to Brownian motion, which is recently
proved by Berger and Biskup (see the talk by Marek Biskup). Kesten [32] studied the random walk on the
two-dimensional IIC, and proved that it is subdiffusive. Healso proved that a random walk ofn-steps on a
branching process cluster scales liken1/3, which suggests that a random walk on a critical branching ran-
dom walk cluster conditioned to survive forever, has displacement of ordern1/6. Since in high-dimensions,
Kesten’s IIC has similar scaling properties as critical branching random walk cluster conditioned to survive
forever, this suggests that a random walk on the IIC has displacementn1/6 aftern-steps. The latter problem
is still open.”

There are at least three further developments one should hope for. (1) The Lace expansion applies to
models whose interactions are repulsive. A self-avoiding walk with a small nearest-neighbour attraction is
not amenable to the Lace expansion. The best attempt so far is[48]. (2) The critical dimension models are
not accessible to the Lace expansion. The Renormalisation Group is likely to be the key to progress on these
models. You can see a start in this direction at [10, 11]. (3) Stochastic models such asTrue Self-Avoiding
Walk are almost Terra Incognita in dimensions greater than one. Agood starting point is to develop more
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understanding of random walk in random environments. Here is a summary of the lecture by Biskup on this
topic.

“Random walk in random environment is a subject of considerable interest in probability community. One
particular setting concerns simple random walk on supercritical percolation cluster. In 2003, Sidoravicius and
Sznitman proved that, in dimensions four and higher, such walk scales to Brownian motion under the usual
diffusive scaling of space and time. Their proof uses heavily the path-transience of simple random walk in
high dimensions and, as such, it does not seem to be generalizable to include the ”hard” dimensionsd = 2
and3. In my talk, I have described the recent result – obtained jointly with Noam Berger – that establishes
the invariance principle for such walks in any dimensiond > 1. The principal idea of our proof is to consider
the embedding of the percolation cluster intoRd that makes the random walk anL2 martingale”.

Random walk in random environment gives an opening into the study of walks which have attractive
self interaction because integrating over the environmentconstructs a self interaction. A particularly nice
example is provided by the self-reinforced walk discussed in the lecture by Rolles. Here is a summary of her
lecture. In her third paragraph she is referring to the fact that this model is equivalent to a random walk over
an environment which has been integrated out.

“Linearly edge-reinforced random walk was introduced by Diaconis in 1986. Diaconis asked whether
edge-reinforced random walk onZd is recurrent or transient. As usually, the random walk is called recurrent
if almost all paths visit all vertices infinitely often. For all dimensionsd ≥ 2, this question is still open.

Recently, progress has been made in studying the edge-reinforced random walk on laddersZ×{1, 2, . . . , d}
and, more generally, on graphs of the formZ×T with a finite treeT : For large constant initial weights, recur-
rence was proved by Merkl and Rolles in [36] and [40]. A more detailed analysis was obtained in [37]. There,
it is shown that the edge-reinforced random walk on infinite ladders has the same distribution as a random
walk in a random environment given by spatially decaying random edge weights. Convergence theorems and
estimates for the position of the random walker at large times are given.

A crucial tool in the analysis is a representation of the edge-reinforced random walk on finite graphs as
a mixture of reversible Markov chains; see e.g. [29]. Transfer operator techniques are used to analyze the
random environment.”

Other models

Fortunately we are not constrained to work on the archetypalproblems, which are not always making good
progress. The archetypal problems arose by distilling challenges from other subjects to their simplest level.
New archetypes and fresh ideas will arise from problems suchas the localisation problems discussed by
Whittington and den Hollander. Here is a summary of their talks.

“A random copolymer is a copolymer in which the sequence of monomers is determined by a random
process and is then quenched. Suppose we have two immiscibleliquids, A and B, and suppose that one type
of monomer prefers to be in the A phase and the other prefers tobe in the B phase. For instance, think of the
two monomer types as being hydrophobic and hydrophillic andthe two liquids as oil and water. Depending
on the chosen parameters (e.g., temperature or relative interaction strength) the polymer can localize at the
interface so as to optimize the numbers of monomers in their preferred phases, or delocalise into one of the
bulk phases to optimize the entropy of the system. One has a choice as to how the configurational properties of
the polymer are modeled (e.g., as directed or undirected self-avoiding walks, with possibly other appropriate
restrictions). Similarly there is some choice about the details of the interaction Hamiltonian.

The aim is to establish the existence of a phase transition inthe system and to study the properties of the
phase transition curve. This can be done either at the thermodynamic level or at the level of path properties.
Most work has focused on localization at a single infinite flatinterface but there has been recent interest and
progress in multi-interface and random interface problems, e.g., as models of polymers in an emulsion.

An early paper on the directed walk model is Bolthausen and den Hollander, Localization transition for
a polymer near an interface, [9], and some results on the self-avoiding walk model can be found in Madras
and Whittington, Localization of a random copolymer at an interface, [35]. For a recent review see Soteros
and Whittington, Statistical mechanics of random copolymers, [46]. There are important recent results on the
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single interface problem by G. Giacomin, and work in progress on random interfaces by den Hollander and
Whittington.”

Jarai introduced us to self-organised criticality and the relations it has with models we already study such
as the uniform spanning tree. Here is a summary of his lecture.

“In the last 15 years, a lot of attention was devoted in the physics literature to so called self-organized
critical (SOC) systems. In these systems critical scaling appears with a somewhat different flavour than in
the well-known examples of percolation and the Ising model.Namely, criticality is generated by a highly
non-local dynamics that is a result of a separation of scales, rather than a parameter passing through a critical
point. The main challenge in the area is to develop rigorous methods to study SOC. For some SOC models
there is a close connection with a corresponding classical critical model, which opens up the possibility
to study SOC via these connections. For example Chayes, Chayes and Newman have shown the intimate
relationship between invasion percolation and critical percolation. Dhar and Majumdar have established a
mapping between the Abelian sandpile model and the uniform spanning tree, which is theq → 0 limit of the
Potts model. In a rigorous approach to SOC, one of the first problems is to establish the existence of infinite
volume limits, which can be difficult due to the non-local interaction present. In this regard, recent progress
has been made for the Abelian sandpile model based on the connection with spanning trees in dimensions
d > 4. Future challenges include extending these to lower dimensions. It is expected that in d = 2 conformal
invariance plays a role, and therefore a description using SLE is to be explored”.

¿From the world of Biology we have a lecture on Vesicles by Buks van Rensburg.

“Vesicles in the biological world, such as blood cells, are known to posses a number of different phases.
For example, red blood cells, which are normally shaped as anindented disk (also called ”discocytes”)
become sickled shaped in individuals with cickle cell anemia. In addition, red blood cells could be burred,
pinched, pointed, indented, berry-shaped, etc., in eithernormal or pathological conditions depending on on
factors such as dehydration and membrane properties. Vesicles appear to have a very rich phase diagram, and
some of these phases can be examined by building mathematical models of a vesicle.

Perhaps the simplest approach to a vesicle would be a two or three dimensional discrete vesicle in the
square or cubical lattices. These lattice vesicles includemodels such as square, partition and convex polygon
vesicles in two dimensions, and cubical, rectangular and plane partition models of vesicles in three dimen-
sions. Curvature and osmotic pressure terms van be build into the models by defining partition and generating
functions with activities conjugate to volume, area or perimeter. From a mathematical point of view these
models offer considerable challenges in combinatorics andin statistical mechanics, and tricritical scaling
appears to be the appropriate physical frame for a mathematical description.

In my talk I will present some results on models of three dimensional cubical and rectangular vesicles
in a perimeter-area-volume ensemble. These models have a multicritical point and the values of scaling
exponents around this point is determined by the asymptoticanalysis of the generating functions in both
cases. For example, in the volume-area ensemble, the crossover exponentφ has value2/3 in both these
models, and this transition is an inflation-deflation transition between vesicles which are cubical or square
shaped”.

Finally there was an introduction to one of the outstanding problems of condensed matter physics: to
prove that adding a small density of randomly placed impurities to a conductor does not make it an insulator,
at least in dimensions three or more. The first first fundamental issue is whether a Schroedinger operator with
a random potential has absolutely continuous spectrum. Here is a summary of the lecture by Aizenman on
joint work with Robert Sims and Simone Warzel.

“Spectral and dynamical properties of linear operators with extensive disorder are of interest for con-
densed matter physics, as well as the broad subject of mathematics of graphs and related structures.

An outstanding challenge in the field is to shed light on the existence of extended states in the presence
of disorder. Such states play a basic role in conduction properties of an “electron gas” and in the spreading
of vibrations in randomized systems. The converse of conduction is Anderson localization which was proven
to occur at high disorder, and is particularly pronounced inlow dimensions [47], in particular at d=1 where it
precludes extended states even at weak levels of the disorder.
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The models discussed start from a well familiar Laplacian, or the incidence matrix on a regular graph,
which is then modified by incorporating the effect of disorder, represented by random terms with a homoge-
neous distribution and a control parameter. Specific examples are provided by:

i the discrete Schrdinger operator with a random potential,and

ii the Laplacian acting on functions supported along the edges of a graph, whose edge length are stretched
by random factors.

Other models are not hard to formulate; the obstacles encountered in their analysis are similar. The challenge
is to prove that if the dimension is high enough, and the disorder not too strong, then the spectral measures
associate with the action of the random operators on local functions have an absolutely continuous (ac)
component. Such delocalised states associated with ac spectrum are expected to occur in dimensionsd > 2.
The issues under study resemble a quantum version of percolation, in that it concerns conduction, or the
spread of correlations, connectivity, etc., occurring through a local mechanism but measured at a distance. A
common experience is that moderate dimensions, liked = 3, are out of reach of mathematics. For present
case the spectral analysis has been most effective in dimension d = 1, where no extended states exist at any
strength of the disorder, and at the opposite extreme of the tree graphs, which in a sense represent the case of
infinite dimension. In fact, the latter situation is the onlyfor which existence of delocalised states has been
established; a proof due to A. Klein [30]. The talk presenteda new method for establishing the persistence of
ac spectra on tree graphs [6, 7].

The main result is the continuity of the Lebesgue measure of the ac spectrum as the disorder is turned on.
The proof makes an essential use of the study of the fluctuations of the relevant Green functions, which are
bounded through a non-linear recursion relation which these obey on a tree. Useful input is obtained from
the analytical theory of the Lyapunov exponent. The new criterion for the continuity of the ac spectrum has
been applied also to the case of radial quasi-periodic potentials. These allow to draw an instructive contrast
between the effects of radially correlated disorder versusone which is weakly correlated among different tree
branches.”
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Mathematical Issues in Molecular
Dynamics (05w5052)

June 4–9, 2005
Organizer(s): Robert D. Skeel (Purdue University), Paul Tupper(McGill University)

Introduction

Computations for molecular systems work with a set of valuesΓ representing the microscopic state of the
systems, e.g., atomic positions, atomic velocities, volume of the simulation box. Most such computations can
be classified into one of two categories:

1. Sampling. Given the relative probability for different values ofΓ, calculate the expectation of some
observableO(Γ). An example is the probability of two biomolecules being (noncovalently) bound
versus unbound.

2. Dynamics. Given the relative probability for initial valuesΓ(0) and equations of motion for(d/dt)Γ(t),
calculate the expectation ofO(Γ(t)). An example is the position autocorrelation function. The equa-
tions of motion may be deterministic or stochastic.

The probability for different values ofΓ is often specified by the ensemble the system is, see Section 10.
It is important to note sampling computations commonly employ dynamics but the dynamics is typically
unphysical.

We begin in Section 10 with a consideration of the models we use in molecular dynamics, and whether
we can justify their use over other, more physically realistic, models.

A major topic, discussed in Section 10, concerns the effectsof discretization errors in numerical trajec-
tories for deterministic molecular dynamics (MD). Due to the highly chaotic nature of the dynamics, the
numerical trajectory completely departs from the analytical trajectory very early in the simulation. Yet nu-
merical experiments show that averages calculated from such erroneous trajectories are close the correct
ones.

Section 10 considers problem 1, sampling, above. There are roughly two approaches: dynamical sam-
pling, which using uses continuous time deterministic or stochastic dynamics, and Markov Chain Monte
Carlo (MCMC) sampling, which uses a Markov Chain to explore state space. In this section we consider
primarily the former class, which includes deterministic extended Hamiltonian approaches and stochastic
Langevin dynamics. We also consider Hybrid Monte Carlo methods which combines aspects of dynamical
sampling with MCMC techniques.

Section 10 considers other topics in sampling. In particular, various Monte Carlo Markov Chain (MCMC)
methods are considered along with methods for speeding up their rate of convergence.
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Often we do not want to just sample configurations or states ofthe system, but actual trajectories of the
system. An example of this is when we specify an initial configuration and a final configuration and we wish
to be able to sample from the set of all trajectories that run between them. Section 6 discusses this kind of
situation, which is known as sampling from path space.

For many systems microscopic models are simply to restrictive in terms of the time and length scales that
are attainable with current computations. Section 7 discusses coarse graining: replacing microscopic models
with mesoscopic ones that preserve the same effective behaviour of the system.

Models and Justifications

The main focus of the meeting was classical molecular dynamics, whether determinsitic or stochastic. Since
we believe that fundamentally molecular systems are quantum and deterministic, using classical models—
particularly stochastic ones— requires some justification.

Classical vs. Quantum

At the most fundamental level the dynamics of atoms and molecules must follow the rules ofquantumme-
chanics and the dynamics prescribed by Schrödinger’s or Heisenberg’s equations of motion. The presentation
of J. Straub described the results of a careful study of the molecular dynamics of vibrational energy transfer
within a protein. The predictions of classical models for the molecular dynamics, based on both direct molec-
ular dynamics as well as the theory of “small vibrations” or normal modes of motion, were compared with
those of quantum mechanical perturbation theory. It was noted that for the case of vibrational energy transfer
in a protein, classical dynamics can lead to poor results forthe time scales and pathways of energy transfer.
More attention must be paid to this issue if the ultimate objective is to develop accurate numerical methods
for realistic simulations of the molecular dynamics of biomolecular systems.

Stochastic vs. Deterministic

The use of stochastic equations of motion for (real) dynamics also requires an explanation: Let us start
from the assumption that the desired molecular system can bedescribed by classical mechanics entirely and
correctly. This implies the existence of a microscopic state Γ and an associated Liouville operatorL which
completely characterize the molecular system and the time evolution of distributionsρ(Γ, t) in phase space
in particular, i.e.,

ρt = Lρ.
Almost all numerical simulations will work with a reduced representation over a smaller phase spaceΓ ⊂
Γ. Crucial is the assumption that the time evolution over sucha reduced space is still Markovian and the
existence of a (perhaps approximative) Liouville operatorL is generally taken as granted. See work by Mori
and Zwanzig and, more recently, by Stuart and co-workers forrigorous results. Note that we have to, in
general, assume thatL corresponds to some form of stochastic ODE with the noise process representing
forces from the missing degrees of freedom. The feeling in that regard is that Langevin/Brownian dynamics
is not appropriate and that a more general form of the stochastic and dissipative coupling terms is required
(see dissipative particle dynamics (DPD)). Also, in practice the missing degrees of freedom are in contact
with the system only on the boundaries. Although simulations are sometimes implemented this way, it is
far more common to use periodic boundary conditions and it isan interesting question how to handle this.
Constant energy simulations make sense really only for molecules in gas phase.

The Accuracy of Long Time Numerical Trajectories
—Why MD Works?

The primary focus on the mathematical aspects of molecular dynamics was placed on the long-time accuracy
of integrating Newton’s or Hamilton’sclassicalequations of motion. Many of the paradigms in that field
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of research were derived from the early work on celestial mechanics, where the assumption of classical
dynamics is most certainly a good one.

In the case of classical MD, this question is posed for the difficult case of deterministic dynamics, specif-
ically Hamiltonian dynamics. The equations for Hamiltonian dynamics are

d

dt
Γ = J∇H(Γ), Γ =

[
q
p

]
, J =

[
0 I
−I 0

]
,

for example,H(q, p) = 1
2p

TM−1p + U(q) whereM is a diagonal matrix of masses andU(q) is potential
energy. Numerical evidence indicates that both (i) time averages for steady-state sampling and (ii) ensemble
averages for time correlation functions are approximated well from numerical trajectories. The challenge is
to explain why this is so.

One view

In the opening talk R. Skeel sketched an explanation for the success of Hamiltonian molecular dynamics
for calculating time correlation functions in terms of the underlying Liouville equations for the probability
density. Calculating numerical trajectories is basicallythe method of characteristics for approximating the
probability density at any point in time. For accuracy it is not necessary to have long accurate trajectories,
e.g., if two trajectories were exchanged this would not change the density. Because each time step generates a
temporal discretization error, long-time accuracy is possible only if these errors are damped. This would seem
to require that the Hamiltonian system have the mixing property. However, this is not easy to demonstrate:
Suppose that the initial density is not very close to the stationary density but that after a long timet it reaches
a densityρ(q, p, t) which is very close. Now considerρ(q,−p, t). In any traditional norm this is equally close
to the stationary density. However, if we started from here and did dynamics, the density would ultimately be
equal to the original initial density. So no matter how closewe are to the stationary density, it could evolve to
be far away. So a convergence proof based on mixing seems difficult because an argument based on showing
contractivity in some metric would have to use a metric that distinguishes betweenρ(q, p, t) andρ(q,−p, t).
Perhaps, an argument that distinguishes between stable andunstable manifolds would work. Alternatively,
the following is plausible: a solutionρ(q, p, t), for smooth initial valuesρ(q, p, 0), spends almost all of its
time very near toρ(q, p):

lim
t→∞

1

t

∫ t

0

‖ρ(·, τ) − ρ(·)‖dτ = 0

—for some suitably weak norm. This means that nearly all initial conditions produce mixing dynamics with
the “expected” rate of convergence.

The preceding discussion is oversimplified and needs to be amended because ergodicity, and mixing, are
not generic properties for Hamiltonian systems. It is only on most of phase space that the almost-always
mixing property can hold.

Another view

In the closing discussion another explanation for the success of MD was given by S. Reich. To explain what
makes MD work, we need to look at the spectral properties ofL. Mixing would correspond to an operator
L with a spectrumσ(L) andσess(L) := σ(L) − 0 with ℜ(σess(L)) ≤ γ < 0. The constantγ characterizes
the decay of correlation. Biomolecular systems would probably not be called mixing in the above sense as
γ would be very close to zero (at least relative to simulation times) andσess(L) contains both mixing (the
essential spectrum) and metastable states (isolated eigenvalues).

In MD the time evolution of a densityρ could be approximated by a sum of individual trajectories and
weighted Dirac delta functions, i.e.,

ρnum(Γ, t) =
∑

i

αiδ(Γ − Γi(t)).

An interesting question is the convergence ofρnum to ρ under an appropriate norm (e.g., Wasserstein norm).
It is optimistic to think that this interpretation of MD would bring “weaker” requirements with respect to
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trajectory accuracy. Rather it would be expected that one needs to require the convergence of numerical
trajectories to shadow trajectories of a modified system fora vast majority of such trajectories. This is also
supported by the fact that hyperbolic systems are mixing andalmost all trajectories of hyperbolic systems
can be shadowed.

One talk that supported this view was W. Hayes’. He presentedthe state-of-the-art on practical shadowing
of real trajectories of Hamiltonian systems. The work originates in the area of celestial mechanics, where
there has been great success in showing that computed trajectories are close to nearby analytic trajectories.
(In a related talk, W. Newman showed how long celestial mechanics trajectories can be computed to machine
precision. Can this be done for MD too?) Some, but not a lot of hope was expressed for the application of
Hayes’ work to MD, though results are preliminary.

Yet another view

There is another view, presented by A. Stuart, that does not require that numerical trajectories are shadowed
over long time intervals by true trajectories. Begin with the observation that we are typically not interested
in the statistical behaviour of the entire system, but only aone or two degree-of-freedom subsystem. The
remainder of the system acts as a heat bath for this component. Often the trajectories of the one component
are well approximated in distribution by those of a stochastic process, such as the solution to a stochastic
differential equation. The remainder of the system acts as asource of random noise and damping. A rigorous
results of this sort is given in [25]. Now, for numerically computed trajectories to give the right statistics, it
is only necessary that they too are close in distribution to the trajectories of this stochastic process. This has
been shown to be true for special systems through numerical experiments in [37] and [38], though as of yet
there are no general theorems.

Dynamical Sampling

The problem of sampling is to generate statesΓn, n = 1, 2, . . . from a prescribed distribution. Assuming
ergodicity, one can compute them from the solution of an ODE or stochastic differential equation (SDE).
Configurations generated this way are (i) tainted by the initial conditions, (ii) correlated, making it more
difficult to estimate variance, and (iii) biased due to the use of a finite step size. Markov chain Monte Carlo
methods, which we consider in Section 10, do not suffer the last of these drawbacks.

For a given Hamiltonian system there are a few different distributions on the state space that we might
want to sample from. These different distributions are typically referred to as ensembles and correspond to
different boundary conditions. The two that we discuss in this report are the NVE ensemble and the NVT
ensemble. In each case it is important to note that the probability density can only be expressed in closed
form up to a multiplicative constant, known as the partitionfunction. This constant is unknown for most
interesting systems.

The NVE or microcanonical ensemble describes an isolated system and corresponds to a fixed number of
particles, fixed volume, and fixed energy for the system. If the fixed energy isE, the density of the distribution
is given by

δ(H(q, p) − E)∫
δ(H(u, v) − E)dudv

.

So zero weight is given to all states whereH(q, p) 6= E. This density is invariant under Hamiltonian dynam-
ics. Assuming that the Hamiltonian dynamics is ergodic on the energy level set, exact Hamiltonian dynamics
sample from the NVE distribution. Hence, when the differential equations of a Hamiltonian system are nu-
merically integrated (that is, we do MD), we are attempting to compute NVE ensemble averages. Of course,
many things could go wrong with this computation, and there will typically be a bias. MD is the only widely
used procedure for sampling from the NVE ensemble.

Two talks specifically addressed errors in microcanonical simulation. In his talk, P. Tupper described
some work attempting to justify the assumption of ergodicity in microcanonical dynamics and MD. The talk
by S. Bond surveyed some results from backward error analysis and showed how (under certain assump-
tions) these results can be applied to compute estimates of the error in averages from molecular dynamics
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simulations. Results from several test problems were explored including examples from constant temperature
molecular dynamics, which corresponds to the next ensemblewe consider.

The NVT or canonical ensemble corresponds to a fixed number ofparticles, fixed volume, and fixed tem-
perature. The density associated with this ensemble is proportional toexp(−βH(q, p)) whereβ = 1/kT , k
is Boltzmann’s constant, andT is temperature. This ensemble is believed to be good representation of the dis-
tribution of the Hamiltonian system if it is in thermal contact with a much larger system of temperatureT . A
nice feature of this ensemble is that positionq and momentump are independent for separable Hamiltonians.

There are many different ways to sample from this distribution including

1. deterministic thermostats,

2. Langevin thermostats,

3. MCMC, (see Section 10) and

4. hybrid Monte Carlo (Monte Carlo using MD for proposals).

In the case of dynamical sampling, ergodicity is an important issue, and for both types of methods the rate of
convergence is also very important. We consider methods 1, 2, and 4 in subsequent subsections.

An important point to note about all these methods is that unlike MD applied to unadorned Hamilton’s
equations, the dynamics is notreal. In each case something has been added to the dynamics that does not
correspond directly to any component of the real physical system we are attempting to model. This is done
so that states generated by the trajectories sample the canonical distribution. However, it is no longer clear
what the trajectories generated can be used for other than this. For example, is there any physical validity to
a velocity autocorrelation function computed with Langevin dynamics? The answer may be no.

Dynamical thermostats

Nośe Dynamics. Leimkuhler, Barth and Sweet are developing extended Hamiltonian formulations for
thermostating molecular dynamics. It was the observation of the physicist Nosé [33] that we can augment the
energy functionH(q, p), by incorporating a single additional phase variable,s, together with its canonical
momentum,π, in the following way:

HNose = H(q, p̃/s) +
π2

2µ
+ U(q) + gkT ln s.

A simple integration argument convinces us that,

∫ ∫
δ
[
HNose(q, sp, s, π) − E

]
dsdπ = constant× exp

(
− N

gkT
H(q, p)

)
,

moreover,
∫ ∫

f(q, p̃/s)δ
[
HNose(q, p̃, s, π) − E

]
dsdπdp̃

= constant ×
∫
f(q, p) exp

(
− N

gkT
H(q, p)

)
dp,

so if we chooseg = N , we are able to reduce the microcanonical density function forHNose to the canonical
one forH .

Time transformation. Accurate sampling of theNV T ensemble for certain types of systems calls for
large fluctuations of the thermostating variables, including potentially very small values. When this happens,
the equations of motion from Nosé’s Hamiltonian are poorlyscaled and standard numerical methods become
unstable. For this reason, a time transformationdt/dt′ = s is used in the derivation of the Nosé-Hoover
equations. However, the way this is traditionally done destroys the symplectic structure. The basis of the
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Nose-Poincaré method of [6] is rather aPoincaŕe transformation, modifying the original Nosé Hamiltonian
to:

HNP(q, p̃, s, π) = s
[
HNose − E

]

= s

[
H(q, p̃/s) +

π2

2µ
+ U(q) + gkT ln s− E

]
.

It is a better alternative starting point for the development of numerical methods than Nosé-Hoover. Now the
construction of numerical methods is slightly complicatedby the modification of the Hamiltonian–we cannot
directly use the Verlet integrator here, for example–but there are several ways to solveHNP which work well.

Nośe-Poincaŕe Chains. An improvement on the Nosé approach is based on what are termed Nośe-
Poincaŕe chains. In Nosé-Hoover chains, one thermostats the thermostating variable, introducing an addi-
tional variable and controlling it via an additional temperature equation. This process can be repeated. For
example we can use a Hamiltonian like this:

HNPC;1 = s0

[
H(q,

p̃

s0
) +

π2
0

2µs21
+

π2
1

2µ1
+ gkT ln s0 + kT ln s1 + f(s1) − E

]
.

In this formula the time-rescaling has been included. If thefunction f is bounded below with bounded
exponential integral, then the integration argument goes through. A canonical sampling argument exists in
this case. We can make these chains as complicated as we like by extending them with more variables.
The design of the regularizing function and choice of thermal masses is important for good results. For the
right choice of parameters, Nosé-Poincare chains have reasonably good ergodicity properties: if we use 3
or 4 augmenting variables and choose carefully the thermal massesµ1, µ2, . . . ,, then we can get an accurate
recovery of canonical sampling from these chains. The need for a careful choice of thermostat masses is a
flaw, though, and the NPC methods tend to be unstable.

RMT Chains. Better methods are possible based on a more complicated interaction between the bath
and the physical variables, termedRecursive Multiple Thermostating(RMT). The theory of this model is
considered in detail in a recent article of Leimkuhler and Sweet, and practical selection of coefficients is
discussed in the work of Barth,Leimkuhler and Sweet presented at the meeting. In nonlinear models the
RMT formulation is found to be more sensitive to the details of the underlying system. Heuristics have been
presented for selection of thermostat masses. Some preliminary encouraging data were presented on the use
of these methods for study of an alanine dipeptide model, based on an implementation of RMT in CHARMM,
the popular molecular dynamics code.

In separate work, Leimkuhler and Jia have proposed a generalframework of thermostating dynamics
for multiscale problems. Using these ideas, we can flexibly introduce canonical sampling over particular
components while preserving physically relevant multiscale structural characteristics of the application and
maintaining these characteristics in the design of efficient numerical algorithms. Certain classes of problems
with fast and slow variable separation were examined in detail. Moreover, a method was proposed for follow-
ing the slow evolution in an nonequilibrium setting, where only the fast degrees of freedom are assumed to
be in equilibrium. The sampling properties of these new formulations were tested in numerical experiments
using an enhanced reversible averaging scheme and a Nosé-Poincaré chain. For some choices of model setup,
a fully Hamiltonian formulation is impractical.

In more recent work of Gill, Jia, Leimkuhler and Cocks, this multiscale partial thermostating method
was applied with modified RMT thermostat for a simplified version of the quasicontinuum molecular dynam-
ics (QCMD) model of materials science. Effectively the combination of this coarse-graining strategy with
advanced thermostats provides a powerful adaptive boundary condition for a localized, detailed atomistic cal-
culation. This type of method is useful for studies of nanoindentation, and for defect nucleation (e.g., cracks).
This work was also discussed at the meeting.

The summary of the state of the art in dynamical thermostats is that they have interesting properties and
can work in practical situations. Their ergodic propertiesare verifiable in at least some numerical studies, and
they provide a flexible adaptive framework for molecular simulation while benefiting from the well known
reliability of the classical MD simulation framework. Morework is needed to probe their robustness, to
understand their ergodic properties, and to evaluate theirefficiency vis a vis stochastic dynamics methods.
Some of these questions were raised in discussions at the meeting.
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Langevin Thermostating

The Langevin equation in the case of sampling is

M
d2

dt2
q = −∇U(q) −Mγ

d

dt
q +

√
2kBTMγ

d

dt
W (t) (1)

whereγ is a damping constant andW (t) is a vector of independent standard Wiener processes.
Like for deterministic thermostating, the Langevin equations have the canonical ensemble as an invariant

distribution. Unlike for deterministic dynamics, there are plenty of situations where Langevin dynamics are
proven to be ergodic [29]. (One situation where Langevin dynamics has not been proven to be ergodic is that
of Dissipative Particle Dynamics (DPD). T. Shardlow explained the problems here and gave an overview of
his proof of ergodicity for 1d DPD. More on DPD in section on coarse graining.)

It is, of course, necessary to have an integration scheme forLangevin dynamics. M. Tretyakov described
his work with Milstein on quasi-symplectic integrators. These integrators contract volume with the same
rate as the original SDEs, and become symplectic methods in the limit of zero noise (γ → 0). However,
these methods applied to non-globally Lipschitz Langevin equations are not themselves ergodic; they will
eventually diverge to infinity with probability one. Tretyakov discussed how this turns out to not be a problem
in practice.

An issue that might be worth considering is the relationshipbetween the Langevin based methods, with
the coupling to a “physical” heat bath through the Caldeira-Leggett-Zwanzig Hamiltonian form, and the Nosé
based methods, with the extended Lagrangian.

One special limiting case of Langevin dynamics is Brownian dynamics, obtained from (1) by letting
M → 0 whileMγ is a constant. This gives:

g
d

dt
q = −∇U(q) +

√
2kBTMγ

d

dt
W (t).

Brownian dynamics samples the from canonical distributionfor the configuration variableq. One issue on
which there was some disagreement was under which conditions it is better to just use Brownian rather than
Langevin dynamics to sample configurations. A related question is what is the best parameterγ to use in
Langevin dynamics for the fastest sampling.

Comparison of Thermostats.Both deterministic thermostats (such as Nosé) and Langevin (stochastic)
thermostats can be used successfully to sample configurations from the canonical distribution. Both analytic
dynamics have the canonical measure as an invariant. Langevin dynamics are provably ergodic in some
cases. This not true of dynamical thermostated dynamics, but it may not be important in practice. In both
cases numerical methods applied to them will lead to a bias (that decreases with reduced step length) and
potentially instability over long simulations. A natural question is which— if any– is better for practical
problems. In particular, which allows more efficient sampling of the canonical ensemble? One issue is that
generating a complete set of random numbers per time-step may be costly in some circumstances. Some
pointers for measuring ergodicity and convergence are given in [2], in particular, they describe an empirical
“ergodic measure,” which can be used to compare algorithms and to optimize them. Another possibility is to
compare the two methods when used as proposals in Hybrid Monte Carlo (see next subsection). More work is
needed to carefully and systematically compare the effectiveness of the best algorithms for both deterministic
and stochastic dynamics.

Hybrid Monte Carlo

Hybrid Monte Carlo (HMC) is an MCMC method that uses MD to generate proposals. We saw many interest-
ing developments in this area. J. Izaguirre presented some work on using the shadow Hamiltonian to reduce
the number of rejections. The idea is that in typical HMC you use the amount of energy drift experienced to
decide whether or not to accept of MC move. However, it is hardto differentiate between energy drift and
a short-term fluctuation just by looking at the energy. However, it has been shown, e.g, [9], how to compute
the shadow Hamiltonian value on the fly, and this can be used todetermine whether drift is really occurring.
Izaguirre and his collaborators have incorporated this into HMC.

HMC in this form, like other Monte Carlo methods, only sampleover configuration space. It seems
unlikely that there is any way to interpret long trajectories as ’real’ dynamics in even some weakened spectral
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sense (see 10). S. Reich and co-worker addressed this issue in taking the approach of Izaguirre even further by
reconsidering the means of generating new proposals in HMC.Typically, a proposal is made by discarding all
momentum information and re-sampling it from the canonicaldistribution. Akhamtskaya & Reich suggested
(i) to implement HMC over phase space, (ii) to increase the acceptance rate by using a shadow Hamiltonian
(see Izaguirre & Hampton), and (iii) to only partially re-sample momenta. It seems feasible that the associated
Markov chain has spectral properties that are similar to discrete-time Langevin dynamics and/or DPD in the
limit of weak thermal coupling. A main theoretical obstacleis the necessary momentum reversal after a
rejected MD step. However, using a sufficiently high-order shadow Hamiltonian, rejections should almost
become negligible. This is clearly an area for further research.

As with all MC methods, there is still the issue in HMC of how tooptimize parameters to maximize
performance. Many authors optimize on the rejection rate. What should be optimized (minimized) is the
integrated autocorrelation function, which gives the variance of estimators. Rejection rate affects this, but it
is not the whole story.

Other Strategies for Efficient Configurational Sampling

An abundance of effective techniques have been recently proposed. There is a need to put these methods in
an abstract framework and do a theoretical comparison of efficiency.

Many of these techniques are importance sampling schemes. Importance sampling uses points drawn
with biased probability densityρb(q) to estimate expectations with respect to the distribution with density
ρ(q) using a weighted average, with weights proportional toρ(q)/ρb(q). However, for high-dimensional
problems it is difficult to find an easily-sampledρb(q) that is close enough toρ(q), and for which the density
functionρb(q) can easily be computed. Commonly the density is known only upto a multiplicative constant,
in which case one samples fromρb(q) using an MCMC method and uses

〈O(q)〉 =
〈O(q)σ(q)/σb(q)〉b

〈σ(q)/σb(q)〉b
whereσ, σb denote unnormalized densities. In practice, with finite sampling, this can be approximated by
(
∑

nO(qn)σ(qn)/σb(qn))/(
∑

n σ(qn)/σb(qn)) ( which is a biased estimate).

Fast growth methods

These are importance sampling methods that use the Jarzynski identity [22]. The Hamiltonian is parameter-
ized and changed it as a function of time while doing Markovian dynamics, which must satisfy a “balance
condition.” Typically the normalizing constant of the initial distribution for the Markovian dynamics is not
known and it is sampled using dynamics or an MCMC method.

The talk by R. Neal proposes the use of temperature as a parameter for enabling a sampling not hindered
by potential energy barriers. Also, it permits the initialization of the trajectories using configurations drawn
exactly from a given distribution (as opposed to an approximate equilibration), so the method becomes one
of perfect sampling (no bias due to initial configurations).

Theoretical studies such as [34] indicate that fast growth methods as they are currently formulated offer
no advantage over equilibrium sampling, e.g., umbrella sampling.

Hamiltonian importance sampling

The problem of finding an easily-sampledρb(q) that is close enough toρ(q), and for which the densityρb(q)
can easily be computed can be overcome using aρb(q) that is defined in terms of Hamiltonian dynamics.
For a molecular system, we sample particle positions uniformly over some (wrapped-around) region, and
also sample momenta for these particles from their distribution at a high temperature. We then simulate
Hamiltonian dynamics for this system, while periodically multiplying the momenta by some factor slightly
less than one, which eventually cools the system to whatevertemperature,T , we are interested in. This
procedure defines a distributionρb(q), which can be used to estimate expectations with respect toρ(q), the
canonical distribution at temperatureT . Crucially, for each sampledq, we can computeρb(q), and hence
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the appropriate weight to attach to this point in the average: The density of the initial point sampled from
the high-temperature distribution is easily calculated; since Hamiltonian dynamics conserves phase space
volume, the density of a point found after simulating Hamiltonian dynamics for some time is the same as that
of the original point; and finally, multiplying a momentum variable by a factor less than one simply increases
the probability density of the resulting point by the same factor.

Replica exchange

In the discussion on the last day, R. Neal compared parallel tempering with the use of the Jarzynski equality.
He said that Jarzynski’s method tends to require a finer spacing of distributions than parallel tempering. But
on the other hand, information in parallel tempering propagates between distributions via a random walk,
which tends to taken2 steps to move a distance ofn. These two effects more-or-less cancel out, so that there
is no clear advantage of one method over the other (at least inthis respect—their properties differ in other
ways that may be relevant in some problems). This points to a research direction of trying to modify one of
these methods to obtain the advantageous property possessed by the other method.

Adaptive biased-force method

Eric Darve presented novel techniques to calculate the potential of mean force along a reaction coordinate,
the so-called Adaptive Biasing Force (ABF) and an extensionto Monte-Carlo simulations (MC-ABF). The
goal of ABF is to improve the sampling of phase space when calculating the free energy along a reaction
coordinateξ(r) or potential of mean force:

A = −kBT ln〈δ(ξ(r) − ξ)〉

In typical molecular systems, the molecules remain trappedin low energy basins for extensive periods of time
escaping only rarely. See Figure 10.1.
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Figure 10.1: Typical free energy profile showing two basins of attraction and a free energy barrier at transition
states. In the method of Umbrella Sampling, a biasing potential is used to improve the sampling of the system.
The simulation is often performed inside of windows to improve the efficiency.

ABF improves the efficiency of this type of calculation by applying an external biasing force which leads
to a uniform sampling along the reaction coordinate. The biasing force is obtained by applying the following
equation for the derivative of the free energy:

dA

dξ
= −

〈
d

dt

(
mξ

dξ

dt

)〉

ξ

, m−1
ξ =

∑

r

1

mr

(
∂ξ

∂xr

)2

The applied force is taken approximately equal to(dA/dξ)∇ξ. It is continuously updated using samples
gathered during the simulation.

Darve presented results on dichloro-ethane, fluoro-methane with a water-hexane interface and results on
the insertion of a helix inside a membrane: see Figure 10.2.
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Figure 10.2: Helix inside a mimetic membrane. This system isused to understand the self-assembly of helices
in cell membranes to form ion channels.

(a) Deca–L–alanine in its folded configuration
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(b) Free energy profile for Deca–L–alanine calculated using
the adaptive biasing force. The inset shows the number of
samples as a function ofξ.

Figure 10.3: Deca-L-alanine
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Christophe Chipot presented simulation results on the unfolding of deca-alanine using ABF. See Fig-
ure 10.3.

In addition to Molecular Dynamics, Darve presented a new algorithm based on ABF for Metropolis
Monte-Carlo simulations, called MC-ABF. This algorithm isbased on applying a bias to the transition prob-
abilities. MC-ABF was applied to calculate the density of states for the Ising model. The Ising model is a
square system ofL2 spins (up or down) whose energy is given by:E = −∑i,j σiσj where the indicesi and
j correspond to neighboring spins. In MC-ABF, the density of statesg(E) is estimated using a recurrence
formula:

g(Ei) = g(Ei−1)
Π+(Ei−1)

Π−(Ei)
(2)

whereΠ+(Ei−1) is the probability to transition from energyEi−1 to Ei and Π−(Ei) the probability to
transition fromEi toEi−1. The modified acceptance rule is then given by:

pb(Ei → Ej) = min

(
gABF (Ei)

gABF (Ej)
, 1

)

wheregABF is the current estimate ofg(E) computed using Equation 2. This biasing leads to a uniform
sampling in energy space. In particular states at high and low energies (2L2 and−2L2) are visited as often
as intermediate states with energy close to zero. This is despite a difference in population at those energies
of aboutexp(180) ≈ 1080.

Results were presented for the calculation of the density ofstates as well as internal energy, specific heat,
Helmholtz free energy and Entropy. See Figure 10.4.
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(a) Density of states for Ising model and
comparison with analytical solution
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(b) Internal energy for Ising model as a
function of temperature
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(c) Specific heat
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(d) Helmholtz free energy
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(e) Entropy

Figure 10.4: Ising model of size16 × 16.

Transformation of Configuration Space Variables

One of the computational grand challenge problems is to develop methodology capable of sampling confor-
mational equilibria in systems with rough energy landscapes. If met, many important problems, most notably
protein folding and protein aggregation, could be significantly impacted. In his talk, Tuckerman present a new
approach in which molecular dynamics is combined with a novel variable transformation designed to warp
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configuration space in such a way that barriers are reduced and attractive basins stretched. The essence of
the method is as follows: Consider a one-dimensional potential V (x) with a barrier. The canonical partition
function is

Q =

∫
dp dx exp

{
−β
[
p2

2m
+ V (x)

]}

If the barrier inV (x) is high, then if we try to evaluate this partition function using molecular dynamics or
Monte Carlo, the presence of the barrier will make crossing events between the two wells on either side of
the barrier rare and, hence, hinder the sampling. However, consider a nonlinear variable transformation in the
above partition function:

u = f(x) = x0 +

∫ x

x0

dy e−βVref (y)

whereVref(x) is an arbitrary reference potential. When substituted intothe partition function, one obtains

Q =

∫
dp du exp

{
−β
[
p2

2m
+ (V (x(u)) − Vref(x(u))

]}

One can then use Monte Carlo or thermostated molecular dynamics with a Hamiltonian of the formp2/2m+
V (x)−Vref(x). It is, therefore, very likely that the techniques being developed by Leimkuhler and coworkers
will be applicable with this method. Note that this transformation yields exactly the same partition function
and therefore, preserves all of the thermodynamic and equilibrium properties of the system. From the form of
the transformed partition function, the optimal choice of the reference potential becomes clear: One should
chooseVref(x) to be equal to the true potential in the barrier region and zero outside the this region. Note
that this is not equivalent to umbrella sampling or guiding potential methods, as the variableu naturally
moves on the difference potentialV (x) − Vref(x) so that no re-weighting of the phase space is needed. By
applying transformations of this type on the full set of backbone dihedral angles in polymers and proteins,
Tuckerman was able to show that very large gains in the efficiency of sampling configuration space could be
obtained for large polymer chains and small model proteins.The method is further enhanced by including
adaptive transformations that remove barriers that arise “on the fly” in a simulation by neighboring solvent
atoms or short-range non-bonded type interactions. Currently, Tuckerman and coworkers are implementing
the method in their PINYMD code, a code that contains a full “bio-builder” that will allow all-atom models
of proteins to be treated, thereby allowing the method to be tested on realistic problems.

Multicanonical simulations

Numerical experiments have demonstrated that combining replica exchange with multicanonical Monte Carlo
leads to much more effective sampling [30].

Sampling from Path Space

Many reactions in (bio)molecular systems occur on time-scales outside the range of current direct molecular
dynamics simulations. In simulations of slow molecular reactions, much of the simulation time is in effect
”wasted” waiting for a large enough fluctuation to carry the system from the reactant state to the product state.
Following Dellago, Chandler and co-workers [8], one can instead attempt to create only transition paths, i.e.,
those trajectory segments that connect reactant and product states and exclude the waiting time in the reactant
well. However, even if one has “harvested” many such reactive trajectories, it is not always immediately
clear where the “bottleneck” of the reaction is (the transition state), and which measure best describes the
progress of the reaction (the reaction coordinate). Bayes relation for conditional probabilities can be used to
extract transition states and reaction coordinates from anensemble of transition paths (obtained, e.g., by path
sampling) and an equilibrium ensemble (obtained, e.g., by umbrella sampling) [21]:

p(TP|x) =
p(x|TP)p(TP)

peq(x)
(3)
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wherep(x|TP) is the probability density of the phase-space variablex, peq(x) is the equilibrium density,
andp(TP) is the fraction of time spent in transition paths, averaged over long equilibrium trajectories. The
conditional probability of being on a transition path,p(TP|x), can be expressed in terms of splitting (or
commitment) probabilities, and assumes a maximum at the transition state. The Bayesian relation can be
used to locate transition states, optimize reaction coordinates, and calculate rate coefficients directly from
path sampling [21, 4]. Moreover, it leads to a simple transition-path sampling algorithm in which trajectories
are created by shooting from phase points near a presumed dividing surface between reactant and product
states [21, 4].

Another approach to path-sampling was presented by A. Stuart in his talk. He considered the problem in
a more general framework: molecular dynamics is just one possible application; another is nonlinear filtering
in signal processesing. He described an abstract MCMC method for sampling in such problems, based on
generalizing the Metropolis-adjusted Langevin algorithms to infinite dimensions. This leads naturally to the
study of stochastic reaction-diffusion equations which, in their invariant measure, sample from the required
distribution [16].

Coarse graining

Classical MD simulations are typically the method of choicefor studying biophysical and soft matter systems
at the molecular level. Characteristically, they are limited to system sizes of approximately104 atoms and to
times of around 100 ns. Thus, to study systems such as polymermelts, the computationally accessible time
and length scales are simply far too short for the system to beable to reach equilibrium as dynamic processes
during equilibration occur under hydrodynamic conditions.

A plethora of coarse graining and multiscale modeling methods have been developed to overcome the
above difficulties. The approaches range from position space coarse-graining to free energy methods and field
theory. Polymer research has been probably the leading fieldin multiscale modeling in both practical and the-
oretical aspects. For example, the projection operator formalism has been used by Akkermans and Briels [1]
to investigate the fluctuating forces in coarse graining, and and the so-called GENERIC approach [14, 15, 35],
which has very different nature but is also based on operatorprojection formalism, provides an analyti-
cally rigorous method for coarse-graining. GENERIC (General Equation for Non-Equilibrium Reversible-
Irreversible Coupling) is based on the idea is that there is ageneral form for the time-evolution of non-
equilibrium systems and that it can be given in a general form

dx

dt
= L(x)

δE(x)

δx
+M(x)

δS(x)

δx
,

wherex characterizes the state of the system,L(x) is an antisymmetric matrix andM(x) is a symmetric
and positive definite matrix. They are connected to the second and the first law of thermodynamics, respec-
tively. E(x) andS(x) are functionals for the total energy and entropy, respectively. It is important to to
notice that although GENERIC is rigorous it is not unique. There is no unique way to coarse grain and that
constitutes one of the main conceptual difficulties. Other commonly used analytical approaches rely on the
Ornstein–Zernike equation [17] and the hypernetted chain closure [5, 26]. A good review of some of the
recent developments is given in Ref. [23].

Dissipative Particle Dynamics (DPD)

As a conceptually simple approach, Dissipative Particle Dynamics (DPD) [10, 20, 24] has recently become
popular in soft matter simulations. In DPD the pairwise interaction potentials are “soft” in contrast to the
Lennard–Jones -type potentials. “Softness” means that theDPD potential has a finite value at zero particle
separation, i.e., the Fermi exclusion principle is not accounted for. It is not obvious that the above approxi-
mation is reasonable but Forrest and Suter [13] showed that by explicitly averaging over fluctuations in over
long times that approximation becomes justifiable.

Another motivation behind DPD is that it conserves hydrodynamics, i.e., all the interactions are pairwise
conservative. In DPD the force exerted on particlei by particlej is

~Fij = ~FDij + ~FRij + ~FCij , (4)
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where ~FDij , ~FRij , and ~FCij are the dissipative, random and conservative forces, respectively. The different
components are given as

~FDij = −γ ωD(rij)(~vij · ~eij)~eij and
~FRij = σ ωR(rij) ξij ~eij ,

(5)

where~rij ≡ ~ri − ~rj , rij ≡ |~rij |, ~eij ≡ ~rij/rij , and~vij ≡ ~vi − ~vj for particles with positions~ri and
velocities~vi. Theξij are symmetric Gaussian random variables with zero mean and unit variance. They are
independent for differentpairsof particles and different times.

The coupling of the the dissipative and random forces,~FDij and ~FRij , comes from the fact that the thermal
heat generated by the random force must be balanced locally by dissipation. The precise relationship between
these two forces is determined by the fluctuation-dissipation theorem [10] and is given as

ωD(rij) = [ωR(rij)]
2 and σ2 = 2γkBT

∗, (6)

whereT ∗ is the canonical temperature of the system.
The most common choice for the weight functionsωD andωR is the soft-repulsive form

ωR(rij) =

{
1 − rij/rc for rij < rc;
0 for rij > rc,

(7)

whererc is the cut-off distance andωD(rij) is given by the fluctuation-dissipation relation above. This is
also the form that the conservative force takes in the standard DPD formulation.

In addition, DPD can be used as a momentum conserving thermostat. That, and issues related to integra-
tion of the DPD equations of motion are discussed in Refs. [3,32, 39].

Systematic derivation of DPD

The standard DPD is purely phenomenological. Recently, Flekkøy et al. [11, 12] were able to formally link
DPD to molecular level properties by using a Voronoi tessellation based technique. The advantage of their
method is that it can be used to resolve different length scales simultaneously. The method is formally akin
to the well-known renormalization group procedure extensively used in the theory of critical phenomena.

Effective interactions from the pair correlations

Inverting the radial distribution functionsg(r) in order to obtain pair potentials offers another starting point.
That approach can be used to obtain the pair potentials for DPD simulations in a more realistic and systematic
way. Using pair correlations is based on the so-called Henderson theorem [18] which stipulates that under
fixed conditions two pair potentials which give rise to the sameg(r) cannot differ by more than a constant.
This constant is determined by the condition

V (r → ∞) → 0, (8)

wherer is the interparticle distance andV is the pair potential. The Henderson theorem analogous to the
Hohenberg–Kohn theorem [19], i.e., all ground state properties are determined by the electron density. What
makes the application of the Henderson theorem appealing isthat the radial distribution function obtained
from a simulation includes effects from the many-body interactions. Furthermore, this way it is possible
to define new interaction sites and to compute the radial distribution function between them, and thus to
systematically obtain new coarse-grained models at different levels of description.

The Inverse Monte Carlo (IMC) procedure of Lyubartsev and Laaksonen [28] is practical implementation
of Henderson’s idea. In IMC, one inverts the radial distribution functions – experimental or from microscopic
simulations – to obtain effective potentials for a coarse-grained model with a fewer number of degrees of
freedom. This approach has been recently used to study salt solutions and lipids [27, 31]

It is important to notice that the effective potential includes corrections from many-body interactions to
the well-defined potential of mean force (PMF) [17], which isdefined as

V pmf(r) ≡ −kBT ln g(r), (9)
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wherer is the interparticle distance andg(r) the pair correlation function. In other words, the effective
potential isnot the same as the potential of mean force in Eq. (9). Inclusion of the many-body corrections is
the reason why an iterative IMC scheme is needed. The iterative IMC procedure guarantees self-consistency,
i.e., the effective potentials lead to the same pair correlation behavior as the underlying MD simulations.

Coarse graining – the future

The above provides just a scratch on the surface. There are a lot of other interesting and promising approaches.
In general, multiscale modeling is a very rapidly developing field and progress is partly driven by the fact
that despite the increase in CPU power, it is algorithm and method development that is crucial for treating
complex problems such as protein folding, polymers, or cellular membranes.
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Chapter 11

Geometric and Asymptotic Methods in
Group Theory (05w5011)

June 11–16, 2005
Organizer(s): Rostislav Grigorchuk (Texas A&M University), Alexander Olshanskiy (Van-
derbilt University), Akbar Rhemtulla (University of Alberta), Mark Sapir (Vanderbilt Uni-
versity), Dani Wise (McGill University)

The goal of the conference was to bring together specialistsin geometric, probabilistic and asymptotic
methods in group theory. Special attention was paid to the following topics:

1. Amenability and randomness in groups

• Random walks and generic properties of groups

• Poisson boundaries of groups

• Amenable actions of groups

• Minimal volume entropy problem for graphs

2. Actions on rooted trees, growth and self-similarity

• Growth and diameters of Schreir graphs of groups generated by finite automata

• R. Thompson group

• Subgroup growth of groups

3. Groups, boundaries and geometries

• Cubulation of groups and right angled Artin groups

• Quasi-isometric rigidity of groups

• Asymptotic cones of groups

• Algebraic geometry over groups and Tarski problems

4. Lattices in Lie groups

• Bounded generation property

• Propertyτ

• Expanders
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Many informal discussions lead to creating new ideas of collaboration between specialists in different areas
of group theory. In particular, it may be possible to make groups of intermediate growth and torsion groups
act on cubings using the end structure of their Schreir graphs; several properties of 1-relator groups which
are believed to be generic may be connected to important properties of random walks on lattices, etc.

Here is the list of participants of the conference and the abstracts of their talks.

1. Miklos Abert (University of Chicago)
On chains of subgroups in residually finite groups
ABSTRACT: We analyze descending chains of finite index subgroups and the corresponding permutation
representations for residually finite groups. As a result weshow that we can obtain an arbitrary countable
set of residually finite groups as the intersection set of a conjugacy class of a suitable chain. Although the
representations do not approximate the group in general, weshow that in certain cases, e.g. for higher rank
real lattices, a weaker form of approximation holds.

2. Roger Alperin (San Jose State University)
Subgroup Separability in Linear Groups
ABSTRACT: We’ll survey some examples and non-examples for separability of subgroups in f.g. linear
groups.

3. Jason Behrstock (Columbia University)
Relative hyperbolicity and the mapping class group
ABSTRACT: We will describe some recent work on the asymptotic geometry of the mapping class group.
In particular, we will give a geometric proof that the mapping class group is not hyperbolic relative to any
finite collection of finitely generated subgroups. We will also contrast this with a new description of a way in
which the mapping class group is non-positively curved. Parts of this talk are joint work with C. Drutu and
L. Mosher.

4. Ievgen Bondarenko (Texas A&M University)
Growth of Schreier graphs associated to groups generated bybounded automata
ABSTRACT: We describe an algorithm for calculating the growth of diameters of Schreier graphs and the
orbital contracting coefficient associated with actions ofgroups generated by bounded automata on levels and
on the boundary of the tree. As a corollary we get estimates for the polynomial growth of Schreier graphs
associated with action on the boundary. This is joint work with V. Nekrashevych.

5. Jim Cannon (Brigham Young University)
Dead-end elements in Thompson’s group
ABSTRACT: We report on work by student Ben Woodruff (BYU PhD, 2005) whouses Blake Fordham’s
results to sharpen the Cleary-Taback description of dead-end elements in Thompson’s group and to give a
characterization of the same, notes the existence of regular strings of dead-end elements, and notes that each
has a ”tail” (varying lengths) of elements pointing back toward the identity consisting of elements that are
almost dead-end elements. Such structures create obvious difficulties in the most obvious proposed methods
to prove the nonamenability of Thompson’s group. It remains, of course, to study the asymptotic density of
such elements.



128 Five-day Workshop Reports

6. Yair Glasner (University Of Illinois at Chicago)
Finitely generated vs’ Normal subgroups in 3-manifold groups
ABSTRACT: Let G be the fundamental group of a 3 dimensional manifold offinite volume. We define an
invariant topology on G, by taking the normal subgroups and their cosets as a basis for the topology. This
is a refinement of the profinite topology. We prove that every finitely generated subgroup of G is closed in
this topology. As a corollary we deduce that a maximal subgroup of infinite index in G cannot be finitely
generated. The main tool used in the proof is the Marden conjecture that was recently established by Ian
Agol, and by Calegari-Gabai.

This is a joint work with Pete Storm and Juan Souto.

7. Fr édéric Haglund (University of Paris-Sud)
Commensurability and separability for uniform lattices insome polygonal
complexes
ABSTRACT: We consider a (word hyperbolic) Coxeter group whose Davis-Moussong complex is two-
dimensional. We show (in almost every case) that a uniform lattice of this complex is commensurable with
the initial Coxeter group if all of its quasi-convex subgroups are separable. The previous “if” is an “if and
only if” for example when the Coxeter group is right-angled.As an application there is a single commensu-
rability class of uniform lattices as soon as the link of a vertex in the Davis-Moussong complex is a bipartite
graph - for example in Bourdon buildings.

8. Chris Hruska (Chicago)
Cubulating relatively hyperbolic groups
ABSTRACT: We give criteria for proving that a group acts properly discontinuously on a locally finite CAT(0)
cube complex. The criteria are inspired by ideas from the theory of relative hyperbolicity but are not limited
to relatively hyperbolic groups.

We also give criteria for determining when a relatively hyperbolic group acts on a finite dimensional cube
complex and when such an action is cocompact, generalizing atheorem of Sageev from the word hyperbolic
setting. More generally, we describe a “cusped cofinite” structure relative to the action of the parabolic
subgroups. This structure is analogous to the cusped structure of a finite volume manifold with pinched
negative curvature. This is joint work with Dani Wise.

9. Tim Hsu (San Jose State University)
Cubulating graphs of free groups with cyclic edge groups
ABSTRACT: We prove that ifG is a finitely generated group that has a decomposition as a graph of free
groups with cyclic edge groups, andG is “generic” (essentially, contains no Baumslag-Solitar subgroups),
thenG is the fundamental group of a compact CAT(0) cube complex. Wealso discuss generalizations of this
result. This is joint work with D. Wise.

10. Vadim Kaimanovich (Bremen)
Amenability of self-similar groups and random walks with internal degrees of freedom
ABSTRACT: The talk is devoted to a discussion of the relationship between random walks with internal de-
grees of freedom and natural matrix presentations of self-similar groups which allows one to prove amenabil-
ity of such groups by establishing triviality of the Poissonboundary for appropriate random walks on such
groups.



Geometric and Asymptotic Methods in Group Theory 129

11. Martin Kassabov (Cornell University)
Symmetric groups and Expanders
ABSTRACT: A finite graphs with large spectral gap are called expanders. These graphs have many nice
properties and have many applications. It is easy to see thata random graph is an expander but constructing
an explicit examples is very difficult. All known explicit constructions are based on the group theory — if an
infinite group G has property T (or its variants) then the Cayley graphs of its finite quotients form an expander
family.

This leads to the following question: For which infinite families of groupsGi, it is possible to find generating
setsSi which makes the Cayley graphs expanders?

The answer of the question is known only in few case. It seems that ifGi are far enough from being abelian
then the answer is YES. However if one takes ‘standard’ generating sets the resulting Cayley graphs are not
expanders (in many cases).

I will describe a recent construction which answers the above question in the case of the family of all sym-
metric/alternating groups. It is possible to construct explicit generating setsSn of Altn, such that the Cayley
graphsC(Altn, Sn) are expanders, and the expanding constant can be estimated.

Unlike the usually constructions of expanders, the proof does not use an infinite group with property T
(although such group exists) but uses the representation theory of the symmetric groups directly.

12. Olga Kharlampovich (McGill)
Equations in groups with free regular length function.
ABSTRACT: I will discuss the Elimination process for solving equations in groups with free regular length
function (in particular, in a free group).

13. Avinoam Mann (Einstein Institute of Mathematics, Hebrew University, Jerusalem)
Positively finitely generated groups and theirζ-functions
ABSTRACT: A profinite group is positively finitely generated (PFG) if, for some k, the set of k-tuples gener-
ating it has a positive Haar measure. We denote this measure by P (G, k). E.g. finitely generated pronilpotent
groups arePFG, while free profinite groups of rank at least two are not.

Letmn(G) be the number of maximal subgroups ofG of indexn. A theorem of Mann-Shalev characterizes
PFG groups by the property thatmn(G) grows polynomially, i.e.mn(G) ≤ ns, for some constants. It fol-
lows that f.g. prosoluble groups arePFG, and more generally, any f.g. profinite group that does not generate
the variety of all profinite groups isPFG (Borovik-Pyber-Shalev). This includes the profinite completions of
arithmetic groups with the congruence subgroup propertyCSP.

In many cases we can interpolate the values ofP (G, k) to an analytic function defined in a right half-plane
of the complex plane. The reciprocal of this function is termed the probabilisticζ-function ofG. It exists,
e.g., whenG is prosoluble, or when it is an arithmetic group with theCSP.

14. Dave Witte Morris (University of Lethbridge)
Bounded generation of special linear groups
ABSTRACT: We present the main ideas of a nice proof (due to D.Carter, G.Keller, and E.Paige) that every
matrix in SL(3,Z) is a product of a bounded number of elementary matrices. The two main ingredients
are the Compactness Theorem of first-order logic and calculations of Mennicke symbols. (These symbols
were developed in the 1960s in order to prove the Congruence Subgroup Property.) Similar methods apply to
SL(2, A) if A = Z[

√
2] (or any other ring of integers with infinitely many units).
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15. Roman Muchnik (Chicago)
Amenability of free Grigorchuk group
ABSTRACT: I will describe how the methods developed by V. Kaimanovichcan be used to prove that the
Free Grigorchuk group is amenable. The main tool used by V. Kaimanovich is to obtain a Random walk with
0 entropy. I will also describe some modifications to simplify computations.

16. Graham Niblo (Southampton)
An eccentric characterisation of hyperbolicity
ABSTRACT: We give a new characterisation of hyperbolicity for geodesic metric spaces in terms of the
geometry of balls. It is related to Papasoglu’s ”thin bigons” characterisation of hyperbolic graphs. This is
joint work with Indira Chatterji

17. Stephen Pride (Invariant Ideals for Groups)
University of Glasgow
ABSTRACT: Given a group of typeFPn, David Cruickshank and I defined a table of idealsE(i, j) (0 ≤
i ≤ n, jany integer) in the abelianized group ring. This table is an invariant of the group. The first column
E(1,−) is the chain of classical Alexander ideals. I will give the definition of these tables, describe some of
their properties, give examples of calculations, and raisesome open questions.

18. Michah Sageev (Utah & Technion)
Quasi-isometries and right angled Artin groups.
ABSTRACT: We discuss some results regarding the quasi-isometric rigidity and classification of right angled
Artin groups. This is joint work with Bestvina and Kleiner.

19. Dmytro Savchuk (Texas A&M University)
Schreier graphs related to the Thompson’s group
ABSTRACT: We will explicitly describe the Schreier graphs of the Thompson groupF with respect to the
stabilizer of 1

2 and generatorsx0 andx1 and of its unitary representation inL2([0, 1]) induced by standard
action on the interval[0, 1].

The main result is that these two graphs coincides modulo finite subsets.

20. Dan Segal (All Souls College, Oxford)
Subgroups of finite index in profinite groups
ABSTRACT: We answer a 30-year old question of Serre by proving thatall subgroups of finite index in a
finitely generated profinite group are open. This is deduced from the main theorem:If w is ad-locally finite
word andG is a d-generator finite group then every element of the verbal subgroupw(G) is a product of
f(w, d) w-values. (w is calledd -locally finite if Fd/w(Fd) is finite, whereFd is the free group of rank
d, andf(w, d) denotes a number that depends only onw andd.) The proof is complicated and depends on
CSFG. (joint work with Nikolay Nikolov)
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21. Dan Segal (All Souls College, Oxford)
Groups with polynomial index growth
ABSTRACT: A groupG hasPIG if there existsα such that

∣∣∣G/Gn
∣∣∣ ≤ nα for every finite quotientG ofG and

every natural numbern. This holds for example ifG is an arithmetic group with the congruence subgroup
property, or ifG is ‘boundedly generated’ (a product of finitely many cyclic groups), in particular ifG is a
soluble group of finite rank. But there also exist uncountably many finitely generated residually finite groups
with PIG that are neither linear nor virtually soluble. We answer a question posed by me 20 years ago with
the Theorem:LetG be a finitely generated soluble residually finite group. ThenG hasPIG if and only if
G has finite rank. Along the way we prove thatevery infinite residually finite boundedly generated group
has an infinite linear image. The proofs use some representation theory of finite solublegroups and a lot of
‘quasi-commutative algebra’: the study of abelian group rings with operators. (joint work with Laci Pyber)

22. Vladimir Shpilrain (The City College of New York)
Translation equivalence in free groups
ABSTRACT: Motivated by the work on hyperbolic equivalence of homotopy classes of closed curves on
surfaces, we investigate a similar phenomenon for free groups. Namely, we study the situation where two
elementsg, h in a free groupF have the property that for every free isometric action ofF on anR-treeX
the translation lengths ofg andh onX are equal or have bounded ratio. This is joint work with I.Kapovich,
G.Levitt, P.Schupp.

23. Tatiana Smirnova-Nagnibeda (University of Geneva)
Minimizing entropy over the Outer space
ABSTRACT: We solve the minimal volume entropy problem in the class of universal covers of finite connected
metric graphs.

24. Benjamin Steinberg (Carleton University)
The spectra of lamplighters and related groups via automata
ABSTRACT: The speaker and Silva showed that any wreath productG ≀Z, withG a finite Abelian group, can
be realized as the group generated by a special kind of automaton called a Cayley machine. In this talk we
calculate the KNS spectral measure associated to the group of a Cayley machine, and in particular to such
generalized lamplighters. KNS spectral measures were introduced by Grigorchuk and Zuk for groups acting
spherically transitively on rooted trees.

We also show that the KNS spectral measure associated to an automata group coincides with the spectral
measure of the simple random walk on the automata group if andonly if the action of the group is free in a
Baire category sense sense. This is the case for wreath product groups of the above form, and so we have
given an automata-theoretic calculation of their spectralmeasures. A different approach has been used by
Dicks and Schick to calculate these spectral measures.

This is joint work with M. Kambites and P. Silva.
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25. Zoran Sunik (Texas A&M University)
Free-by-free right-angled Artin groups
ABSTRACT: A group H is poly-free if it has a subnormal series

1 = H0 E H1 E · · · E Hn = H

in which all factors are free. Equivalently, H is a finitely iterated semidirect product of free groups. The
shortest length of a subnormal series with free factors is called the poly-free length of H.

Our main results are as follows.

All right-angled Artin groups are poly-free. The poly-freelength of a right-angled Artin groupAΓ is bounded
between the clique number and the chromatic number of the graphΓ that defines the groupAΓ. An explicit
realization of a subnormal (in fact normal) series with freefactors and of length equal to the chromatic number
of Γ is provided.

A complete characterization of graphs that define right-angled Artin groups of poly-free length 2 is given.
Such graphs must have an independent set of verticesD such that every cycle inΓ contains at least two
vertices fromD.

Finally, considerations involving the Euler characteristic allow us to conclude that a right-angled Artin group
AΓ has poly-free length 2 with both factors of finite rank, i.e.,AΓ is a semidirect product of two free groups
of finite rank if and only if the defining graphΓ is a tree or a complete bipartite graph.

This work is motivated by a question of Bestvina asking if allArtin groups are virtually poly-free.

26. Balint Virag (Toronto)
Torsion generators and slow random drives in Britain
ABSTRACT: A b-spinner graph is a sum of directed cycles of length at mostb. An example is a simplified
road map of Britain consisting of roundabouts and short two-way streets. Another example is any directed
Cayley graph of the Grigorchuk group.

We give up-to-constant optimal upper bounds on the rate of escape of random walks on spinner graphs in
terms of their growth.

For torsion groups of intermediate growth, there is no set ofgenerators for which the corresponding random
walk escapes at a positive speed. (This statement is false for any infinite nilpotent group.)

This is joint work with David Revelle.

27. Andrzej Zuk (CNRS, Paris VI)
Automata groups
ABSTRACT: We present recent results concerning groups generated by finite automata.
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Combinatorial Game Theory Workshop
(05w5048)

June 18–23, 2005
Organizer(s): E. Berlekamp (Berkeley), M. Mueller (University of Alberta), R. J. Nowakowski
(Dalhousie University), D. Wolfe (Gustavus Adolphus College)

A main aim of the workshop was to bring together the two camps,mathematicians working in combina-
torial game theory and computer scientists interested in algorithmic and Artificial intelligence.

The Workshop attracted a mix of people from both communities(17 from mathematics, 16 from computer
science and 2 undergraduates)as well as a mixture of new and established researchers. The oldest was Richard
Guy, turning 90 in 2006 and the youngest was in 3rd year University. There were attendees from Europe,
Asia as well as North America.

The Workshop succeeded in its primary goal and more. New collaborations were struck. There was quick
dissemination and evaluation of major new results and new results were developed during the Workshop. Part
of the success was due to the staff and facilities at BIRS.

The facilities at BIRS were appreciated by all the participants. The main room allowed lectures to mix
computer presentations with overheads and chalkboard calculations. (No prizes for guessing which com-
munity used which technology.) The coffee lounges and breakaway rooms allowed discussions to continue
on, in comfort, until late in the night. Our thanks go to all the staff who made the stay such a wonderful
experience and to the BIRS organization for hosting the workshop.

The elder statesmen of the community, Berlekamp, Conway, Fraenkel and Guy, all took active roles in
the proceedings. The first three gave survey talks on varioustopics and all were involved in discussions
throughout the days and the evenings. The younger (established) generation were represented by the likes of
Demaine, Grossman, Müller and Siegel.

As befits a workshop on combinatorial games, games were invented, played and analyzed. Philosophers
Football (Phutball) was much in evidence. There was a Konanetournament played over three evenings.
Much effort went into attempting an analysis of Sticky Towers of Hanoi, a game invented at the Workshop by
Conway, spearheaded by Conway and the youngest attendee, Alex Fink. There were many representatives of
the Go community quite a few of whom had never met each other.

Collaboration is very important in this community. For example, David Wolfe presented a progress report
on work of G. A. Mesdal on a class of partizan splitting games,answering questions first raised over 30 years
ago. Mesdal is a joint effort of eleven co-authors from NorthAmerica and New Zealand. Eight of the eleven
attended the workshop and the number of co-authors had risento twelve by the time the Workshop ended.

In the end, between the talks and the discussions, there was simply too much to absorb in such a short
time. The talks, surveys and several consequent papers are slated to appear as (tentatively titled)Games of
No Chance 3in the MSRI book series.

134
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All the presentations were at a high standard and all had lively discussions during and after the time
allotted. Some highlights were: Conway’s talk on lexicodes; Berlekamp’s overviewToday’s View of Combi-
natorial Game Theory; and Fraenkel’sWhat hides beyond the curtain separating Nim from non-Nim games;
Demaine’s talk on Dyson Telescopes and Moving Coin Puzzles also showed the complexity in some very
new and some very old puzzles.

However the highlights were the reports by:

1. Plambeck on a breakthrough in the analysis of impartial misèr games;

2. Siegel on extending the analysis of loopy games;

3. Friedman and Landsberg on applying renormalization techniques from physics to combinatorial games—
this paper was both controversial and thought provoking andlead to the most discussions, including
ones on the nature of truth and of proof;

4. Nakamura on the use of ‘cooling by 2’ to determine the winner in ‘races to capture’ in Go. One of
the goals of the Workshop was to bring together researchers from mathematics and computer science.
This was one of the talks that helped bridge the gap and engendered much discussion. The 30 minutes
allotted to the talk was too short, and most participants stayed an extra hour (into the dinner-time) so
as to hear the details.

All of these were very new, very important results, producedonly months before the Workshop.

1: Misère Games:On page 146 ofOn Numbers and Games, in Chapter 12, “How to Lose When You
Must,” John Conway writes:

Note that in a sense, [misére] restive games areambivalent Nim-heaps, which choose their
size (g0 or g) according to their company. There are many other games which exhibit behaviour
of this type, and it would be very interesting to have some general theory for them.

Questions about the analysis of misére impartial octal games were raised in [3, 6] and no good general
analytical techniques have been developed apart from finding the genus sequence [3]. (See [1, 22], see also
[8, 20]). In his presentation, Plambeck provided such a general theory, cast in the language of commutative
semigroups.

The misère analysis of a combinatorial game often proves tobe far more difficult than its normal play
version. In fact it is an open question (Plambeck) if there isa misére impartial game whose analysis is simpler
than the normal play version and there is no know way of analyzing misére partizan games ([15], Problem 9).

To take a typical example, the normal play of Dawsons Chess was solved as early as 1956 by Guy and
Smith [16], but even today, a complete misère analysis has not been found. Guy tells the story [15]:

“[Dawsons chess] is played on a3 × n board with white pawns on the first rank and black pawns on the
third. It was posed as a losing game (last-player-losing, now called misère) so that capturing was obligatory.
Fortunately, (because we still don‘t know how to play Misère Dawsons Chess) I assumed, as a number of
writers of that time and since have done, that the misère analysis required only a trivial adjustment of the
normal (last-player-winning) analysis. This arises because Bouton, in his original analysis of Nim [5], had
observed that only such a trivial adjustment was necessary to cover both normal and misère play...”

But even for impartial games, in which the same options are available to both players, regardless of whose
turn it is to move, Grundy & Smith [14] showed that the generalsituation in misère play soon gets very com-
plicated, and Conway [6], (p. 140) confirmed that the situation can only be simplified to the microscopically
small extent noticed by Grundy & Smith.

In Chapter 13 of [3], the genus theory of impartial misère disjunctive sums is extended significantly from
its original presentation in chapter 7 (How to Lose When You Must) of Conways On Numbers and Games
[6]. But excluding the tame games that play like Nim in misère play, theres a remarkable paucity of example
games that the genus theory completely resolves. For example, the section Misère Kayles ([3], pg 411)
promises, “Although several tame games arise in Kayles (seeChapter 4), wild games abounding and well
need all our [genus-theoretic] resources to tackle it...” However, it turns out Kayles wasn‘t tackled at all. It
was left to the amateur William L. Sibert to settle misère Kayles using completely different methods. One
finds a description of his solution at end of the updated Chapter 13 in [4], and also in [22].
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When normal play is in effect, every game with nimberG+(G) = k can be thought of as the nim heapk.
No information about best play of the game is lost by assumingthat G is in fact precisely the nim heap of size
k. Moreover, in normal play, the nimber of a sum is just the nim-sum of the nimbers of the summands. In
this sense every normal play impartial game position is simply a disguised version of Nim (see [3], Chapter
4, for a full discussion).

Genera.When misère play is in effect, nimbers can still be defined but many inequivalent games are as-
signed the same nimber, and the outcome of a sum is not determined by nimber of the summands. These un-
fortunate facts lead directly to the apparent great complexity of many misère analyses. Nevertheless progress
can be made. The key definition, taken directly from [6], now at the bottom of page 141: In the analysis of
many games, we need even more information than is provided byeither of these values [G+ andG−], and so
we shall define a more complicated symbol that we call theGo-value or genus. This is the symbol

g.g0g1g2 . . .

whereg = G+(G), g0 = G−(G), g1 = G−(G + 2), g2 = G−(G + 2 + 2), . . ., where, in general,gn is the
G−-value of the sum ofG with n other games all equal to [the nim-heap of size] 2.

At first sight, the genus symbol looks to be an potentially infinitely long symbol in its exponent. In prac-
tice, it can be shown that thegis always fall into an eventual period two pattern. By convention, the symbol
is written down with a finite exponent with the understandingthat its final two values repeat indefinitely.

Evidently the exponent of a genus symbol of a game G is closelyrelated to the outcome of sums of G
with all multiples of misère nim heaps of size two.

The genus computations are intended to illustrate the complexities of a misère analysis when the only
tools available to be applied are those described in Chapter13 of Winning Ways.

Plambeck’s breakthrough was to introduce aquotient semigroupstructure on the set of all positions of
an impartial game with fixed rules. The basic construction isthe same for both normal and misère play. In
normal play, it leads to the familiar Sprague-Grundy theory. In misère play, when applied to the set of all
sums of positions played according to a particular game’s rules, it leads to a quotient of a free commutative
semigroup by the game’s indistinguishability congruence.Playing a role similar to the one thatnim sequences
do for normal play, mappings from single-heap positions into a game’s misère quotient semigroup succinctly
and necessarily encode all relevant information about its best misère play. Plambeck showed examples of
wild misère games that involve an infinity of ever-more complicated canonical forms amongst their position
sums that may nevertheless possess a relatively simple, even finite misère quotient. SupposeΓ is a taking and
breaking game whose rules have been fixed in advance. Lethi be a distinct, purely formal symbol for each
i ≥ 1. We will call the setH = {h1, h2, h3, . . .} theheap alphabet. A particular symbolhi will sometimes
be called aheap of sizei. The notationHn stands for the subsetHn = {h1, . . . , hn} ⊆ H for eachn ≥ 1.
Let FH be the free commutative semigroup on the heap alphabetH . The semigroupsFH andFHn

include
an identityΛ, which is just the empty word. There’s a natural correspondence between the elements ofFH
and the set of all position sums of a taking and breaking gameΓ. In this correspondence, a finite sum of
heaps of various sizes is written multiplicatively using corresponding elements of the heap alphabetH . This
multiplicative notation for sums makes it convenient to take the convention that the empty positionΛ = 1.
It corresponds to theendgame—a position with no options. Fix the rules and associatedplay convention
(normal or misère) of a particular taking and breaking gameΓ. Letu, v ∈ FH be game positions inΓ. We’ll
say thatu is indistinguishable fromv overFH , and write the relationu ρ v, if for every elementw ∈ FH ,
uw andvw are either bothP -positions, or are bothN -positions.
Lemma 1The relationρ is a congruence onFH .

Suppose the rules and play convention of a taking and breaking gameΓ are fixed, and letρ be the indis-
tinguishability congruence onFH , the free commutative semigroup of all positions inΓ. Theindistinguisha-
bility quotientQ = Q(Γ) is the commutative semigroup

Q = FH/ρ.

Notice that the indistinguishability quotient can be takenwith respect to either play convention (normal or
misère). The details of the indistinguishability congruence then determine the structure of the indistinguisha-
bility quotient. Since the word “indistinguishability” isquite a mouthful,Q is called thequotient semigroup
of Γ. WhenΓ is a normal play game, its quotient semigroupQ = Q(Γ) is more than just a semigroup.A
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re-interpretation of the Sprague-Grundy theory says that these are always groups, each isomorphic to a direct
product of a (possibly infinite) set ofZ2’s (cyclic groups of order two).If u is a position inFH with normal
play nim-heap equivalent∗k, the members of a particular congruence classuρ ∈ FH/ρ will be precisely
all positions that have normal-play nim-heap equivalent∗k. The identity ofQ is the congruence class of all
positions with nim-heap equivalent∗0. The “group multiplication” corresponds to nim addition. For misère
play, the quotient structure is asemigroup. Surprisingly, it’s often a finite object, even for a game that has
an infinite number of different canonical forms occurring amongst its sums. The elements of a particular
congruence class all have the same outcome. Each class can bethought of as carrying a big stamp labelled
“P” (previous player wins in best play for all positions in this class) or “N” (next player wins). In normal
play, there’s only one equivalence class labelled “P”—these are the positions with nim heap equivalent∗0.
In misère play, for all but the trivial games with one position ∗0, or two positions{∗0, ∗1}, there is always
more than one “P” class—one corresponding to the position∗1, and at least one more, corresponding to the
position∗2 + ∗2.

At the time of the presentation, Plambeck had 20 games each ofwhose octal description was short but
whose analysis had defied his attempts. Plambeck offered varying amounts of money for their solutions.
During the Workshop, Aaron Siegel solved four of them and, inconjunction with Plambeck, has solved all of
the games and produced a computer program that helps with representations of the quotient semi-groups.

2: Loopy Games. Aaron Siegel reported on two parts of the work contained in his PhD thesis, this
particular presentation concerned loopy games. The traditional theory of combinatorial games assumes that
no position may be repeated. This restriction guarantees that arbitrary sums of games will terminate; the
result is a clean, recursive, and computationally efficienttheory. However, there are many interesting games
that allow repetition, including Fox and Geese, Hare and Hounds, Backsliding Toads and Frogs, Phutball
and Checkers. Go is a peculiar example: the ko rule forbids most repeated positions, but local repetition is
extremely important when the board must be decomposed to effect a tractable analysis.

Every game that permits repeated positions faces the possibility of nonterminating play. This is typically
resolved by declaring infinite plays drawn (as in Checkers and Chess), but alternative resolutions are not
uncommon. For example, Hare and Hounds declares infinite plays wins for the Hare, and some dialects
of Go rules forbid them altogether. The disjunctive theory,in its most general form, assumes that in sums
within finite play, the game is drawn unless the same player wins on every component in which play is
nonterminating. This is vacuously true for games where infinite play is drawn to begin with, and it applies
equally well to games such as Hare and Hounds. Go, with its unique ko rule, does not fit so cleanly into the
theory.

The general disjunctive theory was first considered by Robert Li [17], who in the mid-1970s focused on
games where it is a disadvantage to move, including a variantof Hackenbush. Shortly thereafter, Conway,
together with his students Clive Bach and Simon Norton, generalized and codified the theory and coined the
term loopy game. Their results, including the fundamental concepts of stoppers and sides, appeared first in
a 1978 paper [6] and were reprinted in Winning Ways. At roughly the same time, Shaki [21] and Fraenkel
and Tassa [13] studied approximations and reductions of partizan loopy games under a slightly different set
of assumptions. Despite this flurry of initial activity, there were few advances in the two decades following
the first publication of Winning Ways. Moews generalizationof sidling was a rare exception: Published in
his 1993 thesis [18, 19],it constituted the first real advance in the disjunctive theory since the late 1970s.

Various authors have studied loopy games in other contexts.Generalizations of the Sprague-Grundy
theory to impartial loopy games were introduced by Smith [23] a full decade before Li invented the partizan
theory. They were studied in the 1970s by Fraenkel and Perl [11] and Conway[3], and much more recently
by Fraenkel and Rahat [12]. James Flanigan, in his 1979 thesis and two subsequent papers [9, 10], analyzed
conjunctive and selective sums of partizan loopy games.

Meanwhile, the greatest advance of the 1990s came from an entirely different quarter, the study of kos in
Go. The interplay between local cycles and the global state of the position gives rise to a rich and fascinating
temperature theory, which appears to differ from Conways disjunctive theory in striking ways. The theory
was first realized by Berlekamp, following his analysis of loop free Go positions with his student David Wolfe
(see [2]. Many others have since investigated the theory of kos, including Fraser, Müller, Nakamura, Spight
and Takizawa. (See [25, 24, 27, 28], for some examples.)

Siegel showed how to calculate canonical forms of loopy games and gave some of their characteristics.
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One of his remarkable achievements is the software package CGSuite (for the “computationally efficient
theory” of finite disjunctive sums) and then and its extension to be able to calculate the canonical form of
loopy games.

Siegel, Ottaway and Nowakowski showed how rich the canonical forms of small games can be when they
considered 1-dimensional Phutball played on boards of length 7, 8, 9, 10, and 11.

3: Cooling and Go.The applications of combinatorial game theory to the game ofGo have, so far, been
focused on endgames and eyespace values. Acapturing raceis a particular kind of life and death problem
in which both of the two adjacent opposing groups are fightingto capture the opponent’s group each other.
Skills in winning races are very important factor to the strength of Go as well as openings and endgames
techniques. In order to win the complicated capturing races, techniques of counting liberties, taking away
the opponent’s liberties and extending own liberties in addition to wide and deep reading are necessary.
Nakamura, ”“On Counting Liberties in Capturing Races of Go”showed that the ‘counting’ required can be
regarded as combinatorial game with a score. Within this framework, he showed how to analyze capturing
races that have no shared liberty or have just simple shared liberties using combinatorial game values of
external liberties and an evaluation formula to find out the outcome of the capturing races. Essentially, the
evaluation formula is by cooling. All applications of cooling so far have been chilling (cooling by 1) but in
this case, one must cool by 2 !

4: Renormalization techniques.
Friedman & Landsberg presented a new approach to combinatorial games that unveiled connections be-

tween such games and nonlinear phenomena commonly seen in nature: scaling behaviors, complex dynamics
and chaos, growth and aggregation processes. Using the gameof Chomp (as well as variants of the game of
Nim) as prototypes, they showed that the game possesses an underlying geometric structure that grows (rem-
iniscent of crystal growth), and showed how this growth can be analyzed using a renormalization procedure.
This approach not only obtains answers to some open questions about the game of Chomp, but opens a new
line of attack for understanding (at least some) combinatorial games more generally through their underlying
connection to nonlinear science.

Analysis of these two-player games has generally relied upon a few beautiful analytical results or on
numerical algorithms that combine heuristics with look-ahead approaches (α− β pruning). Using Chomp as
a prototype, this new geometrical approach unveils unexpected parallels between combinatorial games and
key ideas from physics and dynamical systems, most notably notions of scaling, renormalization, universality,
and chaotic attractors. Their central finding is that underlying the game is a probabilistic geometric structure
that encodes essential information about the game, and thatthis structure exhibits a type of scale invariance:
Loosely speaking, the geometry of small winning positions and large winning positions are the same after
rescaling. (This general finding also holds for at least someother combinatorial games, as was explicitly
demonstrated with a variant of Nim.) This geometric insightnot only provides (probabilistic) answers to
some open questions about Chomp, but suggests a natural pathway toward a new class of algorithms for more
general combinatorial games, and hints at deeper links between such games and nonlinear science.

Chomp is an ideal candidate for the study, since in certain respects it appears to be among the simplest
in the class of hard games. Its history is marked by some significant theoretical advances but it has yet to
succumb to a complete analysis in the 30 years since its introduction by Gale and Schuh. The rules of Chomp
are easily explained. Play begins with an N x M array of counters. On each turn a player selects a counter and
removes it along with all counters to the north and east of it.Play alternates between the two players until one
player takes the last counter, thereby losing the game. (An intriguing feature of Chomp, as shown by Gale, is
that although it is very easy to prove that the player who moves first can always win, under optimal play, what
this opening move should be has been an open question. The methodology provides a probabilistic answer to
this question.)

For simplicity, consider the case of three-row (M=3) Chomp,a subject of recent study by Zeilberger
[29] and Sun [26]. Generalizations to four-row and higher Chomp are analogous. To start, note that the
configuration of the counters at any stage of the game can be described (using Zeilbergers coordinates) by
the position p=[x,y,z], where x specifies the number of columns of height three, y specifies the number of
columns of height two, and z the number with height one. Each position p may be classified as either a winner,
if a player starting from that position can always force a win, or as a loser otherwise. The set of all losers
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contains the information for solving the game. One may conveniently group the losing positions according to
their x values by defining a loser sheet Lx to be an infinite two-dimensional matrix whose (y,z)th component
is a 1 if position [x,y,z] is a loser, and a 0 otherwise. (As noted by Zeilberger, one can express Lx in terms of
all preceding loser sheets Lx-1, Lx-2, , L0.) Studies by Zeilberger [29, 30] and others have detected several
numerical patterns along with a few analytical features about the losing positions, and their interesting but
non-obvious properties have even led to a conjecture that Chomp may be chaotic in a yet-to-be-made-precise
sense. However, many of the numerical observations to date have remained largely unexplained, and disjoint
from one another.

To provide broader insight into the general structure of thegame, the authors departed from the usual
analytic/algebraic/algorithmic approaches. Instead showing how the analysis of the game can be recast and
transformed into a type of renormalization problem commonly seen in physics (and later apply this method-
ology to other combinatorial games besides Chomp). Analysis of the resulting renormalization problem not
only explains earlier numerical observations, but provides a unified, global description of the overall structure
of the game. This approach will be distinguished by its decidedly geometric flavor, and by the incorporation
of probabilistic elements into the analysis, despite the fact that the combinatorial games we consider are all
games of no chance which lack any inherent probabilistic components to them whatsoever.

To proceed, consider the so-called instant-winner sheets,defined as follows: A position p=[x,y,z] is called
an instant winner if from that position a player can legally move to a losing position with a smaller x- value.
We therefore define an instant-winner sheet Wx to be the infinite, two- dimensional matrix consisting of all
instant winners with the specified x-value, i.e., the (y,z)th component of matrix Wx is a 1 if position [x,y,z]
is an instant winner, and a 0 otherwise. These instant-winner sheets will prove crucial for understanding the
geometric structure of the game.

Their first insight comes from numerical simulations. They numerically construct the instant winner
sheets Wx for various x values using a recursive algorithm. Each sheet exhibits a nontrivial internal structure
characterized by several distinct regions: a solid (filled)triangular region at the lower left, a series of hori-
zontal bands extending to the right (towards infinity), and two other triangular regions of different densities.
Most importantly, however, we observe that the set of instant-winner sheets Wx possess a remarkable scal-
ing property: their overall geometric shape is identical upto a scaling factor! In particular, as x increases,
all boundary-line slopes, densities, and shapes of the various regions are preserved from one sheet to the
next (although the actual point- by-point locations of the instant winners within each sheet are different).
Hence, upon rescaling, the overall geometric structure of these sheets is identical (in a probabilistic sense).
The growth (with increasing x) of the instant-winner sheetsis strikingly similar to certain crystal-growth and
aggregation processes found in physics in each case, the structures grow through the accumulation of new
points along current boundaries, and exhibit geometric invariance during this process. The loser sheets Lx
can be numerically constructed in a similar manner; their characteristic geometry is revealed. It is found
to consist of three (diffuse) lines: a lower line of slope mL and density of points L, an upper line of slope
mU and density U, and a flat line extending to infinity. The upper and lower lines originate from a point
whose height (i.e., z-value) is ax. The flat line (with density one) is only present with probability in randomly
selected loser sheets. Like the instant-winner sheets, theloser sheets also exhibit this remarkable geometric
scaling property: as x increases, the geometric structure of Lx grows in size, but its overall shape remains
unchanged (the only caveat being that, as previously noted,the flat line seen in is sometimes absent in some
of the loser sheets).

The second key finding is that there exists a well-defined, analytical recursion operator that relates one
instant winner sheet to its immediate predecessor. Namely,one can write Wx+1 = R Wx, where R denotes the
recursion operator. (The operator R can be decomposed as R=L(I+DM), where L is a left-shift operator, I is
the identity operator, D is a diagonal element-adding operator, and M is a sheet-valued version of the standard
mex operator which is often used for combinatorial games.) They point out that once a given instant-winner
sheet Wx has been constructed, the corresponding loser sheer Lx can be found via Lx = M Wx.

The task is to determine an invariant geometric structure W such that if we act with the recursion operator
followed by an appropriately-defined rescaling operator S,we get W back again: W = SR W (i.e., find a
fixed point of the renormalization-group operator SR.) Thiscan be done, but before doing so, even though
the recursion operator R is exact and the game itself has absolutely no stochastic aspects to it, it is necessary
to adopt a probabilistic framework in order to solve this recursion relation. Namely, the renormalization
procedure will show that the slopes of all boundary lines anddensities of all regions in the Wxs (and Lxs)
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are preserved not that there exists a point-by-point equivalence. In essence, bypassing consideration of
the random-looking scatter of points surrounding the various lines and regions of Wx and Lx by effectively
averaging over these fluctuations.

The key to implementing the renormalization analysis is to observe that the losers in Lx are constrained
to lie along certain boundary lines of the Wx plot, and are conspicuously absent from the various interior
regions of Wx (for all x). In other words, the interior regions of each Wx remain forbidden to the losers.
Hence the geometry of Wxs must be very tightly constrained ifit is to preserve these symmetries.
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Organizer(s): David Fisher (Lehman College - CUNY), Elon Lindenstrauss (Princeton
University), Dave Witte Morris (University of Lethbridge), Ralf Spatzier (University of
Michigan)

Rigidity theory has its roots in classical theorems of Selberg, Weil, Mostow, Margulis and Furstenberg.
It extends into diverse areas such as complex and differential geometry, group theory and representation
theory, ergodic theory, dynamics and group actions. Our conference “Rigidity, Dynamics and Group Actions”
concentrated on the rapid recent progress in these areas. The study of “large” groups (such as lattices in
semisimple groups or higher rank abelian groups) and their actions was the focal point of the conference,
with particular attention given to the following four closely related topics:

• local and global rigidity of actions,

• low-dimensional actions of large groups,

• orbit-equivalence rigidity, and

• invariant measures for actions on homogeneous spaces.

We had many exciting talks on these and other topics on large groups. Exciting recent progress more
generally in dynamics, geometry and geometric group theorywas also discussed and presented in talks.
Many exciting new connections between dynamics of group actions and other areas, including number theory,
geometry, and operator algebras, were discussed.

The organizers have established a resource page for the workshop1. There are also plans to expand an
existing problem list from an earlier workshop to reflect theproblem session at this workshop.

Classification of Group Actions

LetG = SL(n,R) andΓ = SL(n,Z), with n ≥ 3. More generally, we can consider any simple Lie group
G of real rank at least two, and a latticeΓ in G. For any natural numberℓ, the classical theory of roots
and weights determines all of the homomorphisms fromG into GL(ℓ, C). Roughly speaking, Margulis’

1http://people.uleth.ca/∼dave.morris/banff-rigidity/
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Superrigidity Theorem (1975) shows that roots and weights of groups closely related toG determine all of
the homomorphisms fromΓ intoGL(ℓ, C).

These two results classify the linear actions ofG or Γ on (complex) vector spaces. Zimmer’s non-linear
generalization of Margulis’ superrigidity theorem openedthe way to classifying “non-linear representions” of
these groups. One such non-linear variant is to study ergodic group actions ofG or Γ up to orbit equivalence.
For higher rank groups and their lattices, orbit equivalence is now fairly well understood, due primarily to
work of Zimmer and Furman. Recent progress has focused on other types of groups, see the recent survey by
Shalom [29].

A more difficult nonlinear, problem is to classify the smooth(C∞) actions ofG or Γ on compact, smooth
manifolds. This work is closely connected to understandingthe structure of known algebraic actions, and
also to several questions in pure ergodic theory.

Very few volume-preserving actions ofΓ (on a compact manifold) are known. One example is the stan-
dard action ofΓ = SL(n,Z) on then-torus. Certain examples similar to this are calledaffine algebraic
actions; they arise from purely algebraic (group-theoretic) constructions.

In 1996, Katok and Lewis produced the first examples of non-algebraic actions. However, the actions
were constructed by making minor topological modificationsof algebraic ones. It may be the case that every
volume-preserving action is isomorphic to an algebraic action, after certain sets of measure zero are deleted.

Local rigidity [7, 9]

A smooth actionρ of Γ is said to belocally rigid if every “nearby” smooth action is smoothly conjugate toρ.
Building upon many authors’ results of the last 15 years, Fisher and Margulis established local rigidity for
all affine algebraic actions [9]. Thus, perturbing an affine algebraic action will not result in a non-algebraic
action.

Fisher recently pushed through another approach to local rigidity, generalizing some of Weil’s ideas for
proving local rigidity of lattices in Lie groups. It is ofteneasier to prove infinitesimal rigidity of a subgroup or
action. Weil for subgroups and now Fisher for actions showedhow to go from infinitesimal to local rigidity.
For actions this is a highly non-trivial problem due to the difficulty of suitable inverse function theorems.
This approach has many novel applications to groups not covered by any previous local rigidity results.
Fisher reported on this in his talk at the workshop. He also discussed work in progress with T.J.Hitchman
which would produce further applications of this result.

Dynamics and global rigidity [6]

Margulis and Qian proved a global rigidity result for actions of Γ on tori under some further assumptions.
Goetze and Spatzier completely classified the much more restricted class of “Cartan” actions on arbitrary
compact manifolds.

These proofs use the study of “hyperbolic” actions of higherrank abelian groups by Katok, Spatzier and
others. As for lattices, all irreducible actions of this type are conjectured to be “algebraic.”

The cross fertilization between these areas has been crucial. For example, local rigidity of the higher rank
abelian actions led to the proof of local rigidity of projective actions of higher rank cocompact lattices. This
is also closely related to work of Katok-Spatzier discussedbelow in (13).

More recent developments concerning global rigidity of group actions have introduced a plethora of new
techniques and ideas into the field and some of these were reported on at the meeting, but are discussed
below in the section on low dimensional actions. In low dimensions, the classification problem simplifies to
showing that no examples exist!

Arithmetic Quotients [10]

Recent work of Lubotzky, Zimmer, and Fisher constructs a measurable map from any volume-preserving
action ofG or Γ to some algebraic example. Fisher and Whyte gave conditionsunder which the map is
continuous. Under additional assumptions, the algebraic action is “close to” the original action. More re-
cent results of Schmidt have drawn closer connections between global rigidity and the study of arithmetic
quotients.
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Low-Dimensional Actions of Large Groups[2, 11, 13, 19, 23]

Zimmer conjectured thatΓ cannot act (faithfully) on any compact manifoldM whose dimension is much
smaller than the size ofG. This has not been proved in complete generality even whendim(M) = 1, al-
though much progress was made in a sequence of works by Witte,Ghys, Burger and Monod, Navas, and
Lifschitz and Morris. More recently, there has been dramatic progress whendim(M) = 2 as well, assum-
ing the action is volume-preserving, and thatG/Γ is not compact. Under these assumptions, Polterovich
eliminated all the surfaces of genus at least 1, by using techniques from symplectic topology. Franks and
Handel were able to eliminate the other surfaces, under a stronger assumption onΓ, by using a completely
different approach based on low-dimensional dynamics, including a structure theory for area preserving dif-
feomorphisms of surfaces. Franks discussed some of these results in his talk. In connection with this work,
M. Handel explained his joint work with Franks on fixed pointsfor actions of higher rank abelian groups on
R2 andS2. Higher rank abelian actions have been prominent in recent years, due to the discovery of many
rigidity properties. The work of Franks and Handel again shows that such actions are very special.

Vanishing of bounded cohomology groups is an obstruction tonon-trivial actions on the circle. Recent
work of Ghys-Gambaudo and Polterovich indicate that bounded cohomology may also be relevant to studying
actions on surfaces.

One can interpret elements of the second bounded cohomologyof a groupΓ as quasi-morphisms. Polterovich
gave a brief overview over of quasi-morphisms and how they arise for groups of Hamiltonian diffeomor-
phisms at the workshop. This very inspiring lecture will serve as an excellent departure point for future work
in the area.

In the complex analytic setting, S. Cantat recently established a version of Zimmer’s conjecture. This
combines holomorphic dynamics with arguments from algebraic geometry, and is the first result of this kind
for actions preserving a non-rigid geometric structure (the complex structure).

Cocycle Superrigidity [5, 8, 30]

A fundamental tool, in the analysis of actions of large groups is Zimmer’s extension of Margulis superrigidity
theorem for cocycles for higher rank semisimple Lie groups without compact factors. As reported by Hitch-
man, he and Fisher extended these cocycle superrigidity results to actions of the Kazhdan rank 1 groups and
their lattices using the harmonic maps approach to superrigidity. This builds on earlier work of Korevaar-
Schoen and Corlette-Zimmer and also gives new proofs of the known cases of superrigidity. This will allow
Fisher and Hitchman to prove many results for actions of these groups which had so far only been available
for higher rank groups.

In recent years various superrigidity results were obtained for lattices in products of groups and even
simply for products of finitely generated groups by many authors, particularly Shalom and Monod. Furman
reported on work with Monod in which they generalized Zimmer’s superrigidity theorem for (certain) cocycle
over actions of such groups, and applied it to the study of their smooth actions.

Another extension of superrigidity for cocycles was announced at the conference by Popa. His result
applies to a wide class of groups, but requires that the cocycle be over an action which is Bernouilli. This is
related to Popa’s recent work on orbit equivalence, which isdiscussed in the next subsection.

Orbit Equivalence Rigidity [12, 24, 29]

Two actions on measure spaces are said to beorbit equivalentif there is a bi-measurable map that takes
orbits to orbits. This notion is central in ergodic theory. For discrete amenable groups, essentially all actions
preserving a finite measure are orbit equivalent. At the other extreme, Zimmer’s superrigidity theorem implies
that non-isomorphic actions ofG are never orbit equivalent. The situation for actions of a lattice is more
subtle and was recently resolved by Furman. Furman was inspired by the classification of lattices up to
quasi-isometry in geometric group theory. Furman’s work has been used by logicians to solve longstanding
problems on Borel equivalence relations.

Several authors have recently proven orbit equivalence results for more general groups. Gaboriau showed
thatℓ2-Betti numbers of groups are invariant under measure equivalence. This allowed him to distinguish free
groups and their products under measure equivalence. Monodand Shalom used techniques from bounded
cohomology to prove measure-equivalence rigidity of products of groups acting on CAT(−1)-spaces. More
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recently, Gaboriau and Popa have used techniques from operator algebras in conjunction with ideas from
rigidity theory to produce uncountably many non-orbit equivalent actions of the free group.

During the workshop Popa reported on his recent work on the strong rigidity ofII1-factors of rigid groups,
and in particular of Bernoulli actions of groups which have relative property(T ). He also sketched some of
the ideas in his more recent work, which yields orbit equivalence “super-rigidity” theorems for remarkably
broad classes of groups. His lecture provided a good bridge to the world of operator algebras from the more
classical areas of rigidity theory.

Flows on homogeneous spaces and related topics

In the previous section we described attempts to classify actions of large groups. Another major theme of
research has been the study of the properties of concrete group actions. A basic class of such actions is the
following: LetG be a locally compact group (usually either a Lie group or anS-arithmetic algebraic linear
group),Γ < G a discrete subgroup, andH < G some other closed subgroupG. Then one may study the
action ofH onG/Γ. These actions are fascinating for their own sake and arise naturally in many contexts
particularly in number theory, and also in the study of the rigidity questions discussed in the other sections of
this summary.

A basic question considered about these actions in the classification ofH-invariant measures onG/Γ
and ofH-invariant closed subsets. A major landmark in this direction has been Margulis’ resolution of the
long-standing Oppenheim conjecture regarding values of indefinite quadratic forms by classifying closures
of SO(2, 1)-orbits inSL(3, R)/SL(3, Z).

This classification result is a very special case of much moregeneral theorems proved a few years later by
Ratner [26, 27] on invariant measures and orbit closure for actions of groups generated by unipotents (such
as the Lie groupSO(2, 1)).

Invariant Measures For Actions on Homogeneous Spaces and Applications to Number
Theory [3, 14, 16, 18, 20, 21, 26, 28]

Ratner’s work (even her work on orbit closures) is based on the classification of measures invariant under
groups generated by unipotents, and the many applications of this work are too numerous to be listed here!
In the workshop H. Oh explained her work with Gorodnik and Shah on equidistribution of rational points in
affine spaces refining earlier work of Eskin and McMullen on the growth of the number of such points, a key
ingredient of which was Ratner’s theorems.

Ratner’s measure classification results apply only to finiteinvariant measures. If one considers flows on a
quotient spaceG/Γ of infinite volume the situation is much less is understood. O. Sarig explained his work
with Ledrappier on the horocycle flow on infinite normal covers of surfaces. Amazingly, even in this infinite
geometric setting it is possible to classify invariant measures. Furthermore, Sarig reported that only one of
these invariant measures satisfies a generalized law of large numbers.

Another type of actions that often arise in applications is the action of multidimensional abelian subgroups
which areAd-diagonalizable overR. At first sight it seems rather unlikely that anything usefulcan be said
about invariant measures for such actions, since the actionof a single hyperbolic diffeomorphism has many
invariant measures and complicated orbit closures. But in fact, for an abelian group generated by several
such diffeomorphisms, it seems that the invariant measuresagain are scarce. In the early60′s Furstenberg
conjectured that ergodic measures invariant under both×2 and×3 on the unit interval are either supported
on periodic orbits or are Lebesgue measure. Rudolph has proven the conjecture provided the entropy of at
least one transformation is positive. Katok and Spatzier studied general affine algebraic actions of higher rank
abelian groups, and proved algebraicity of the measures under a positive entropy condition and other strong
ergodicity assumptions. Two new measure classification methods have been introduced that do not require
these ergodicity assumptions — one by Einsiedler and Katok which deals with measures with “high” entropy
and a second by Lindenstrauss dealing with measures of “low”entropy. These have been combined in [3] to
classify all the measures onSL(n,R)/SL(n,Z) ergodic and invariant under the action of the full diagonal
group with positive entropy, which gives a partial result towards Littlewood’s conjecture on simultaneous
diophantine approximation. Lindenstrauss used the low entropy methods, in conjunction with his work with
Bourgain in number theory, to show quantum unique ergodicity for certain arithmetic surfaces.
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In the workshop E. Lindenstrauss discussed his work with M. Einsiedler, P. Michel and A. Venkatesh
which gives another application of the results of [3] which gives information regarding the distribution of
compact orbits of on homogeneous spaces indexed by discriminant.

Another talk which deals with the same type of action was given by Tomanov who presented generaliza-
tion of his previous work with Weiss regarding the classification of closed orbits, and presented an application
regarding the set of values attained by a product ofk linear forms inn ≥ k variables at integer points.

Other related topics[15, 22]

Using ideas developed to study unipotents flows, and in particular their behavior near the cusp in the space
SL(n,R)/SL(n,Z), Dani, Kleinbock, Margulis and others have proven many results regarding diophantine
approximations. During the workshop, D. Kleinbock discussed his recent work on quantitative divergence es-
timates for unipotent flows and how they give precise formulas for Diophantine exponents of affine subspaces
of Rn, and Weiss explained how similar techniques work in the Teichmuller space setting.

Classical ergodic theory concerns itself with ergodicity and equidistribution problems for actions of
“small” groups such as the reals and integers, and, more generally, amenable groups. It was only in the
1990’s that ergodic theorems for actions of semisimple groups were established by Nevo, Stein and Margulis.
They proved both strong maximal inequalities and pointwiseergodic theorems for avergaes over Riemannian
balls in the group bi-invariant under a maximal compact subgroup. A. Gorodnik and A. Nevo recently gen-
eralized such theorems to a more general class of increasingcompact sets. As a consequence, they obtained
strong maximal inqualities, mean ergodic theorems and pointwise ergodic theorems for actions of lattices in
semisimple groups, as was reported by Gorodnik.

GEOMETRY [4, 17]

A common theme of rigidity in geometry is the characterization of locally symmetric metrics in simple ge-
ometric or topological terms. The prime example is the Strong Rigidity Theorem of Mostow, Margulis and
Prasad. Later examples are the rank rigidity theorems by Ballmann and Burns-Spatzier, and the characteri-
zation by Besson, Courtois and Gallot of real hyperbolic space by minimal volume and the other negatively
curved symmetric spaces by minimal entropy. A related topicof interest is the study of similar rigidity prop-
erties for homogeneous spaces which are not locally symmetric, see work of Connell, Eberlein and Heber.

Minimal volume is closely related to Gromov’s simplicial volume. The vanishing of the latter has im-
portant consequences for the topology and geometry of the space. Thurston had shown non-vanishing of
the simplicial volume for closed real hyperbolic spaces. More generally it is known for closed manifolds
of negative curvature. B. Schmidt reported on his recent work with J. Lafont that the simplicial volume of
closed higher rank locally symmetric spaces of nonpositivecurvature and no Euclidean facfors is not 0. This
is based on a non-trivial extension of a Jacobian estimate ofBesson, Courtois and Gallot to the higher rank
situation by C. Connell and B. Farb.

Another approach to characterize locally symmetric spacesis by symmetry: assume that the universal
cover of a closed manifold has a non-discrete group of isometries. If it is also assumed that the sectional
curvature is non-positive, then the metric is automatically locally symmetric, as was proved by P. Eberlein
in the 80’s. B. Farb reported on his beautiful work with S. Weinberger that achieves essentially the same
conclusion without the curvature assumption. This work hasrecently been extended to other Lorentz and
other pseudo-Riemannian metrics by K. Melnick. This will prove important in the context of group actions
preserving such structures.

Mostow’s use of quasi-isometries in establishing strong rigidity led to many outstanding problems in ge-
ometric group theory. Gromov in particular asked for the quasi-isometric classification of groups. For special
groups such as lattices in semisimple groups, this was established in the early 1990’s in a remarkable series
of works by Casson, Chow, Drutu, Eskin, Farb, Gabai, Gromov,Jungreis, Kleiner, Koranyi-Riemann, Leeb,
Pansu, Schwartz, Sullivan, and Tukia. One obtains both quasi-isometric rigidity and classification. Thus,
any group quasi-isometric to such a lattice is isomorphic toone on a subgroup of finite index. There is one
quasi-isometry class of cocompact lattices for each semisimple groupG. Further, there is one quasi-isometry
class for each commensurability class of irreducible non-cocompact lattices, except forG = SL(2, R) where
there is precisely one quasi-isometry class of non-cocompact lattices.
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The case of nilpotent groups is still open even though Pansu showed that the associated graded group
of two quasi-isomorphic nilpotent groups have to agree. Shalom recently found further invariants for quasi-
isometry which distinguish some nilpotent groups with isomorphic graded group. These invariants have been
further refined by R.Sauer.

The case of solvable groups however was wide open until our workshop when A. Eskin announced his
recent joint work with Fisher and Whyte on Sol and other more general solvable groups. Again they establish
quasi-isometric rigidity. Interestingly, the proof borrows techniques more commonly seen in ergodic theory.

Marked length spectrum rigiidity is yet another sought after characterization of a negatively curved Rie-
mannian manifold. Much progress has been achieved in the last two decades. U. Bader in collaboration with
R.Muchnik connected marked length spectrum rigidity to a natural representation of the fundamental group
coming from the canonical action on the sphere at infinity.

Lattices [1, 25]

Boundaries have played a central role in rigidity theory. Yet we still do not understand boundaries completely.
H. Furstenberg’s lecture on problems in boundary theory will be made available as a video on the BIRS
website, and is suitable for an introduction to the field for amore general audience.

The fine theory of lattices is still making major advances as exemplified by E. Breuillard’s talk on his
work with Gelander on the uniform Tits’ alternative. Tits’ famous result says that a finitely generated linear
group either has a subgroup of finite index or contains a free group. This new work gives an estimate how
close to the identity one can find two generators for a free group. This improves earlier work of Eskin, Mozes
and Oh for free semigroups. They also obtained uniform KazhdanL2 constants and uniform Cayley graph
Cheeger constants.

Raghunathan gave an introductory survey lecture on the congruence subgroup problem. While this ques-
tion has been resolved in many cases, the general result seems to require significant new ideas and Raghu-
nathan gave an excellent survey of known methods, their applicability and their limitations.
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Chapter 14

Multimedia and Mathematics (05w5505)

July 23–28, 2005

Organizer(s): Rabab Ward (Institute for Computing, Information and Cognitive Systems,
UBC), Robert Gray (Stanford University)

Introduction

The diverse applications of multimedia technology affect the way we communicate, work and play. The
Banff International Research Station (BIRS) workshop on Multimedia and Mathematics, organized by Rabab
K. Ward and Robert Gray, brought university and industry personnel together from July 23-28, 2005 to share
ideas about the latest advances in the different areas of multimedia and related mathematics. Forty attendees
(29 men and 11 women) from Canada, UK, Australia and the USA comprised 6 graduate students and 26
faculty members from 24 universities, as well as 8 researchers from Microsoft, Apple, Hewlett-Packard, Tiz
Media Foundation, and the National Science Foundation. Therich cross-fertilization brought about by this
workshop provided new insights into possible solutions to the latest technical challenges.

Academics and mathematicians, as well as practitioners, engineers, and researchers working in differ-
ent industries related to multimedia devices, described the approaches, advances, and constraints involved in
their area of media. With a view to discovering common ground, they explored the mathematical modeling,
analysis, and representation of information relevant to their respective fields. Models used in individual me-
dia as well as in multimedia systems were examined. Under this broad umbrella, the following topics were
discussed: algorithms, architecture and hardware, software, joint processing and coordination of multi-model
signals and data, coding, compression, storage, retrieval, statistical learning, recognition, classification, seg-
mentation, communication, networking, multi-model devices and systems, multimedia forensics and security,
human movements and mobile devices.

The main types of signals discussed in the workshop were those involved in text, audio, speech, music,
images, and video, as well as sensor data such as environmental measurements from sensor networks and
biological data from medical devices. The role of multimedia in hip-hop culture was also investigated as a
means of promoting mathematics among under-represented minorities.

Among the many topics discussed, three important areas received special attention: (1) data protection;
(2) coding; and (3) reduction in the computational load of multimedia devices and processors. Multimedia
networking and security are intertwined topics because thegrowth of multimedia products raises concerns
for content producers about how best to protect their information. At the same time, there is a need to
make better use of bandwidth in a network hardware infrastructure whose standards are fixed. This need
for greater bandwidth efficiency is reflected in the number ofpresentations in the coding area. Reducing
computational complexity received much attention, since future multimedia communication will be based on
wireless devices with person-to-person connections.

Peer-to-peer video streaming and wireless multimedia represent a paradigm shift. Traditionally, most
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video content has originated from only a few places (mainly broadcasters) for mass distribution to consumers.
Now, however, consumers equipped with digital cameras, camcorders, and camera phones, have multiple
ways of generating, acquiring, and managing their own videocontent. Video now comes from a multitude
of sources, and not a lot of computing power can be crammed into these mobile imaging devices without
draining their batteries and using up their limited data storage. Along with the limited bandwidth of wireless
devices, this limitation requires that the video signals becompressed. However, functions such as motion
estimation and compensation, which are integral to video compression, are very computer-intensive. Today,
compression and other video encoding are done by broadcasters. For mobiles, however, we need to shift the
computationally demanding components such as motion estimation and compensation to the desktop machine
or the mobile. Mobiles, therefore, need to have simpler, less power-hungry encoders, and we need to reduce
encoder complexity in ways that wont affect compression efficiency. We arent really there yet.

In the following two sections, we summarize the topics explored at the workshop. For convenience
of presentation, we classify the topics discussed into categories, ”Theory and Modeling” and ”Progress in
Specific Application Areas”, even though almost every presentation discussed theory as well as applications.

Presentations and Discussion

Theory and Modeling

Of the 25 presentations, 13 can be roughly categorized underTheory and Modeling. In most of these talks,
different applications to multimedia applications were also discussed and demonstrated. The following four
talks could fall under the general topics of modeling images, image rendering, humancomputer interaction
and a unified algebraic approach to time and signal models: Photographic Image Representation with Mul-
tiscale Gradients and Applications, e.g., to Denoising Taking Multi-View Imaging to a New Dimension:
From Harry Nyquist to Image-Based Rendering A New Frameworkfor Modeling and Recognizing Human
Movement and Actions Deterministic and Stochastic, Time and Space Signal Models: An Algebraic Ap-
proach The area of image and video coding received much attention, as mentioned earlier. The following
four talks were given in this area: A Signal Processor’s Approach to Modeling the Human Visual System,
and Applications, e.g., to Coding Vector Quantizers for Reduced Bit-Rate Coding of Correlated Sources
Analytical Modeling of Matching Pursuit Time Domain LappedTransform and Its Applications to Cod-
ing and Error Resilience Transmission Additional presentations in this area are discussed in the following
section on Progress in Specific Application Areas. There wasone presentation on information representa-
tion of networks, entitled Information Representation forNetwork Systems. Image segmentation remains an
active area of research, with many applications ranging from video retrieval to biomedical imaging. The
following two presentations addressed image segmentation: Mathematical and Perceptual Models for Image
Segmentation Deformable Models for Image Analysis: From ’Snakes’ to ’Organisms’ Two presentations
that addressed reduction in computational load were Dimension Reduction for Classification and Anomaly
Detection Multi-scale Displacement Estimation and Registration for 2-D and 3-D Datasets. We will now
briefly describe the digests of the above talks, highlighting recent developments, scientific progress and some
of the open problems.

Eero Simonelli talked about photographic image representation with multiscale gradients. He described
recent empirical investigation and modeling of the joint statistical properties of a multiscale representation
based on derivative operators. In particular, he discussedthe use of Gaussian Scale Mixtures (product of a
scalar random variable and a Gaussian vector) to model the statistics of clusters of wavelet coefficients at
adjacent positions, scales and orientations. When appliedto the problem of denoising, these models provide
a natural generalization of both standard linear (Wiener) and thresholding estimators, and lead to substantial
increases in performance. He also described how to extend this model to include local geometry in the form
of phase and orientation information.

Tsuhan Chen talked about the recent convergence of image processing, computer vision, and computer
graphics resulting in multi-view image processing. A picture may be worth a thousand words, but a single
picture is not able to render the whole scene; it merely renders the scene as seen from a particular viewpoint.
In 1991, Adelson and Bergen proposed the concept of the plenoptic function, a seven-dimensional function
that represents all the light rays in a dynamic scene. Since then, research on sampling, storing, interpolat-
ing, and reconstructing the plenoptic function has been emerging at both academic and industrial research
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institutions. This area of research is commonly referred toas image-based rendering, or, more familiar to
the signal-processing community, multi-view image processing. Recent convergence of image processing,
computer vision and computer graphics has resulted in significant progress in multi-view image processing.
Now widely used in applications ranging from special effects (remember the movie ”The Matrix”?) to vir-
tual teleconferencing, multi-view image processing has become a critical tool for creating visually exciting
content. With multi-view image processing, real-world scenes can be captured and rendered directly from
images captured by cameras, eliminating the need for computationally expensive modeling of 3D geometry
or surface reflectance, as is often done in traditional computer graphics. Dr. Chen also discussed recent
developments in image-based rendering. While studying themechanism for sampling multi-view data, he
revealed the connections between image-based rendering, multidimensional multirate signal processing, and
the Sampling Theorem discovered by Harry Nyquist 80 years ago!

Ling Guan described a new framework for modeling and recognizing human movement and actions.
Humancomputer interaction (HCI) study is a key research area in many scientific disciplines. Dr. Guan
started the talk with an overview of concepts, history and recent developments in HCI: face, speech, gesture,
human emotion and human actions, with emphasis on emotion and action recognition. He then focussed
on a fundamental, but under-investigated research area in HCI: modeling and recognizing human movement
and actions. Inspired by the movement notation systems usedin dance and the paradigm of the phonemes
used in continuous speech recognition, he described a Continuous Human Movement Recognition (CHMR)
framework. The framework is based on a novel paradigm, the alphabet of dynemes, the smallest contrastive
dynamic units of human movement. A Differential Evolution-Monte Carlo particle filter is introduced, which
has demonstrated highly effective and robust characteristics in tracking basic human movement skills. Using
multiple hidden Markov models, the recognition process attempts to infer the human movement skill that
could have produced the observed sequence of dynemes. Recent anthropometric data shows that the famous
”average sized human” model in Leonardo da Vinci’s drawing of the human figure is a fallacy, and that there
is no one who is average in 10 dimensions. Incorporating the highly accurate biometric features into the
CHMR framework, Dr. Guan was able to demonstrate the effectiveness of the framework in biometrics,
biomedical analysis, and recognition of human skills. He proposed and forecasted that this framework will
form the enabling technology for biometric authenticationsystems for a broad range of applications such as
security/surveillance, biomedicine/physiotherapy, special effects in motion picture production, digital asset
management, battlefield surveillance, coaching/training/judging in sports and performing arts, to name a few.

Jose Moura presented a new algebraic approach for deterministic and stochastic, time and space mod-
els. We are all familiar with (infinite) ”time” signal processing: time shifts, filters and convolution, signals,
Fourier and z-transforms, spectrum, fast algorithms. Images, of course, are not ”time” but ”space” objects.
Also, they are ”finite” objects, i.e., defined over a finite indexing set. What is the natural concept of space
shift, of space filter and convolution, spectral analysis, or ”z”-transform, as well as many other related con-
cepts? To address these questions, Dr. Moura went beyond linear algebra to present an algebraic approach
where time (signal) and space (image) processing are instantiations of the same mathematical structure. The
basic building block is the signal model - a triplet (A, M, f) of an algebra A of filters, a module M of sig-
nals, and a generalization of the z-transform as a bijectivelinear mapping f from a vector space into the
module of signals. The shift is naturally interpreted as a generator of the algebra of filters, boundary con-
ditions connect finite with infinite indexing sets, the trigonometric transforms (e.g., DCTs) are appropriate
Fourier transforms, and the C-transform is the z-transform. More than a mathematical curiosity, the algebraic
approach provides the appropriate structure to extend signal and image processing beyond uniform to other
grids (e.g., hexagonal or quincunx), or develop fast algorithms from a few basic principles, from which we
can also derive new fast algorithms for existing and new transforms. Connections with other image models,
in particular, with Gauss Markov fields and pinned Markov diffusions, were discussed. This talk overviewed
Moura’s recent work with Markus Pueschel on the algebraic theory of signal and image processing.

Sheila Hemami presented a signal processing approach to model the human visual system. Current image
and video compression algorithms (e.g., JPEG-2000, H.264)provide very high efficiency compression and
excellent quality at relatively high bit rates. These algorithms operate by treating images and video as tradi-
tional ”signals,” employing efficient transformations, correlation-based models, and entropy coding. Human
visual system characteristics have been successfully applied to high-rate signal-based compression, where
stimuli such as compression-induced distortions are belowthe visibility threshold; i.e., humans cannot see
them. Operation of such signal-based compression algorithms at low rates, in which compression-induced
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distortions are clearly visible, has to date operated basedon visual system rules-of-thumb and has produced
moderate success for images, while little has been done for video. Dr. Hemami presented recent results on
characterizing the human visual system in a manner that allows for immediate incorporation into imaging
and video applications, such as compression and quality measurement, at not only high rates/low distortions
but also at low rates/high distortions. Results were presented in two distinct areas: vision-based results that
explain how humans perceive stimuli, and engineering-motivated results that allow us to incorporate our
characterizations into practical algorithms.

Russ Mersereau discussed coding of correlated sources. It is well known that vectors derived from con-
secutive segments of most real-world signals are strongly correlated. This inter-vector correlation is not
exploited in a standard VQ system. Many techniques proposedto exploit this correlation render the VQ
sub-optimal or require buffering, and thus introduce encoding delay. Dr. Mersereau presented two alternative
methods. The first approach, cache VQ, uses a cache memory to reduce the bit rate and the encoding time, at
the cost of a slight, but controllable, increase in the coding error. The second approach, recently developed
by Krishnan, Barnwell, and Anderson at Georgia Tech, overcomes cache VQ’s limitations. Their approach,
called dynamic codebook reordering, dramatically reducesthe entropy in the representation of the VQ sym-
bols, which can then be exploited for lossless compression.Dynamic codebook reordering can significantly
reduce the bit rate for strongly correlated sources withoutintroducing any additional distortion, coding delay,
or sub-optimality when compared to a standard VQ.

Shahram Shirani presented an analytical approach that models the operation of the matching pursuit
algorithm on uniformly distributed signals. Matching pursuit is a greedy algorithm that decomposes a signal
into a redundant dictionary of basis functions. It has recently found applications in many areas, including
image and video processing. The proposed model expresses the relationship between the bit rate and matching
pursuit coder parameters such as dictionary size, quantization step size, distortion and dimension of the signal.
This relationship can be used to optimize the dictionary size and quantization step size for minimum bit rate.
The model is verified through experimental results, and the accuracy of the model is validated for different
system parameters.

Jie Liang reviewed the theory and applications of time domain lapped transform, including the design of
fast transform, its application in wavelet-based image andvideo coding, and error resilient design for multiple
description coding.

Thrasos Pappas discussed problems arising in the segmentation of images of natural scenes. One of the
challenges of this problem is that the statistical characteristics of perceptually uniform regions are spatially
varying due to effects of lighting, perspective, scale changes, etc. A second challenge is the extraction of per-
ceptually relevant information. Dr. Pappas first considered the problem of segmenting images of objects with
smooth surfaces. The images are modeled as smooth spatiallyvarying functions with sharp discontinuities at
the segment boundaries, plus white Gaussian noise. Dr. Pappas discussed an adaptive clustering algorithm
for segmentation, which is a generalization of the K-means clustering algorithm to include spatial constraints
and to account for local intensity variations in the image. The spatial constraints are modeled through the use
of Gibbs/Markov random fields, while the local intensity variations are accounted for in an iterative proce-
dure involving averaging over a sliding window whose size decreases as the algorithm progresses. Dr. Pappas
also considered a hierarchical implementation that results in better performance and computational efficiency,
then discussed an adaptive perceptual colortexture segmentation algorithm that is based on low-level features
for color and texture. It combines knowledge of human perception with an understanding of signal charac-
teristics in order to segment natural scenes into perceptually/semantically uniform regions, and is based on
two types of spatially adaptive low-level features. The first describes the local color composition in terms
of spatially adaptive dominant colors, and the second describes the spatial characteristics of the gray-scale
component of the texture. Key segmentation parameters are determined on the basis of subjective tests. The
resulting segmentations convey semantic information thatcan be used for content-based retrieval.

Another presentation on image segmentation was given by Ghassan Hamarneh. Dr. Hamarneh started
by giving a short overview on image segmentation and registration. He then focussed on deformable models
(’snakes’ and others) for image segmentation and mentionedissues related to incorporating prior knowledge.
He then presented his work on ’deformable organisms’, an artificial-life framework for image analysis incor-
porating high-level, intelligent, intuitive control of shape deformations. Various application examples were
presented throughout the talk.

Dimension reduction for classification was discussed by Alfred Hero. There has been intense interest in
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analysis of massively complex data sets with thousands of dimensions. Dimension reduction methods are
critical components of any analysis method due to the requirements of computation and noise reduction. Dr.
Hero presented new variational methods of dimension reduction that explicitly target classification, anomaly
detection, or other tasks.

Nick Kinsbury discussed the problems in motion estimation and registration of images and 3-dimensional
objects. His talk considered the problems of displacement (or motion) estimation between pairs of 2-D images
or 3-D datasets, especially for the case of non-rigid deformation as encountered in many medical imaging
applications. He showed how the use of multi-scale directionally selective octave-band filters with analytic
(complex) impulse responses can greatly reduce the computational load associated with displacement esti-
mation by employing phase-based methods. In particular, heextended the techniques of Hemmendorf for
use with dual-tree complex wavelets (DT CWT) and in an iterative scenario, such that the usual approxima-
tions associated with phase-based approaches are minimized. These methods rely on the shift-invariant and
directional properties of the DT CWT, and are inherently resilient to shifts in the mean level and contrast of
the two datasets and to noise, because of the band-limited nature of the signals and the use of phase shifts
to estimate displacements. They are computationally efficient because a coarse-to-fine, multi-scale approach
is used, and they are well-suited to displacement fields thatcan be represented by locally-affine models with
smoothly varying parameters. The algorithm can also be designed largely to ignore data in areas where the
two datasets do not match (e.g., where a tumour is present in one dataset but not in the other). Dr. Kinsbury
believes that the computational advantages of this method will be particularly helpful for 3-D registration
tasks.

Progress in Specific Application Areas

The areas of forensics and security, video coding, automated speech recognition, automated music retrieval,
video for mobile devices and network coding for the Internetand wireless networks were discussed. A
presentation of a different kind but which received much discussion was that of using multimedia and hip-
hop culture to promote math among under-represented minorities. There were three presentations on foren-
sics and security, entitled Multimedia Forensics for Traitors Tracing Secure Signal Processing Emerging
Paradigms in Sensor Network Security Dr. Adrian Dumitras ofApple Inc. and Dr. Amir Said of Hewlett
Packard talked about the state of the art in video coding. Thetitles of their presentations were Optimization
Methods for State-of-the-Art Video Encoders The Need for Better Models for Coding Sparse Multimedia
Representations Workshop attendees also discussed recentdevelopments and open problems in the area of
speech and music. The following three talks addressed this field: Computer Speech Recognition: Building
Mathematical Models Mimicking the Human System Managing Spoken Documents A Personal History of
Music Information Retrieval Panos Nasiopoulos and Kostas Plataniotis gave a joint presentation regarding
consumer-grade mobile devices. The titles of these presentations were Digital Video for Mobile Devices A
Unified Framework for the Consumer-Grade Image Pipeline Philip Chow of Microsoft gave the following
talk on the newly emerging theory and applications of network coding: Network Coding for the Internet and
Wireless Networks

Ray Liu presented first on the art of multimedia security. Therecent growth of networked multimedia
systems has increased the need for techniques that protect the digital rights of multimedia. Traditional protec-
tion alone (such as encryption, authentication and time stamping) is not sufficient for protecting data after it
is delivered to an authorized user or after it has traveled outside a closed system. To address the post-delivery
protection and introduce user accountability, a class of technologies known as digital fingerprinting is emerg-
ing. Due to the global nature of the Internet, ensuring the appropriate use of media content is no longer a
traditional security issue with a single threat or adversary. Rather, new threats are posed by coalitions of
users who can combine their contents to undermine the fingerprints. These attacks, known as collusion at-
tacks, provide a cost-effective method for removing an identifying fingerprint, and thus pose a strong threat
to protecting the digital rights of multimedia. To mitigatethe serious threat posed by collusion, theories and
algorithms are being investigated and developed for constructing forensic fingerprints that can resist collu-
sion, identify colluders, and corroborate their guilt. Therefore, multimedia forensics has become an emerging
field built upon the synergies between signal processing theory, cryptology, coding theory, communication
theory, information theory, game theory, and the psychology of human visual/auditory perception. Dr. Liu
provided the audience with a broad overview of the recent advances in multimedia forensics, with a focus on
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multimedia fingerprinting for traitor tracing. He then talked about tracing traitors using collusion-resistant
fingerprinting for multimedia that jointly considers the encoding, embedding, and detection of fingerprints.
A general formulation of fingerprint coding and modulation with a unified framework covering orthogonal
fingerprints, coded fingerprints, and group fingerprints wasdiscussed. Finally, traitor-within-traitor dynam-
ics and behavior was modeled and analyzed. As a result of thiswork, optimal strategies for traitors and for
detectors can now be developed.

Ton Kalker talked about secure signal processing. He observed that (professional) multimedia signals are
increasingly made available only in protected format. Typically, the security wrappers can only be removed by
the targeted devices or applications (e.g., the DRM agent ina rendering device). This poses serious problems
for intermediate processing applications that do no have access to the appropriate cryptographic keys (for
liability reasons, security reasons or otherwise) and/or that do not have sufficient computational resources.
In his talk, Dr. Kalker discussed options for processing of protected signals in their protected format, both
by adopting the cryptographic methods (e.g., homomorphic encryption) or by adapting the signal processing
methods (scalable coding).

Deepa Kundur talked about the emerging paradigms in Sensor Network Security. She provided an
overview of the field of sensor network security and highlighted particular challenges in symmetric key
distribution, secure aggregation, secure routing, and actuation security. Through examination of these prob-
lems, fundamental compromises among the degree of protection, complexity and network performance were
highlighted, leading to a discussion of appropriate primitives and paradigms for securing sensor networks.
The talk concluded with a discussion of the principal issuesfor protecting emerging optical free space sensor
networks and multimedia sensor networks.

Adriana Dumitras discussed optimization of video encoders. Much work has been done on identifying
the best methods to optimize video encoders. These efforts have focused on removing spatial, temporal
and perceptual redundancies from a video source, with the objective of representing the data efficiently.
However, so far there is no unique ”best method” to optimize avideo encoder. Instead, various methods exist
that address (usually distinctly) different aspects of theoptimization problem and different applications. This
diversity is motivated and enabled by the tremendous flexibility allowed in the encoder design by video coding
standards, the development of unoptimized video encoding tools as part of the non-normative verification or
experimental models in the standards’ developments, and the powerful competition in the video industry. Dr.
Dumitras presented a taxonomy and an overview of the methodsthat enable video encoder optimization by
tradeoffs at the algorithmic, software and hardware implementation levels.

Amir Siad talked about the need for better models for multimedia coding. A main objective in multimedia
signal processing is to numerically eliminate redundancy and create sparse representations. However, for
compression an effective representation needs to be effectively entropy coded. There is a need to have good
combined models for both the signal and how its information is distributed, in the sense of what and where the
most important components are. Simple recursive set-partitioning methods were shown to be very effective
in coding sparse data, both in terms of compression and computational complexity, but their use still has
not been extended to more complicated media types. Dr. Said discussed the challenges and possibilities for
improving performance using more sophisticated data models.

Li Deng of Microsoft discussed computer speech recognitionand how to build mathematical models that
mimic the human system. The main goal of computer speech recognition/understanding is to automatically
convert naturally uttered human speech into its corresponding text (and then into its meaning). While amaz-
ing success, both technologically and commercially, has been achieved in the past by straightforward mathe-
matical methods (e.g., hidden Markov modeling, maximum likelihood and discriminative learning, dynamic
programming, etc.), solving the remaining problems leading to its ultimate success appears to require a deep
understanding of human speech recognition mechanisms. Dr.Deng analyzed various human sub-systems,
including linguistic-concept generator, motor-control,articulation, vocal tract acoustic propagation, ears, au-
ditory pathways, and auditory cortex, working in synergy toaccomplish the remarkable task of highly robust,
low-error speech recognition/perception and understanding. How can the essence of such human information
processing power be abstracted in building a computer system with similar (or better) performance? How
can we build mathematical models to enable the development of advanced machine-learning algorithms and
techniques that will run efficiently in a computer? Is it possible to explore and exploit some special power
of the computing machines inherently lacking in the human system so as to achieve super-human speech
recognition? These are some of the issues Dr. Deng addressedin the talk.
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Mari Ostendorf talked about the management of spoken documents. As storage costs drop and band-
width increases, there has been a rapid growth of information available via the Web or in online archives,
raising problems of finding and interpreting collections ofdocuments. Significant recent progress has been
made in text retrieval, analysis, summarization and translation, but much of this work has focused on written
language. Increasingly, speech and video signals are also availableincluding TV and radio broadcasts, con-
gressional records, oral histories, voice mail, call center recordings, etc.which can be thought of as spoken
documents’. Because it takes longer to listen to audio than to read text, spoken documents are clearly a prime
candidate for automatic indexing, information extraction, and other such technologies. In her talk, Dr. Osten-
dorf provided an overview of the speech processing technology underlying spoken document management,
including mathematical frameworks for both word and metadata recognition, and for integrating video and
language cues. In addition, she discussed issues that arisein text processing when moving from written to
spoken language and implications for statistical models oflanguage.

George Tzanetakis gave a very lively presentation about music retrieval, complete with beautiful and
varied pieces of music. Music Information Retrieval (MIR) is an emerging research area that explores how
large digital collections of music can be effectively analyzed for searching and browsing. It combines ideas
from many different fields, including Signal Processing, Machine Learning, Music Cognition, and Human-
Computer Interaction. Dr. Tzanetakis gave a historic overview of MIR, with specific emphasis on topics he
had more personal experience with, such as audio-feature extraction, automatic musical genre classification,
rhythm analysis, query-by-humming, and sensor-enhanced musical instruments. He concluded the talk by
making predictions about the future of MIR and how it will radically transform the way music is produced,
distributed and consumed.

Panos Nasiopoulos talked about digital video and mobile devices. Mobile wireless technologies and digi-
tal video broadcast technologies are gradually convergingwithin efforts from 3GPP and DVB 2.0 to complete
this merging in the upcoming generations of mobile technologies. In order to support this convergence, ex-
isting video technologies need to be upgraded to ensure the reliability and quality of the delivered content.
This calls for highly efficient video codecs in addition to reliable error resilience techniques that overcome
the bandwidth constraints and highly error-prone conditions of wireless networks.

Kostas Plataniotis talked about a unified framework for consumer grade image pipeline. A new mod-
eling and processing approach suitable for consumer-gradeimage processing was presented. Using vector
modeling principles, nonlinear image operators and adaptive filtering concepts, single-sensor camera image
processing problems are treated from a global viewpoint yielding new classes of processing solutions. The
following varied applications of the framework were covered: spectral interpolation (demosaicking), spatial
interpolation of the acquired (mosaic-like) single-sensor gray-scale images as well as demosaicked full-color
images, demosaicked image post-processing and color imageenhancement, camera image denoising and
sharpening, camera image compression, spatio-temporal video demosaicking, and camera image indexing
and rights management. Results obtained using the framework were provided. The list of the topics cov-
ered, while certainly not exhaustive, provided a good indication of the usefulness and often necessity of
the proposed framework in consumer grade image processing.Open research problems and other potential
applications of the framework were also discussed.

Melanie Louisa West gave a multimedia presentation about using multimedia and hop-hop culture to
teach math to under-represented minorities. There is widespread agreement among educators that a strong
need exists for programs to increase math and science competency among under-represented minority stu-
dents. Lack of interest and motivation are known contributing factors for this lack of representation. Ms.
West proposed combining multimedia with elements of hip-hop culture to promote interest in math among
under-represented minorities. In today’s society, hip-hop music has captured the minds of urban youth. Mu-
sic sales, fashion trends, and advertisement strategies reflect this. Consequently, Ms. West believes that
incorporating hip-hop into math instruction for under-represented minorities holds great promise for success.
The elements of rhyme, rhythm, and repetition make raphip-hop’s linguistic componentan excellent creative
vehicle for presenting concepts that require memorization. Math, in particular, lends itself to rap because the
creative use of natural language provides a platform for transferring the conceptualization of math into real
life experiences through story-telling. By combining the learning experience with an activity that is already
an integral part of a person’s life, Ms. West believes that this will not only increase interest in learning, but
will also maximize information retention. This coupled with the incorporation of multimedia elements that
will be widely accessible (on public display for peers and orpublish for a general audience) will motivate



Multimedia and Mathematics 159

the individual (or group) to do their very best. An innovative aspect of this proposed approach is that it
combines teaching students at the elementary school level with multimedia content created by students at the
high school level. This accomplishes two goals; it makes it easier to motivate the younger students, and at
the same time, provides a great vehicle for exposing the older students to multimedia.

Summary and Highlights

The workshop topic provided a timely cross-disciplinary bridge between the relatively new area of multimedia
and the well-established discipline of mathematics. For many researchers in a specific area of multimedia,
the workshop provided an excellent opportunity to broaden their perspective. The workshops high-quality
presentations made clear the surprisingly similar mathematical approaches applied to speech, audio, image,
and video-processing research.

The presentations and informal discussions enabled participants to examine the variety of approaches
in different media areasan invaluable opportunity made possible by the mixed formalinformal style of the
workshop. For example, the group discussion resulting fromAmir Said ’s presentation confirmed that coding
can only be optimized if we have good models. Another exampleis that of Professor Pappas’ presentation
on image segmentation, which generated heated debate by questioning the need for an intermediate step,
given that the final task is semantic image understanding/classification. The researchers with speech recogni-
tion/understanding expertise have found that integrated pattern-recognition approaches that avoid the step of
speech segmentation always provide better results than modular processing approaches that involve explicit
segmentation. The discussions on such disparities provided much needed information that will hopefully
generate new interest in cross-media research and exploration. Li Deng, the General Chair of the 2006 IEEE
Workshop on Multimedia Signal Processing, was one of the attendees. He decided, together with the Techni-
cal Committee, to continue such discussions and explorations with a special panel at the upcoming workshop
on ”Differences and Similarities of Image/Video and Speech/Audio Processing Techniques.” Professor Pap-
pas has accepted their request to organize the panel. We believe that this will have a significant impact on the
future of multimedia research, an initiative inspired by this BIRS workshop.

We hope BIRS will continue sponsoring cross-disciplinary workshops such as the one we organized.
Cross-disciplinary research sharing similar mathematical approaches stands to benefit the most from such
workshops. The different branches of media processing research make it impossible to gain expertise in every
sub-area, and this BIRS workshop helped immeasurably to foster an awareness of new trends in the various
sub-disciplines. This is particularly important to some industrial researchers whose work has a relatively
short-term scope. Most researchers in multimedia cannot afford the time-consuming process of mastering the
subtleties of all the multimedia processing techniques. The BIRS workshop provided an ideal opportunity to
make close connections among them and to deepen our understanding of problem areas.

The workshop succeeded in its aim to bring mathematicians, engineers, and scientists to interact and get
exposed to each others’ ideas and advances in these disciplines. As different multimedia technologies have
evolved and continue to evolve at a very rapid rate, the exactdefinition of multimedia remains illusive, even
though multimedia technologies are now being widely deployed in industries in a multitude of applications.
All of these applications affect the way we live, communicate, interact with each other, work, and play.

The cross-fertilization among the different disciplines,academics and practitioners, engineers and mathe-
maticians encouraged by the workshop was very useful in exposing the different communities to a new range
of challenging and timely technical advances, the underlying mathematical problems and applications, and
implementation challenges.
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Background

Population growth and spread, global climate change, and the emergence and reemergence of novel and
deadly forms of infectious diseases have increased the needfor sound quantitative methods to guide dis-
ease intervention practice [1, 15, 18]. In the 20th century,influenza was pandemic several times and new
diseases such as Lyme disease, Legionnaire’s disease, toxic-shock syndrome, hepatitis C, hepatitis E, and
hantavirus were encountered. The human immunodeficiency virus (HIV), which is the etiologic agent for
acquired immunodeficiency syndrome (AIDS), was identified in 1981 and now causes over 3 million deaths
per year in the world. Drug and antibiotic resistance have become serious issues for diseases such as tuber-
culosis, malaria, and gonorrhea. Prions have been identified as the infectious agents for bovine spongiform
encephalopathy (BSE or mad-cow disease), Creutzfeldt-Jacob disease, kuru, and scrapie in sheep. Changing
patterns of social behavior and travel present new classes of disease transmission problems. For example,
West Nile virus has spread to North America. Biological terrorism with diseases such as smallpox or plague
has become a new threat. In the 21st century, we have already encountered severe acute respiratory syndrome
(SARS) and will undoubtedly face more new infectious disease challenges.

The epidemiological modeling of infectious disease transmission has a long history in mathematical biol-
ogy, but in recent years it has had an increasing influence on the theory and practice of disease management
and control [15]. Mathematical modeling of the spread of infectious diseases has become part of epidemiol-
ogy policy decision making in several countries, includingthe United Kingdom, Netherlands, Canada, and the
United States. Epidemiological modeling studies of diseases such as gonorrhea, HIV/AIDS, BSE, foot and
mouth disease, measles, rubella, and pertussis have had an impact on public health policy in these countries.
Thus modeling approaches have become very important for decision-making about infectious disease inter-
vention programs. Recent approaches include deterministic models, computer simulations, Markov Chain
Monte Carlo models, small world and other network models, stochastic simulation models, and microsimu-
lations of individuals in a community. These techniques areoften implemented computationally and use data
on disease incidence and population demographics. Sometimes the epidemiology, immunology, and evolu-
tion of a disease must all be considered. For example, some recent research has studied the rational design
of influenza vaccines by considering the effects on the immunology of influenza immunity in individuals of
the yearly epidemics of influenza A variants, the vaccine composition each year, and the yearly evolutionary
drift of influenza A virus variants.

One barrier to effective modeling of infectious diseases and intervention policies has been the lack of
communication between the modelers and the policy makers. Aprimary objective of the BIRS Mathemat-
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ical Epidemiology workshop was to encourage communicationamong internationally-recognized applied
mathematicians, statisticians, and epidemiologists. To promote communication, 50 minute lectures were fol-
lowed by 30 minute discussion periods on specific diseases, epidemiological problems, public health policies,
comparisons of disease intervention strategies, recent advances, open questions, new approaches, and future
directions for research. The formal lectures and discussions in the mornings and evenings were supple-
mented by more informal discussions and special sessions inthe afternoons. The topics included Compound
Matrices, Incidence Functions, Modelling Rubella Vaccination, and Wildlife Diseases.

Partcipants in this BIRS workshop (August 20-25, 2005) presented the latest results on the theory and
applications of mathematical modeling of infectious disease epidemiology and control. Mathematicians,
statisticians, and epidemiologists presented successfulexamples of mathematical modeling studies. They
also described current epidemiological problems and questions about strategies for vaccination and other pre-
vention methods that could be studied using mathematical modeling approaches. The variety of approaches
included not only deterministic and stochastic modeling, but also network and agent-based modeling. Some
talks emphasized new methods in dynamical modeling of infectious diseases, while others considered new
applications of modeling approaches and new methods for parameter estimation from data. The participants
included many young scientists including assistant professors, postdoctoral fellows, and graduate students.

Both mathematical modelers and public health policy decision makers will ultimately benefit from this
workshop on modeling as a decision making tool for the epidemiology and control of infectious diseases.
Epidemiologists and public health policy makers have much to learn about successful and potential applica-
tions of modeling approaches to understanding disease transmission and using interventions to reduce disease
incidence. It was the consensus of the participants that workshops should be organized by modelers for public
health officials, in which they would work on epidemiology modeling and computer simulations of infectious
disease transmission and control. Applied mathematiciansand statisticians learned about new and challeng-
ing problems in modeling the spread and prevention of diseases. This workshop may lead to new projects
and collaborations involving the applications of modelingapproaches to problems in understanding infectious
disease transmission and intervention strategies.

Challenges in modeling influenza and antigenic variation

Viggo Andreasen opened the conference with a detailed presentation of the biology of influenza viruses, and
of mathematical models used to understand influenza’s evolutionary ecology. As Andreasen discussed, in-
fluenza’s biology is complicated, even though the disease iscaused by a relatively small RNA virus. The virus
consists of eight separate RNA segments encoding a total of 10 genes. In temperate regions of the globe, the
virus causes regular, annual epidemics. In the years 1918, 1957, and 1968, however, the virus caused major
pandemics worldwide. As Andreasen described, pandemics are associated with antigenic “shifts” – that is,
reassortment of entire viral RNA segments between avian andhuman forms of the virus. In non-pandemic
years, by contrast, annual epidemics are possible because of antigenic “drift” – that is, the gradual accumu-
lation of point mutations in hemagglutinin, the gene encoding the primary surface antigen of influenza. The
phylogeny of drifting influenza viruses is very unusual whencompared to all other known RNA viruses (such
as HIV).

Influenza drift is the result of selection for novel antigenic viral strains, selected because of “cross-
reactivity” between related strains. The processes of influenza transmission and drift can be modeled by
generalizing the standard SIR framework in one of several ways:

1) Assume a fixed set,K, of n distinct strains. Instead of using only three classes of individuals (S(t) I(t)
andR(t)), we introduce more classes (order2n) of individuals, which indicate the set of strains,J ⊂ K, from
which an individual has previously recovered, or the strainwith which an individual is currently infected. The
resulting model requires a very large number of ODEs, but it has been thoroughly analyzed in the case of
n = 4 strains. 2) Assume of a one-dimensional continuum of strains, and index susceptible individuals
according to the strain of their most recent infection. Thisresults in a PDE version of the SIR model, and the
steady-state evolutionary rate depends upon the kernel of cross-immunity between strains. The phylogenetic
structure of viral strains cannot be studied in such a model.3) Employ individual-based stochastic simulations
that keep track of the full infection history of each individual, transmission events between individuals, and
mutational events to viral strains.
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Although individual-based simulations have successfullyreproduced the empirical patterns of influenza
drift evolution [13, 26], such simulations are very complicated and do not easily reveal the underlying prin-
ciples that govern the structure of influenza drift. Dr. Andreasen introduced new work based on an earlier
framework he has developed with colleagues [19, 2]. Andreasen and Sasaki have recently analyzed simplified
2-strain “annualized” models which attempt to determine the conditions under which a mutant viral lineage
will co-exist with its parent strain (phylogenetic branching), and under what conditions a mutant viral lineage
will extinguish earlier lineages (phylogenetic pruning).This modeling approach helps to identify generic
principles that govern the structure of drifting influenza viruses.

In the second session, Junling Ma presented another model intended to help gain analytic understanding
of the complex process of influenza drift. Ma’s approach synthesized a variety of data about drift to support
the development of a simple modeling framework that captures key aspects of influenza drift. He presented
an argument beginning from a Poisson process of random mutations arising and showed that a few simple
assumptions allow construction of a novel modeling framework similar to the earlier models of Andreasen et
al. [3, 19, 2].

Junling Ma thereby provided a rationale for the “linear” strain-evolution framework of Andreasen, Levin
and others. He showed that his model leads naturally to cycles of about one year, with explicit evolution, tying
in to an earlier theory by Dushoff and others [9] that strong annual cycles in influenza arise from resonance
between a natural tendency to cycle and exogenous seasonal forcing. This earlier theory was developed in
part at a 2003 BIRS workshop in honor of Lee Segel.

The discussion ranged over a broad set of existing challenges in influenza modeling, including: how to
how to bridge scales from cellular interactions, to individual outcomes, to population-level patterns of disease
incidence and viral evolution; and how to guide choice of vaccine strains and policies of vaccine allocation.
We expect that collaborations started here will lead to significant progress on these important questions.

Most of the diseases discussed at the workshop exhibit antigenic variation: the ability of the disease
organism to change its surface in order to evade the immune system. Discussions focused on models in-
corporating multiple strains for subtypes of a virus circulating in a host population. For example, the virus
responsible for Dengue Hemorrhagic Fever may appear in one of four subtypes, which has complicated the
development of an effective vaccine. These subtypes co-circulate in the host population and the course of in-
fection within a host depends on the previous history of infections with other subtypes. Subsequent infections
are hypothesized to increase one’s viral load, and increaseone’s infectiousness. This effect is called antibody
dependent enhancement (ADE). Even the simplest assumptions of this phenomenon lead to large complex
models, which possess very interesting dynamics, both fromthe mathematical and epidemiological perspec-
tive. The complexity of these models is necessary to resolvequestions of outbreak patterns and development
of effective vaccines and vaccination strategies.

Lora Billings presented a dynamical system model of co-circulating subtypes in diseases such as dengue,
with both autonomous and seasonally driven outbreaks [2]. She showed that for sufficiently small ADE,
the number of infectives of each subtype synchronizes, withoutbreaks occurring in phase. When the ADE
increases past a threshold, the system becomes chaotic, andoutbreaks from differing subtypes become desyn-
chronized. However, windows of synchronization can persist. This drives down the number of susceptibles,
and can threaten persistence of the virus. She concluded that increased number of subtypes and ADE effect
may provide a competitive advantage to a virus, but there arelimits.

The current state of the art in both the epidemiological dataand the analysis of the models falls short of
answering the questions of vaccine strategies, but desynchronized outbreaks of different subtypes can be par-
tially understood. There are several clear directions for research: one, the further development of analytical
techniques for these types of dynamical systems, particularly, bifurcation analysis and integration methods,
and two, further study of immunological mechanisms and within-host modeling of immune response to both
understand the details of susceptibility and immunity and to properly model the spread of subtypes within
the host population. The challenges surrounding within-host aspects of antigenic variations, such as drug
resistance and its consequences for treatment and vaccination programs, were not discussed at the meeting
and should be addressed in a future workshop.
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New approaches: Network modeling

Mark Newman’s talk on Disease Dynamics on Contact Networks provided an introduction to the use of net-
work approaches in epidemiology, together with a number of examples of their application to real-world
problems. The spread of an infection on a network can be mapped onto a percolation problem, where the
probability of there being a connection between two nodes isgiven by the transmissibility of infection. This
quantity is simply the probability of transmission betweenan infective and a susceptible, over the entire in-
fectious period of the infective. With this mapping, the well-developed machinery of percolation theory (most
notably, generating function methods) can be brought to bear on the problem. Epidemic thresholds, proba-
bilities of disease invasion and epidemic sizes can then be calculated. A number of examples of networks
were presented, together with a discussion of the problems and issues that accompany attempts to capture
the structure of real-world networks. The central point is that a network consists of both nodes (individuals)
and edges (connections between individuals). The statistics of sampling individuals from a population is a
well-studied problem, but appropriate techniques for sampling edges are less well understood. Many tech-
niques, such as contact tracing, may introduce biases into the sample of the network obtained. The network
structure is highly dependent on the infection setting, as witnessed by the impact of increased long-range
travel: the spread of Black Death in medieval Europe involved mainly local spread of infection whereas the
SARS outbreak rapidly jumped between countries and even continents.

For many rapidly spreading infections, the contact networkcan be treated as being fixed, but such an
assumption would be quite inappropriate for sexually transmitted infections. In many settings, transmission
is enhanced by superspreaders: individuals who give rise tomany more secondary infections than the average
person. The percolation analysis highlights this phenomenon, with the basic reproductive number depending
not only on the average number of contacts made (i.e. the meanof the degree distribution) but also on the
second moment of the degree distribution. This result echoes the familiar ”mean + variance over mean” result
from mathematical epidemiology. A hospital-based networkmodel was presented, depicting hospital wards,
patients and caregivers. Fitting the model to data on an outbreak of Mycoplasma pneumonia suggested that
the probability of transmission between patients and caregivers was highly asymmetric, with a much higher
transmission probability from caregivers to patients thanfrom patients to caregivers. As a consequence,
the model makes a strong prediction regarding control: eachcaregiver should be limited to one ward, and
caregivers should be given antibiotics. These recommendations are in stark contrast with conventional public
health wisdom, which states that patients should be confinedto wards and patients should be treated. In the
resulting discussion, it was pointed out that the standard policy might be more concerned with mitigating the
effects of infection (i.e. preventing patient deaths) rather than preventing transmission.

The spread of SARS in a city such as Vancouver was studied using a simulated contact network, based
on demographic data. Properties of the network were discussed, together with epidemiological questions
(such as the probability of invasion) that can be addressed using the percolation approach. Interestingly,
despite all of the structure that was included in the network, it appeared, in many ways, to behave very
similarly to a random graph model. Sexual partnership networks have a quite different structure to the social
networks that govern the spread of respiratory infections.The dynamic structure of the network, as sexual
partnerships are formed and break up, is an important feature, as is the degree to which partnerships overlap
(concurrency). If the infectious period of sexually transmitted infections is short, then most transmission
events must be associated with partnerships that are eitherconcurrent or that closely follow other partnerships.
”Gap dynamics” are, therefore, an important determinant oftransmission, in addition to concurrency. Survey
data that examines partnership dynamics, including concurrency and gap dynamics, were presented. There
was considerable discussion of biases in such data. The talkconcluded with the question of whether network
models are really appropriate for sexually transmitted infections, despite their long history of use in this area.

A lively discussion followed. Questions of different network structures were raised. Bipartite graphs
have been used in some instances, such as the EpiSims model for spread of smallpox in Portland, Oregon,
that describes people and places, such as offices, schools and stores. In such models, places can be considered
as being infected, so that people visiting those places can acquire infection. Vector borne diseases may be
more appropriately described using random graphs, if it is assumed that the vector (e.g. mosquito) does not
distinguish strongly between different people. On the other hand, such networks may exhibit aggregation if
the vector shows preference for biting certain classes of people.

The usefulness of the basic reproductive number concept in network settings was questioned. In reply,
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it was pointed out that different network structures (and henceR0) may explain the different patterns of
spread of HIV in different settings. Control measures can also be explored using the analytic approach. The
difficulties in applying network approaches to the real-world were a recurring theme in the talk and discussion.
Important issues remain regarding how we can gain insights into the structure of networks on which infection
spreads. There are only a small number of instances (such as SARS, for which intensive contact tracing was
carried out, or the hospital study presented, whose small scale enabled a complete description of the network
to be obtained) in which detailed network data is available.In other settings, we only have a sample of the
network or a sample of the individuals involved in the network.

Mercedes Pascual spoke about her joint work with Juan Aparicio on translating from networks to pop-
ulations using modified mean-field models of disease dynamics. Such models ignore network structure and
assume homogeneous mixing. At the opposite extreme, high-dimensional models that are both individual-
based and stochastic incorporate the distributed nature oftransmission. In between, moment approximations
have been proposed that incorporate the effect of correlations on the dynamics of mean quantities of interest.
As an alternative closer to traditional epidemiological models, she presented results on ‘modified mean-field
equations’ for disease dynamics, in which only mean quantities are followed and the effect of heterogeneous
mixing is incorporated implicitly. She illustrated the idea of formulating these equations from the basic re-
productive number of the disease (R0), and illustrated the approach with SIR dynamics in random and small
world networks. She asked how much detail is needed on the transmission network to predict the population
course of disease dynamics. She derived an expression forR0 in small networks and showed that in spite
of high levels of clustering, the resulting system of differential equations are able to capture the initial tran-
sients and the long-term equilibrium of the more complex network simulations. Pascual argued, however,
that modified mean field equations will be most useful when thenetwork is not known, and therefore, when
the analytical expression forR0 is not know. Thus, she addressed how much information is needed on the
network to parameterize the model using only the initial transients (i.e. the beginning of an epidemic). From
initial data on incidence vs. time, she estimatedR0 and used it as a parameter in the modified mean field
equations. This exercise showed that no information on the network is required to parameterize the system
and predict the course of the disease. Limitations of the approach were discussed.

A second method relies on power-law relationships between global and local densities. Pascual specif-
ically investigated the previously proposed empirical parameterization of heterogeneous mixing in which
the bilinear incidence ratekSI is replaced by a nonlinear termkSqIp [25, 21], for the case of stochastic
SIRS dynamics on different contact networks, from a regularlattice to a random structure via small world
configurations. She showed that, for two distinct dynamicalregimes involving a stable equilibrium and a
noisy endemic steady-state, the modified mean field model approximates successfully the long term dynam-
ics and short term transients of decaying cycles. A regime ofcoherent cycles in the small world regime is not
well-approximated by this simple model. Pascual argued that future work should couple aspects of the two
proposed approximations to better capture the effects of heterogeneous mixing.

Pascual asked whether the demographic noise introduced by finite populations in individual-based mod-
els must be kept. That is, do we need the noise even when network structure is only implicitly incorporated?
She presented some recent results on the dynamics of a stochastic SIR models for infectious diseases with
immigration. In particular, she derived the power spectra of both infective and susceptible numbers and gave
conditions under which large and sustained cyclic stochastic fluctuations are expected. This analytical re-
sult formalizes the well-known observation that demographic noise sustains persistent oscillations when the
corresponding deterministic system approaches an equilibrium with decaying cycles [4, 22]. These results
show that the dominant period of the deterministic and stochastic system do not necessarily coincide. More
importantly, they suggest a complementary explanation forthe major dynamical transitions observed in epi-
demics of childhood infectious diseases after vaccination, from regular to irregular cycles [11, 5]. Seasonal
forcing does not appear to change the basic character of the power spectra, other than adding an annual peak.
They also show that childhood diseases fall in regions of parameter space prone to high noise amplifica-
tion, an observation that raises interesting evolutionaryquestions. Discussion of the interplay of seasonality,
stochasticity and nonlinear disease dynamics clearly shows that this is an important area in need of further
study.
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Modeling emerging/reemerging diseases such as HIV, SARS and West
Nile Virus

The presentation by Brandy Rapatski and James Yorke [23] dealt with the epidemiology of HIV. There have
been only a few attempts in the literature to estimate the probability of HIV transmission per sexual contact.
A number of years ago J. Jacquez and J. Koopman at the University of Michigan analyzed a data set dealing
with gay men in San Francisco that were part of a hepatitis B vaccine trial for which multiple blood samples
were taken during the early years of the HIV epidemic. From analysis of the data from 1978-1984, before
the introduction of antiretroviral therapy, Jacques and Koopman concluded that the highest probability of
transmission occurred during the first few months after infection, a period called primary infection. Rapatski
and Yorke reanalyzed the same data with a model that incorporated three stages of disease, primary infec-
tion, asymptomatic infection (lasting on average 7 years),and symptomatic infection (lasting on average 3
years). Using data on the fraction of gay men that were HIV positive vs time during the years 1978-1984,
they concluded that to sustain the rapid increase in the number of infected gay men into the later years of
the San Francisco epidemic that the probability of transmission must be highest during the third stage, the
symptomatic stage of disease, rather than during primary infection. Their conclusion, given the data, seemed
very surprising given the adoption by the field that HIV is mainly spread during primary infection. This talk,
which was supported by rigorous modeling and data analysis,presented an important change in the view of
HIV spread. Much discussion followed both about the methodsused and the conclusion, but no one identi-
fied any flaws. In fact, all approximations seemed to be conservative and adding more realistic features to the
model only appeared to increase the probability of transmission in the third stage.

Zhien Ma spoke about the work of his group on modeling the SARSoutbreak in China during November
2002 to June 2003 [29, 28]. A compartmental model is proposedthat mimics the SARS control strategies
implemented by the Chinese government after the middle of April 2003: the division of the whole population
into two parallel blocks corresponding to the so-called free environment and the isolated environment and the
partition of these blocks further into the compartments of susceptible, exposed, infective, suspected SARS,
diagnosed, removed and health care workers. A novel approach was introduced to calculate the transfer rate
from the free environment to the isolated environment. Thisapproach incorporated undiagnosed suspected
SARS individuals that were put into isolation because fast SARS tests were not available. Methods were
developed for parameter identification using the daily reported data from the Ministry of Health of China.
Simulations based on these parameters agree with the accurate data well, thus providing additional validation
of the model. Finally some parameters were varied to assess the effectiveness of different control measures:
these new parameters correspond to the situation when the quarantine measures in the free-environment were
prematurely relaxed (thus the observation that the second outbreak with the maximal number of daily SARS
patients is much higher than the first outbreak) or when the quarantine time of SARS patients is postponed
(noting the delayed peak time but with much higher number of SARS patients at the peak). The basic
reproductive number and the basic adequate contact rate were also calculated.

Interestingly, the modeling work was carried out in 12 days by Zhien Ma and his group in May of 2003,
before the SARS infections had subsided in China. Yet, theirresults came very close to predicting the real
SARS case data in China that accumulated almost a month later. This demonstrates the need for modelers
to consider approaches to real-time modeling and prediction on an ongoing outbreak, as opposed to the
traditional prediction of future outbreaks or retrospective analysis, which are abundant in the literature.

Zhilan Feng presented work done together with John Glasser (CDC) in which they investigated potential
public health response strategies for an emergent infectious disease. They constructed a general compart-
mental ODE model incorporating the possibility of infectiousness during clinically distinguishable stages,
during which patients could be quarantined or isolated withvarying efficiencies. They tested their model
by application to SARS data in Hong Kong. Analysis of this model with increasingly accurate and com-
plete information indicates that recommended public health interventions may change during the course of
an epidemic. This led into a more general discussion of how mathematicians can best help public health
decision-makers who are planning for or responding to epidemics.

Spatial aspects are important in infectious disease transmission, but are often taken into account implicitly
in models. Throughout the workshop, the spatio-temporal component of disease spread was often alluded to,
for example during discussions on network models, but seldom discussed explicitly. Of the various modeling
techniques at hand to address spatial aspects, the one that involves integro-differential equations is at the same
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time the most accurate and the hardest to use. Shigui Ruan gave a presentation entitled Nonlocal Epidemic
Models, in which he presented models employing this approach. He first introduced a host-vector model for
a disease without immunity, with the specificity that the current density of infectious vectors is related to the
number of infectious hosts at earlier times. This results inan integro-differential equation model, in which a
diffusion term is used to model the spatial spread in a region. Examples of these host-vector diseases include
West Nile Virus and malaria.

Ruan showed how, for the general model, the stability of the steady states can be studied using the
contracting convex sets technique. When the spatial variable is one-dimensional and the delay kernel assumes
some special form, the existence of traveling wave solutions is established using the linear chain trick and
the geometric singular perturbation method. In a second part, Shigui used a multi-compartment model to
describe the nonlocal spread of SARS, discussing in particular the effect of global travel on the transmission
of the disease.

Recent advances in modeling disease transmission and vaccination

David Greenhalgh spoke on estimation ofR0 and evaluation of vaccination programs from age-structured
serological data. There were questions on whether or not agestructured bootstrap samples were used in
these kinds of studies. It is likely that when the infection process is independent of the age and the age
specific samples are good, then the age specific bootstrap method is applicable. In rubella, children may be
infected by the adults and vice-versa, so the samples are age-dependent. However, many people have the
opinion that it is not easy to validate the model. One reason for this could be changes in the behaviour of
the individuals who are vaccinated. There was also discussion on general difficulties on validating the given
mathematical model which predicts the proportions of newborns to be vaccinated.

John Glasser gave a talk entitled “Mathematical Epidemiology of Varicella and Herpes Zoster”. The
United States has recently begun to recommend children be vaccinated against varicella (chickenpox); how-
ever, there is a complex process by which the varicella-zoster virus reactivates resulting in herpes zoster
(shingles). Previous work has considered this reactivation, but this work includes the effect of boosting of
immunity to herpes zoster due to either the periodic reactivation of the virus within a person or contact with
a varicella-infected person.

Previous studies had cast doubt on the varicella vaccination policy of the United States because of a
predicted temporary increase in herpes zoster infections in adults who are no longer boosted by exposures to
children with chickenpox. Other considerations, including possible evolutionary changes in the virus caused
by vaccination, might provide further evidence for or against the policy.

Chris Bauch spoke on the behavior-incidence dynamics in childhood disease vaccination. The interplay
between disease prevalence, population behavior and vaccine coverage is explored in a game theoretical
setting for the case of pertussis in England and Wales duringthe 1970’s. A model that considers imitation
dynamics is able to give a good fit to the time-series data of pertussis vaccine uptake. The model is able to
recover the oscillatory dynamics characteristic of some childhood diseases. The model also predicts that the
probability and amplitude in oscillations increase with the intensity of imitation behavior in the population or
with increases in disease prevalence. It is suggested that game theoretical approaches could aid in predicting
the population behavior towards vaccination and thereforefacilitate public health decision making.

In this session, we also briefly discussed issues related to parameter estimation, uncertainty and sensitivity
analysis. The capability of the model to uniquely identify model parameters needs to be addressed. Parameter
estimation can be achieved using maximum likelihood methods, least squares fitting, etc. Uncertainty in
parameter estimates can be quantified under different assumptions in the data (e.g., heterogeneity in variance,
correlated errors, etc.). Sampling techniques (e.g., latin hypercube, simple random sampling) are useful to
explore the parameter space and assess the uncertainty of epidemiological quantities of interest. Sensitivity
analysis (e.g., partial derivatives, partial rank correlation coefficients) of parameters on the model solution of
interest are useful not only in determining the sensitivityon parameters, but also in constructing asymptotic
variance-covariance matrices from which parameter variance and correlation information can be obtained.
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Modeling wildlife diseases

Linda Allen spoke about modeling wildlife diseases including hantavirus infections in rodents and chytrid
infection in amphibians. Hantavirus pulmonary syndrome isan emerging zoonotic disease that is carried
by wild rodents. The mortality rate in humans is as high as 37%. Humans are usually exposed to the virus
through geographically isolated outbreaks. Two new mathematical models for hantavirus infection in rodents
were presented. The models were based on a male/female SEIR epidemic model. The first model was a
system of ordinary differential equations (ODEs) while thesecond model was a system of stochastic differ-
ential equations (SDEs). The SDE model can be derived directly from the ODE model assuming variation
with respect to the birth, death, and infection process [17]. These new models capture some of the realistic
dynamics of the male/female rodent hantavirus interaction: higher seroprevalence in males and variability in
seroprevalence levels.

Two diseases associated with recent amphibian declines areranavirus infection and chytridiomycosis.
Chytridiomycosis is a disease caused by the fungal pathogenBatrachochytrium dendrobatidis. Both pathogens
causing these diseases are found throughout the world. In this presentation, models for amphibian populations
infected by the fungal pathogen were discussed [12]. The amphibian host population is structured according
to two developmental stages, juveniles and adults. The juvenile stage is a post-metamorphic, nonreproductive
stage, whereas the adult stage is reproductive. Each developmental stage is further subdivided according to
disease status, either susceptible or infected. There is norecovery from disease. Each year is divided into
a fixed number of periods. The first period represents a time ofbirths. Amphibians are generally explosive
breeders, resulting in a large increase in population density during the breeding season. During the remaining
time periods there are no births, only survival within a stage, transition to another stage or transmission of
infection. Conditions were derived for population extinction. High transmission rates can destabilize the
disease-free equilibrium and low survival probabilities can lead to population extinction.

There are several reasons for studying wildlife diseases [14, 8, 27, 16].
1) If the wildlife species is of conservation interest and there are concerns about the impact of the

disease on the survival of the populations, for example, rabies in Ethiopian wolves.
2) If there is increasing worry about the possibility of either transmission from wildlife to humans or

to domestic animal species. In this case we often think of wildlife as the reservoir species.
3) Wildlife diseases pose a threat to global diversity. Control of wildlife diseases is important for the

preservation of our natural world.
Emerging diseases often occur because of anthropogenic changes to the environment or human encroach-

ment. These changes result in increased contact with wildlife species which allows disease to jump between
species. Wildlife diseases are often associated with diseases in humans (zoonotic disease) and domestic
animals. A few examples of wildlife disease that are transmitted to humans include hantavirus pulmonary
syndrome (transmitted by wild rodents such as rats and mice), influenza in birds, and plague from prairie
dogs and rats. Rabies cases in humans are often due to bites byinfected bats. The annual number of human
deaths worldwide caused by rabies is estimated to be between40,000 and as high as 70,000. An estimated
10 million people receive post-exposure treatments each year after being exposed to rabies suspect animals.

Vector-transmitted diseases affecting wildlife and humans include West Nile Virus and Lyme disease.
Canine distemper virus is a spillover infection from domesticated dogs that has resulted in extinction of
black footed ferret and African wild dog populations. A few emerging diseases are known to only impact
wildlife, such as chytridmycosis, a fungal infection in amphibians, and chronic wasting disease (transmissible
spongiform encephalopathy) in deer and elk.

The main differences between modelling wild life and human disease identified in the discussion are that
i) Wildlife populations do not remain constant over time; indeed, they can be highly variable due to

environmental factors or the landscape. This can have a profound impact on the dynamics of the disease.
ii) Multiple species interactions are often involved. For example a reservoir for infection does not

have to consist of one species, but can be made up of a number ofspecies which interact (at least) via the
pathogen and allow the disease to persist. There are many diseases which infect multiple species and we
often observe “apparent competition” between these species via the pathogen.

iii) In many cases, wildlife population dynamics are believed to be controlled by pathogens. For
example, red grouse and Trichostrongylus tenuis (althoughwe can also think of examples where diseases
have had a profound effect on human populations, e.g. HIV in Africa).
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iv) Data can be more easily obtained from animal systems. In particular, it is often possible to do
experiments on wildlife populations, or individual animals without the ethical issues involved with human
disease systems.

The workshop concluded with remarks by the organizers and suggestions for follow-up activities. The
organizers and participants thank BIRS and the funding agencies for their support for this excellent workshop.
The following references were suggested by participants, but this list is not comprehensive.
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Chapter 16

Topology (05w5067)

August 27–September 1, 2005

Organizer(s): Ian Hambleton (McMaster University), Michael Hopkins (Massachusetts
Institute of Technology), Matthias Kreck (University of Heidelberg), Ronald Stern (Uni-
versity of California Irvine).

Introduction

The idea of the conference was to bring together distinguished senior and some of the best junior mathemati-
cians representing a broad variety of subjects in topology.Topology has become - like many other areas of
mathematics - a field which is a collection of many areas all having the size to justify a conference of its own.
Most conferences nowadays are of the latter type. If one looks back, important progress often was based on a
combination of methods and ideas from these subareas and also from some neighbouring areas. To mention
a few examples:

• The Donaldson and Seiberg-Witten theory addresses problems in topology of 4-manifolds and uses
methods ranging from partial differential equations, differential geometry, index theory, algebraic ge-
ometry to algebraic topology.

• Novikov conjecture and related conjectures where high-dimensional manifold theory, in particular
surgery, index theory, algebraic K-theory and geometric group theory are centrally involved.

• The attempts to create elliptic cohomology use methods ranging from stable homotopy theory, alge-
braic geometry, index theory to theoretical physics (conformal field theory).

Almost no mathematician is able to be familiar with all thesesubjects and even to follow the main results
and fundamental ideas is very hard. A conference like this provides an unusual opportunity to hear some of
the most important and fundamental developements and - evenmore important - to discuss ideas with experts
from other areas.

The conference was attended by forty participants. When theorganizers selected the participants, they
had the difficulty that to cover all these areas with leading experts left rather limited room for young people.
And so they had to give up some very prominent names. The result seemed to us a good mixture of leaders
and excellent young people some of which are already leadersthemselves. One indication of success: we
heard during the conference thatfour of our main speakers had been asked to give talks at the next ICM 2006
in Spain.
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To give enough time to discussions between individuals and in groups, we limited the talks to five per day
and 45 minutes each. All three of the outstanding developements mentioned above were represented in the
talks. We had asked the speakers to address a broad audience and most of them succeeded very well. Our
impression was that our goal was fully achieved. We have asked the participants to send us comments and
we quote from them after the problem list.

We were uncertain about a problem session and finally decidedagainst one. But on Wednesday evening
a group of about twenty people met in the lounge and spontaneously a problem discussion came up. More
precisely, we asked everybody to formulate her/his favourite problem. Since the list looks very nice, we
gave those who did not participate in this round the chance toadd their favourite problems afterwards. The
problems are attached after the summaries of talks.

Many participants asked for another conference of this type. We like the idea, and are planning to apply
again for 2007.

Program

Sunday, August 28, 2005
8:45-9:00 Introduction and Welcome to BIRS by BIRS Station Manager, Max Bell 159
9:00-9:45 Bruce Kleiner, Univ. of Michigan: Geometrization and uniformization of metric spaces
10:00-10:45 Arthur Bartels, Univ. Münster: The Farrell-Jones Conjecture for groups acting on trees
11:15-12:00 Denis Auroux, MIT: Fiber sums of Lefschetz fibrations
16:00-16:45 Jacob Lurie, Harvard: Elliptic Cohomology andDerived Algebraic Geometry
17:00-17:45 Jongil Park, Seoul National University: Rational blow-downs and smooth 4-manifolds with one
basic class

Monday, August 29, 2005
9:00-9:45 Weimen Chen, University of Massachusetts: Pseudo holomorphic curves and finite group actions
in dimension 4
10:00-10:45 Shmuel Weinberger, University of Chicago: A Sullivan conjecture for equivariant structure sets
11:15-12:00 Martin Bridson, Imperial College London: Limit Groups: non-positive curvature, logic, and
group theory
16:00-16:45 Thomas Mark, Southeastern Louisiana University: Ozsvath-Szabo invariants of fiber sums
17:00-17:45 William Dwyer, Notre Dame: Duality in algebra and topology

Tuesday, August 30, 2005
9:00-9:45 Oleg Viro, Uppsala University: Virtual links, their relatives and Khovanov homology
10:00-10:45 Jesper Grodal, University of Chicago: p-compact groups and their classification
11:15-12:00 Peter Ozsvath, Columbia University: Heegard Floer homology of links
16:00-16:45 Jacob Rasmussen, Princeton University: Differentials on Khovanov-Rozansky homology
17:00-17:45 Yongbin Ruan, University of Wisconsin: Twisted K-theory on orbifolds and its stringy product

Wednesday, August 31, 2005
7:00-9:00 Wolfgang Lück, Münster:L2-invariants and their applications
10:00-10:45 Stefano Vidussi, Univ. of California, Riverside: Taubes conjecture and twisted Alexander in-
variants
11:15-12:00 Karen Vogtmann, Cornell University: Tethers and homology stability
16:00-16:45 Andras Stipsicz, Alfrd Rnyi Institute of Mathematics: Contact Ozsvath–Szabo invariants and
tight structures on 3-manifolds
17:00-17:45 Walter Neumann, Columbia University: Graph manifolds and singularities
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Summaries of Talks

Bruce Kleiner: Uniformization and Geometrization of metri c spaces

I discussed the problem of parameterizing metric spaces by nice model spaces. More precisely, the goal
was to find conditions on a metric spaceZ which guarantee that there is quasisymmetric homeomorphism
f : X → Z, where the model spaceX is either optimal in some way, or at least canonical. This recoginition
problem is motivated by a long development in Geometric Mapping Theory and by rigidity questions in
Geometric Group Theory.

Arthur Bartels: The Farrell-Jones Conjecture for groups acting on trees

In my talk the Farrell-Jones Conjecture in algebraic K-theory was discussed. This conjecture proposes a
computation of the algebraic K-theory of group rings RG as equivariant homology groups. If the conjecture
holds for a group G, thenK∗(RG) is in some sense computable in terms ofK∗(RV ), whereV runs over the
family of virtually cyclic subgroups ofG. For torsion free groups the conjecture implies the vanishing of the
Whitehead group.

The result presented in this talk is joint work with WolfgangLueck and Holger Reich and assertes that
the conjecture holds for groupsG that act properly, cocompactly and simplicially on a tree. The proof uses
controlled algebra and the (negatively curved) geometry ofthe tree.

As a corollary of this result and of work on Nilgroups of virtually cyclic groups by Kuku and Tang,
Grunewald one obtains rational vanishing results for Waldhausen’s Nilgroups appearing in his work on amal-
gamated free products and HNN-extensions.

Denis Auroux: Fiber sums of Lefschetz fibrations

It is a key problem in 4-manifold topology to understand which smooth compact oriented 4-manifolds
carry a symplectic structure (i.e., a non-degenerate closed 2-form). Symplectic 4-manifolds are much more
general than complex projective surfaces, but are still a very special class of 4-manifolds. One way to ap-
proach symplectic 4-manifolds is via Lefschetz fibrations.

A Lefschetz fibration is a mapf : M4 → S2 with isolated non-degenerate critical points, near which f
behaves like a complex Morse function. Hence, the generic fiber is a smooth closed oriented surface, and
the singular fibers present ordinary double point singularities only, obtained by pinching a simple closed loop
(the ”vanishing cycle”) on the regular fiber. A theorem of Gompf states that (almost) every Lefschetz fibration
carries a symplectic structure; conversely, Donaldson hasshown that, after blowing up a finite set of ”base
points”, every compact symplectic 4-manifold can be presented as a Lefschetz fibration (with a distinguished
set of -1-sections).

The topology of a Lefschetz fibration is encoded by its monodromy, which is a morphism from a free
group (the fundamental group of the complement of a finite setin S2) to the mapping class group of the
fiber, mapping the standard generators to Dehn twists. Choosing a set of generating loops, we can express the
monodromy by a ”factorization” of the identity element as a product of positive Dehn twists in the mapping
class group. Moreover, the various factorizations corresponding to a same Lefschetz fibration are equivalent
up to two operations: global conjugation, and Hurwitz moves. There is therefore a one to one correspondence
between isomorphism classes of Lefschetz fibrations, and Hurwitz and conjugation equivalence classes of
factorizations in the mapping class group.

The classification of Lefschetz fibrations is well-understood in genus 0 and 1 (classical results of Moishe-
zon and Livne), and in genus 2 in the absence of reducible singular fibers (Siebert and Tian). However, many
”exotic” examples have been constructed in higher genus, and the classification there is not understood at all.

A simpler question is that of classification up to stabilization by fiber sums. The main result that one
can get is the following. For any genus, there exists a Lefschetz fibrationf0

g such that, given any two genus
g Lefschetz fibrationsf1 : M1 → S2 and f2 : M2 → S2 such that (1)M1 andM2 have same Euler
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characteristic and signature, (2)f1 andf2 have the same numbers of singular fibers of each type, (3)f1 and
f2 each admit a section with the same self-intersection, for all large enoughn, after fiber summing withn
copies off0

g the Lefschetz fibrationsf1 andf2 become isomorphic.
Using Donaldson’s theorem, a corollary is the following ”symplectic Wall’s theorem”: given two compact

symplectic 4-manifolds with[ω] integral and the same values of(c21, c2, c1.ω, ω
2), they become symplecto-

morphic after performing on each of them a certain number of blow-ups and fiber sums with somef0
g .

The proof is almost purely group-theoretic, and involves a study of factorizations in the mapping class
group of a surface with one boundary component.

Jacob Lurie: Elliptic Cohomology and Derived Algebraic Geometry

Let E be an elliptic curve over a commutative ringR. If certain mild hypotheses are satisfied byE,
then Landweber’s exact functor theorem ensures the existence of an essentially unique (elliptic) cohomology
theoryA such thatA(∗) ≃ R andA(CP∞) is the ring of functions on the formal completion of the elliptic
curveE. In particular, these conditions are satisfied wheneverE is classified by an étale map Spec

R
φ→ M,

whereM denotes the moduli stack of elliptic curves; letAφ be the associated cohomology theory.
The assignment

φ 7→ Aφ

may be viewed as a presheaf of cohomology theories on the moduli stack of elliptic curves. The work of
Goerss, Hopkins, and Miller implies that this presheaf of cohomology theories can be refined (in an essentially
unique way) to a presheaf ofE∞-ring spectraO on the moduli stack of elliptic curves. It then makes sense
to take the (right-derived functor of) global sections, giving anE∞-ring spectrum tmf

[∆−1] = RΓ(M,O).

A more refined approach (which includes the “point at∞” on M) yields a spectrumtmf , the spectrum of
topological modular forms, so named for the existence of a ring homomorphism fromπ∗tmf to the ring of
integral modular forms, which is an isomorphism after inverting 6. The spectrumtmf may be regarded as a
universal elliptic cohomology theory, and is a suitable target for “elliptic” invariants such as the Witten genus.

It is natural to think of the presheafO as a kind of structure sheaf on the moduli stackM of elliptic curves.
This can be made precise using the language ofderived algebraic geometry: a generalization of algebraic
geometry in whichE∞-ring spectra are allowed to play the role of commutative rings. The pair(M,O) may
naturally be viewed as a Deligne-Mumford stack in the world of derived algebraic geometry, which is a kind
of “derived version” of the classical moduli stack of elliptic curves. One may then ask if(M,O) has some
moduli-theoretic significance in derived algebraic geometry; our main result is an affirmative answer to this
question.

Given anE∞-ring spectrumR, there is a natural notion of anelliptic curve overR in derived alge-
braic geometry (which specializes to the usual notion of elliptic curve whenR is an ordinary commutative
ring). Any elliptic curveE has a formal completion̂E; we define anorientationof E to be an equivalence
SpfRCP∞ ≃ Ê of formal groups overR. The main result then asserts that there is a natural homotopy
equivalence

{ Oriented Elliptic CurvesE → SpecR} ⇔ Map(SpecR, (M,O));

in other words,(M,O) classifiesorientedelliptic curves in derived algebraic geometry.
This result, and the accompanying ideas, can be used to shed light on virtually all aspects of the theory of

elliptic cohomology.
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Jongil Park: Rational blow-downs and smooth4-manifold

It has been known that most simply connected smooth4-manifolds withb+2 odd and large enough admit
infinitely many distinct smooth structures due to the gauge theory, in particular, Seiberg-Witten theory. But
we still do not know which smooth4-manifolds withb+2 small have more than one smooth structure. Though
it is not known yet whether the most fundamental4-manifolds such asS4,CP 2 andS2 × S2 admit more
than one smooth structure, it has been some progress in last couple of decades.

In the case whenb+2 = 1, S. Donaldson first proved that a Dolgachev surface is not diffeomorphic to

CP 2♯9CP
2

([D]) and D. Kotschick proved in the late 1980’s that the Barlow surface is not diffeomorphic to

CP 2♯8CP
2

([K]). Recently, I constructed a new simply connected symplectic4-manifold withb+2 = 1 and
b−2 = 7 ([P1]), and then R. Fintushel, R. Stern, A. Stipsicz and Z. Szabó found many new exotic smooth4-
manifolds withb+2 = 1 using rational blow-downs and knot surgeries in double nodeneighborhoods ([FS2],

[PSS], [SS1]). So it has been proved up to now that rational surfacesCP 2♯nCP
2

with n ≥ 5 admit infinitely
many distinct smooth structures. Second, in the case whenb+2 = 3, it was also known in the mid 1990’s

that theK3 surfaceE(2) and the topological4-manifold3CP 2♯nCP
2

with n ≥ 14 admit infinitely many
distinct smooth structures. And later, the same statement with n ≥ 10 was also proved. Recently, Stipsicz

and Szabó constructed infinitely many distinct smooth structures on3CP 2♯9CP
2

([SS2]), and then I proved

that the topological4-manifold3CP 2♯8CP
2

also admit infinitely many distinct smooth structures ([P2]).
In this talk I would like to survey these recent developments.
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Weimen Chen: Pseudo holomorphic curves and finite group actions in dimension 4

As for the abstract of my talk, the main point is to propose to study a class of smooth finite group
actions on 4-manifolds, the so-called symplectic symmetries. (These are smooth finite group actions which
preserve some symplectic structure of the 4-manifold.) Thehope is that the symplectic symmetries will form
an interesting and large enough class of smooth finite group actions to study, which on one hand are more
tractable than the general smooth actions while on the otherhand are more flexible than the holomorphic
actions.

From the technical point of view, the equivariant Seiberg-Witten-Taubes theory allows one in principle
to detect the fixed-point set structure of a symplectic symmetry by looking at the induced action in a neigh-
borhood of a 2-dimensional, pseudoholomorphic subset. Such information is crucial in studying finite group
actions. A key issue is how the regularity of the pseudoholomorphic subset is related to the fixed-point data
of the symplectic symmetry. More generally, one can consider the orbifold version of the Seiberg-Witten-
Taubes-Gromov theory, which may find applications beyond finite group actions on 4-manifolds.

Shmuel Weinberger: A Sullivan Conjecture for Equivariant Structure Sets

This talk discussed the problem of classifying topologically tame G-manifolds up to equivariant homeo-
morphism within an equivariant homotopy type. After a quickreview of classical surgery and the obstacles
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one faces in finding an equivariant variant of it, I discussedtwo key ideas: stratfied surgery, which suffices
formally to solve the problem in the isovariant setting, ixed set and then the second idea is purely homotopical
and uses categorical ideas (such as the homotopy fixed set andthe Goodwillie calculus) to relate isovariance
versus equivariance to spaces of Poincare embeddings, and ultimately to ordinary embeddings. Unfortu-
nately, there was not enough time to discuss examples. This talk was based on a combination of results that
were joint with Cappell, Klein, and Yan in various combinations.

Martin Bridson: Limit groups: non-positive curvature, log ic and group theory

I am interested in exploring the universe of finitely presented groups. In this lecture, I want to focus on
the region immediately adjacent and ask what natural class of groups best approximate free groups? Having
identified the right class (and we shall see that there reallyis ”a right class”), I want to set about the task
of proving that groups in this class enjoy many of the non-trivial properties of free groups. The property
that I am particularly interested in is the one that first got me thinking about this area: some years ago,
Howie, Miller, Short and I proved that a subgroup of a direct product ofn free groups is of typeFn if and
only if has a subgroup of finite index that is itself a direct product of (at most n) free groups. Interest in
extending this result became more interesting when work of Delzant and Gromov showed that understanding
the subdirect products of surface groups is important in addressign the question of which finitely presented
groups are fundamental groups of compact Kahler manifolds.The theorem of BHMS extends from free
groups to surface groups, but the proof is rather mysteriousand one would like a more coherent explanation
of why this type of splitting theorem works.

For this and other reasons I want to approximate free groups.In this talk, we looked at Gromov-Hausdorff
limits of free groups, limits coming from representations of finitely generated groups into free groups (which
in turn comes from looking at algebraic geometry over groups), we also looked at ”fully residually free
groups” (groups whose balls of arbitrary radius can be injected into a free groups), and we looked at groups
whose first order logic is that of a free group (existential and/or universal theory). Remarkably, all approaches
lead to the class of ”limit groups” with the subclass of ”elementarily free groups”, these being the groups that
have the same universal theory as a non-abelian free group. The hardest parts of this classification are due to
Zlil Sela.

I described the beautifully simple structure theory of the groups in this class, the simple classifying spaces,
with their metrics of negative and non-positive curvature and graph-of-groups decompositions. I finished by
quickly mentioning some of the results that one can prove about this class. The basic message is that the
programme of extending from free groups to limit groups non-trivial theorems is working. The most striking
example is the splitting theorem for subdirect products of limits groups (proved by Howie and I). Other
examples include recent work with my students Wilton and Tweedale in which we prove that elementarily
free groups are measure equivalent to free groups. Further examples, proved by Hoiwe and I, include the
fact that a non-trivial, finitely generated normal subgroupof a limit group must be of finite index, and having
finitely generatedH1 is equivalent to being finitely generated.

Thomas Mark: Ozsváth-Szab́o invariants of fiber sums (joint work with Stanislav Jabuka)

Ozsváth-Szabó 4-manifold invariants associate to a closedSpinc 4-manifold(X,σ) havingb+(X) ≥ 2
a functionΦX,σ : A(X) → Z, whereA(X) is the graded algebraΛ∗(H1(X)/tors) ⊗ Z[U ]. HereA(X) is
graded such that elements ofH1(X) carry degree 1, whileU is of degree 2. The functionΦX,σ is nonzero
only on homogeneous elements of degreed(σ) = 1

4 (c21(σ) − 2e(X) − 3σ(X)), wheree(X) is the Euler
characteristic andσ(X) is the signature. Furthermore, there are at most finitely many Spinc structuresσ for
whichΦX,σ is nontrivial.

Our goal here is to understand the behavior of these invariants under fiber sum of 4-manifolds. Recall
that if fi : Σ →֒ Xi (i = 1, 2) are embeddings of a closed oriented surfaceΣ in 4-manifoldsXi such that
each embedding has trivial normal bundle, thefiber sumZ = X1#ΣX2 of X1 andX2 alongΣ is defined by



180 Five-day Workshop Reports

removing a neighborhood offi(Σ) from each ofX1 andX2 and gluing the resulting manifolds (which have
boundary diffeomorphic toΣ× S1) along their boundaries usingfi to identify theΣ factors and conjugation
in theS1 factor. (In general, the resulting manifold depends on the embeddingsfi.) We assume throughout
that[Σ] ∈ H2(Xi; Z) is a primitive nontorsion element.

To simplify the statment of the results, we make the assumption thatX1 andX2 have (strong)simple type,
which is to say that the onlySpinc structuresσi for whichΦXi,σi

6= 0 haved(σi) = 0. Furthermore, we will
consider only the sum of invariants corresponding toSpinc structures differing by elements ofH2(Z; Z) dual
to rim tori: these are tori of the formγ × S1 in Σ × S1 ⊂ X1#ΣX2, whereγ is a circle onΣ. Specifically,
if R ⊂ H2(Z; Z) is the subspace spanned by the Poincaré duals of rim tori, wesetΦrimZ,σ =

∑
r∈R ΦZ,σ+r.

Implicit in the results below is the fact that the fiber sum of two manifolds of simple type is again of simple
type.

Theorem 16.0.60Assume that the genus ofΣ is g ≥ 2, and supposeσi areSpinc structures onXi such that
〈c1(σi), [Σ]〉 = 2k, with |k| = g−1. Letσ ∈ Spinc(Z) satisfyσ|Xi\Σ×D2 = σi|Xi\Σ×D2 for i = 1, 2. Then

∑

n∈Z

ΦrimZ,σ+nPD[Σ]T
n =

(∑

n1∈Z

ΦX1,σ1+n1PD[Σ]T
n1

)(∑

n2∈Z

ΦX1,σ1+n2PD[Σ]T
n2

)

as polynomials in the formal variableT . If 0 < |k| < g − 1, we have
∑

n∈Z

ΦrimZ,σ+nPD[Σ]T
n = 0.

Theorem 16.0.61Suppose the genus ofΣ is 1, andσi areSpinc structures as above with〈c1(σi), [Σ]〉 = 0.
Then for any gluedSpinc structureσ ∈ Spinc(Z) as above, we have

∑

n∈Z

ΦrimZ,σ+nPD[Σ]T
n = (T 1/2 − T−1/2)2

(∑

n1∈Z

ΦX1,σ1+n1PD[Σ]T
n1

)(∑

n2∈Z

ΦX1,σ1+n2PD[Σ]T
n2

)
.

These formulae can be used, for example, to compute the Ozsv´ath-Szabó invariants of elliptic surfaces:
the result is in accord with the conjecture that the Ozsváth-Szabó and Seiberg-Witten invariants are identical.
We should note, however, that Theorem 1 admits a generalization for manifolds that are not of simple type,
for which an analogue in Seiberg-Witten theory is not known.

William Dwyer: Duality in Algebra and Topology

The talk, which represents joint work with John Greenlees and Srikanth Iyengar, discusses the idea of in-
terpreting properties of ordinary commutative rings so that they can be extended to the more general rings that
come up in homotopy theory. Among the rings that arise are Eilenberg-MacLane ring spectra, the cochains
on a space with coefficients in a commutative ring spectrum, or the chains on a loop space with similar coeffi-
cients. It is something of a surprise that differential graded algebras or ring spectra can appear naturally even
in purely algebraic settings. One line of reasoning leads toa new homological formula for the injective hull
of the residue class field of a local ring; essentially the same formula in another setting gives, for any prime
p, the p-summand of the Brown-Comenetz dual of the sphere spectrum. A homotopical interpretation of the
notion of Gorenstein ring gives a common way of understanding Gorenstein rings, Poincare duality spaces,
and the formal component of Gross-Hopkins duality. The maintheme here is that it is interesting to take ring
spectra seriously and to try to manipulate them as if they were ordinary rings.

Oleg Viro: Virtual links, their relatives and Khovanov homo logy

We extend Khovanov homology to links in the projective space. Unexpectedly, full fledged Khovanov
homology with integer coefficients are defined only for non-zero homologous links. For zero-homologous
links any construction overZ fails, provided it is based on1 + 1 TQFT.
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More generally, integer Khovanov homology extends to the case of link in an oriented 3-manifold fibered
over a surface with fiberR, if the projection of the link realizesw1(the surface).

The construction requires a study of several new kinds of virtual links: twisted virtual links (generalizing
the usual ones), blunted Gauss diagrams, checkerboard virtual links, etc. Most of them admit not only
combinatorial 1-dimensional, but also 3-dimensional interpretation.

Jesper Grodal: p-compact groups and their classification

In this talk I’ll announce and explain a proof of the classification of 2-compact groups, joint with K.
Andersen, hence completing the classification of p-compactgroups at all primesp. A p-compact group,
as introduced by Dwyer-Wilkerson, is a homotopy theoretic version of a compact Lie group, but with all its
structure concentrated at a single primep. Our classification states that there is a1-1-correspondencebetween
connected2-compact groups and root data over the2-adic integers (which will be defined in the talk). As
a consequence we get the conjecture that every connected2-compact group is isomorphic to a product of
the2-completion of a compact Lie group and copies of the exotic2-compact groupDI(4), constructed by
Dwyer-Wilkerson. The major new input in the proof over the proof at odd primes (due to Andersen-Grodal-
Møller-Viruel) is a thorough analysis of the concept of a root datum for2-compact groups and its relationship
with the maximal torus normalizer. With these tools in placewe are able to produce a proof which to a large
extent avoids case-by-case considerations.

Peter Oszvath: Heegaard Floer homology for links

I will describe recent joint work with Zoltan Szabo, in whichwe define an invariant for links, generalizing
an earlier construction for knots. The filtered Euler characteristic of this theory is closely related to the multi-
variable Alexander polynomial.

Jacob Rasmussen: Differentials on Khovanov-Rozansky homology

I discussed a conjecture (joint with Nathan Dunfield and Sergei Gukov) which describes how the knot
Floer homology should be related to thesl(N) knot homologies defined by Khovanov and Rozansky. For
eachN > 0, their construction assigns to a knotK a sequence of bigraded homology groupsHN (K) whose
graded Euler characteristic is thesl(N) knot polynomial ofK. Work of Gornik suggests that these homol-
ogy groups should be equipped with a family of differentialsdn(0 < n < N). For each suchn, HN (K) is
itself the underlying group of a chain complex with differential dn. The homology of this chain complex is
expected to beHn(K). This suggests that we should be able to take a limit of theHN ’s to obtain a triply
graded homology theory with graded Euler characteristic the HOMFLY polynomial ofK. The conjecture
suggests that this homology should be equipped with anticommuting differentialsdn, not only forn > 0
(which would be provided by Gornik’s construction) but alsofor n ≤ 0 as well. In particular, the homology
with respect tod0 is expected to give the knot Floer homology. In the actual talk, I sketched the construc-
tion of Gornik’s differentials, formulated the conjecture, and finally, ended by describing a simple class of
”thin” knots for which at least part of the conjecture can be seen to hold. (For such knots, thesl(N) homol-
ogy is determined by the HOMFLY polynomial and signature.) It can be shown that two-bridge knots are thin.

Yongbin Ruan: Twisted K-theory on orbifolds and its stringy product

Wolfgang Lueck: L2-invariants and their applications

The purpose of this talk is to present recent developments about L2-invariants and their applications to
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problems in other areas such as topology, group theory,K-theory, geometry and global analysis. It addresses
non-experts. We begin with a list of theorems which a priori have nothing to do withL2-invariants but whose
proofs usesL2-methods. We develope the basic definitions ofL2-Betti numbers and basic tools. Then we
mention some important theorems aboutL2-Betti numbers and explain in some cases how the theorems in
the first list are proved usingL2-methods. Finally we discuss open problems aboutL2-invariants.

Stefano Vidussi: Taubes’ conjecture and twisted Alexanderinvariants

It is well-known that the Seiberg-Witten invariants of a4–manifold provide obstructions to the existence
of a symplectic structure. When the4–manifold is of the formS1×N , these obstructions can be described in
terms of the Alexander polynomial ofN . C. Taubes formulated the conjecture that, ifS1 ×N is symplectic,
thenN fibers over the circle. P. Kronheimer studied the case whereN is obtained as0–surgery along a knot
K ⊂ S3 and showed that the aforementioned constraints on the Alexander polynomial∆N give evidence to
Taubes’ conjecture, i.e.∆N must be monic and its degree must coincide with the genus of the knot. Still,
these conditions are short of characterizing fibered knots.In this talk we discuss how to extend these ideas
to the case of a general3–manifold and how these conclusions can be strengthened by taking into account
the twisted Alexander polynomials associated to an epimorphism of π1(N) into a finite group. This way
we get new evidence to Taubes’ conjecture and, practically,new obstructions to the existence of symplectic
structures onS1 × N , even in the case of0–surgery along a knot. As an application! o! f these results we
show that ifN is the0–surgery along the pretzel knot(5,−3, 5), a case that cannot be decided with the use
of the Alexander polynomial,S1 ×N is not symplectic: this answers a question of Kronheimer. Ina similar
way, we show that Taubes’ conjecture holds for knots up to12 crossings. (Joint work with Stefan Friedl of
Rice University)

Karen Vogtmann: Tethers and homology stabillity

I defined what it means for a sequenceGn of groups to have homology stability and pointed out some
important consequences of homology stability (Quillen’s finite generation ofK-groups and the Madsen-
Weiss computation of the stable homology of mapping class groups). I then described the method introduced
by Quillen in the 1970’s for proving homology stability, by looking at the equivariant homology spectral
sequence of the groupGn acting on a highly-connected complexXn, with simplex stabilizersGn−k−1. I
then showed how to find a suitable complex forGn = Aut(Fn), giving an action which makes the spectral
sequence argument work in the simplest possibly way. This complex involves finding ”enveloping spheres”
for coconnected sphere systems in a3-manifold with fundamental groupFn. The complex can alternatively
be described by ”tethering” the spheres to the basepoint, from both sides. This idea of tethering turns out to be
useful in other contexts giving, for instance, a simplified proofs of homology stability for braid groups (first
proved by Arnold in 1970), for mapping class groups of orientable surfaces (Harer 1980’s), and symmetric
automorphism groups of free groups.

Andras Stipsicz: Contact Ozsvath–Szabo invariants and tight structures on 3-manifolds

Recall that an oriented 2-plane fieldξ on an oriented 3-manifoldY is acontact structureif ξ can be given
as the kernel of a 1-formα satisfyingα ∧ dα > 0. A contact structure isovertwistedif there is an embedded
2-diskD in Y such thatξ is tangent toD along∂D; otherwiseξ is tight. It turns out that overtwisted
structures are determined by the homotopy type ofY , while the tight structures capture important geometric
information of the underlying 3-manifold.

Contact structures can be constructed by performing surgeries alonglegendrianlinks, that is, along links
for which the tangent vectors are inξ. The tightness of(Y, ξ) can be detected by computing its contact
Ozsváth-Szabó invariantc(Y, ξ), which is an element of the Heegaard-Floer homology group̂HF (−Y ). It is
known thatc(Y, ξ) is zero if(Y, ξ) is overtwisted and is nonzero if(Y, ξ) is the boundary of a Stein domain.
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We have studied the existence and classification problem of tight contact structure on a special class of
3-manifolds, calledsmall Seifert fibered3-manifolds.Y is small Seifert fibered if it admits a Seifert fibration
overS2 with 3 singular fibers. As an application of Donaldson’s famous diagonalizability theorem for definite
4-manifolds, we find a tight contact structure which is not the boundary of any symplectic 4-manifold.

Walter Neumann: Graph manifolds and singularities

The topology of a complex singularity is determined by its 3-manifold link. The topologies are known
but until recently it was rarely possible to give explicit analytic descriptions for any but the simplest topology.
The ”splice singularities” of Jonathan Wahl and the author do this for many rational homology spheres. The
talk will describe a nice characterization of these singularities that we have (finally) proved.

List of problems

Problem 1 (Adem) A finite group G acts freely on a finite complex X with thehomotopy type of a product of
k spheres if and only if every elementary abelian subgroup inG is of rank at most k.

Problem 2 (Akbulut) Formulate and prove a Resolution Theorem for polynomial maps. This is the only
missing issue to topologically characterizing real algebraic sets, i.e. to determine when a given space is a
real algebraic set.

Problem 3 (Bartels) Borel conjecture. Let M and N be closed asphericalmanifolds of dimension≥ 5 that
are homotopy equivalent. Then there is a homeomorphismf : M − − > N that is homotop to the given
homotopy equivalence.

Problem 4 (Boden) The smooth Poincaré Conjecture in dimensions three and four.

Problem 5 (Bridson) Construct counterexamples to the Andrew’s Curtis Conjecture: LetF = Fn be the free
group of a finite rank n with a fixed setX = {x1, . . . , xn} of free generators. Is the normal closure of a set
Y = {y1, . . . , yn} equals F if and only if Y is Andrews-Curtis equivalent to X, which means one can get from
X to Y by a sequence of Nielsen transformations together withconjugations by elements of F?

Problem 6 (Collin) If a non-trivial Dehn surgery on a knotK in S3 has cyclic fundamental group, mustK
be fibered?

Problem 7 (Edwards) The Hilbert-Smith Conjecture: IfG is a compact subgroup of the homeomorphism
group of a topological mannifold, thenG is a Lie group.

Problem 8 (Grodal) Find a topological proof of the classification of finite simple groups.

Problem 9 (Hambleton) Formulate a local to global principal for smooth manifolds.

Problem 10 (Kirby) Is a slice knot a ribbon knot?

Problem 11 (Kreck) Is a random smooth manifold asymmetric, i.e. has no non-trivial finite group action?

Problem 12 (Lueck) The Atiyah Conjecture: Denote byN(G) the group von Neumann algebra associated to
G viewed as a ring (not taking the topology into account). For aN(G)−moduleM letdimN(G)(M) ∈ [0.∞]

be its dimension. Let 1
FIN(G) ⊂ Q be the additive abelian subgroup ofQ generated by the inverses|H |−1 of

the orders|H | of finite subgroupsH ofG. Notice that 1
FIN(G)Z agrees withZ if and only ifG is torsion-free.

Consider a ringA with Z ⊂ A ⊂ C. The Atiyah Conjecture forA andG says that for each finitely presented
AG− moduleM we havedimN(G)(N(G) ⊗AGM) ∈ 1

FIN(G)Z.
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Problem 13 (Lurie) Let G be a group acting on a set X. Suppose that the action of G is simply 3-transitive
on X (that is, given any two triples (x,y,z) and (x’,y’,z’) ofdistinct points in X, there is a unique g in G such
that (gx,gy,gz) = (x’,y’,z’) ). Suppose furthermore that every element g in G which exchanges two distinct
points (so that (gx,gy) = (y,x) ) has order 2. Does there exista commutative field k such that the action of G
on X can be identified withPGL2(k) acting on the projective line over k?

Problem 14 (Mark) Does every simply connected symplectic 4-manifoldX satisfyc21(X) ≤ 9χh(X)? Here
χh(X) = 1

4 (sign(X)+e(X)) wheresign(X) is the signature of the intersection form ande(X) is the Euler
characteristic.

Problem 15 (Mrowka-Ozsv́ath) Find a proof of the existence of uncountably many exoticsmooth structures
onR4 without using instantons, possibly using Seiberg-Witten or Heegaard Floer homology.

Problem 16 (Mrowka We have learned starting with the work of Furuta thatsubtle information can be
obtained from refining the Seiberg-Witten invariants from homology classes in the suitable configuration
space to a stable homotopy class of map. To what extent can a similar story be told for the Donaldson
invariants and the Gromov invariants?

Problem 17 (Neumann) Lehmer Conjecture: LetM1(P ) denote the Mahler measure for a univariate integer
polynomialP (x). Suppose that isP (x) not a product of cyclotomic polynomials. Lehmer conjectured that
M1(P ) ≥M1(1 − x+ x3 − x4 + x5 − x6 + x−x9 + x10). HereM1(P ) = exp[

∫ 1

0 ln |P (e2πit)|dt].

Problem 18 (Park) Does there exist an exotic smooth structure on the complex projective planeCP?

Problem 19 (Pederson) The Arf/Kervaire Invariant One Problem: Do there exist framed manifolds with
Kervaire invariant one?

Problem 20 (Ranicki) Extend the algebraic surgery model for high-dimensional topological manifolds to
dimensions 3 and 4. While at it, use the model to obtain combinatorial formulae for the Pontrjagin classes!

Problem 21 (Reich) Farrell-Jones conjecture. For a torsion free groupΓ the so-called assembly mapA :
Hn(BΓ;K−∞(Z)) → Kn(ZΓ) is an isomorphism for alln ∈ Z.

Problem 22 (Stern) Is every topologicaln−manifold,n ≥ 5, a simplicial complex?

Problem 23 (Stolz) What is the geometric interpretation of elliptic cohomology and what is its relationship
to conformal field theory

Problem 24 (Teichner) TheA − B slice problem.IfB4 = A ∪ B is a decomposition of the 4-ball into
two smooth submanifolds, such that the intersection withS3 is a thickening of the Hopf link, determine
which side (A or B) is strong. The definition of strong must be invariant under Bing doubling (and thus the
obvious homological definition does not work). If there is such a definition then the topological surgery and
s-cobordism theorems are false (for free fundamental groups) in dimension 4.

Problem 25 (Vidussi) Does there exist a closed smooth 4-dimensional manifold with only finitely many exotic
smooth structures?

Problem 26 (Vogtman) Using Kontsevich’s identification of the homology of the Lie algebral∞ with the
cohomology of Out(Fr), Morita defined a sequence of 4k-dimensional classesµk in the unstable rational
homology of Out(F2k+2). Are theses Morita classes trivial inH∗(OutFg)?

Problem 27 (Wahl) Get a hold on diffeomorphisms of3−manifolds.

Problem 28 (Weinberger) What does a random manifold mean? See problem of Kreck. The main point is
that most manifolds we consider, e.g. have group actions, are not random. For example a random graph with
valence less than or equal to three has no symmetries.
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Comments by some participants

Adem:
I enjoyed the meeting at Banff, I’m glad to hear that you will reapply.
Auroux:
Thanks for putting together such a great conference! I thinkit was a great idea to have such a broad

topology conference. It’s definitely useful and can help keep the topology community united. The talks were
great, and almost all speakers made a very good effort to keepthings elementary.

One suggestion, though: at this meeting, some 3-/4-manifold specialists were confused during homotopy
theory talks, and vice-versa. It may be useful in the future to have a series of remedial talks on the first day,
planned once the main topics become clear – for this meeting,it would have been useful to have maybe a
90-minute crash-course on homotopy theory for low-dimensional topologists (introducing ring spectra, p-
completions, and other monsters, giving concrete examplesto make them less scary) and a 90-minute crash-
course on low-dimensional topology for homotopy theorists(maybe brief overviews of SW and Ozsvath-
Szabo theories ?)

Bartels:
I enjoyed the meeting very much. Most talks were very good andspeakers made an (successful) effort

to adress the general audiance. Given the number of talks on 4-dimensional manifolds I think it would have
been a good idea to have one survey talk on 4-dimensional manifolds to set the stage for the specialliced
talks. The talk of Bridson presented a class of groups that seems to be interesting to study in relation with the
Farrell-Jones conjecture.

Bridson:
I think taht the idea of sustaining communication between the broad community of ”topologists” is a

fruitful one, and that this meeting provides an excellent example of the benefits. For the most part, speakers
made a real effort to communicate to the whole audience and asa result I have a much better idea of what is
happening in adjacent subfields of topology, and who I shouldask which questions to. This was a meeting
quite different to the highly specialised ones that happen with such great regularity these days. I think that it
has played a valuable role, and I hope that it may be repeated on a regular (bi-annual?) basis.

Chen:
Thanks for organizing such a wonderful workshop. I particularly likes this format of having a diverse

range of topics.
Dwyer:
I really enjoyed the meeting, and especially the chance to hear something of what’s going on across the

board in topology.
Grodal:
I think the conference went great!
Kirby:
The conference went very well, thanks to the organizers and thanks to the speakers who with few ex-

ceptions did an excellent job of making their specialty accessible to everyone else. This is not easy, and is
particularly hard when the audience covers all of topology.But it is vital that we have such conferences and
such talks or else topology will just break up into its subareas which no longer interact.

Kleiner:
Thanks very much for organizing the conference and for the invitation to participate. I enjoyed the con-

ference overall. The only way it could have been improved, from my own standpoint, would have been if a
few of the lectures were pitched to a more general audience, closer to a colloquium style. However, I suspect
that most of the other participants were better versed in homotopy theory and the fine points of surgery, so
my comments simply reflect the fact that I’m more of a geometer/geometric group theorist than a topologist.

Lueck:
In my opinion this conference shall be in the format as this year, very broad and not specialized. There are

enough special conferences and I like to get an impression tohear from leading representatives what happens
in other fields.

In my opinion this is a very good meeting. I have no complaintsabout the organization or the facilities,
they are excellent.

Mark:
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I found the Banff workshop to be very informative and a broadening experience. Conferences such as this
one, involving a range of mathematicians in various subdisciplines, are too rare. The workshop opened my
eyes to problems and techniques in topology of which I was previously unaware, which is extremely valuable.

Thanks for your efforts with organization, and I hope the application for the next workshop goes well.
Mrowka:
I very much enjoyed the meeting and think that more of the samewould be great for topology.
Park:
As it usually happens in any conference which puts several areas together, I hardly catch a theme of topics

without introducing the contents of topics enough. So, although I am sometimes bored, what do you think
that one hour talk is better than 45 minutes talk for speakersand audiences? Except this, I really like this type
of conference!

Ranicki:
Thanks again to the organizers for inviting me to a most enjoyable conference. The only negative com-

ment I have is that the organizers did not have the imagination to follow the Oberwolfach tradition (possibly
initiated by Matthias himself) of distributing the abstracts of all the talks proposed, and there was no oppor-
tunity of presenting posters (e.g. in the room set aside for BIRS across the corridor from the lecture room).
Also, the speakers should have been asked to provide readinglists for their talks, so that members of the
audience could follow up the talks if so inclined. Thanks again, and good luck with your 2007 proposal

Rasmussen:
This is my second time at BIRS, and my impression of the place has not changed very much from the

last visit. I think it is simply the best conference venue forencouraging collaborative work and interaction
that I have been to. The setup (breakfast room, everyone staying in the same place, meals together) is great
for encouraging interaction between people who might not otherwise get together. I had a lot of fun going
to talks from other areas, but I can’t say that I got ideas useful for my own reseach from them, or that I was
in a position to make meaningful suggestions about them. Despite this criticism, I should say that I really
had a great and productive time this week. Thanks to you and the other organizers for putting this thing
together.

Stipsicz
It was a great conference, I enjoyed it a lot,
Vidussi:
Some comments on the conference. I definitely enjoyed the idea of having a meeting with people that

work in different areas of topology. It is very difficult and time consuming to keep track of the developments
of various areas only by reading papers. A conference’s talk, instead, gives an easier access to main results and
ideas, and allows interaction with a specialist. If there isan improvement that I can suggest, this would be to
stress out in advance that the talks are meant for a ”general”audience. (You pointed that out at the beginning
of the conference but some - including possibly myself - did not fully comply with this.) Personally, my
interest in some of the topics discussed at the conference grew; for example, I am currently reading a review
paper of W. Lueck onL2 invariants, and trying to understand if this may have applications in my research.

Third, the schedule and number of talks was perfect, and Banff is a great place for a conference.
Finally, I am very grateful to the organizers for inviting meand giving me the opportunity to give a talk.
Vogtman:
I thought it was great, I learned a lot about what’s happeningin the rest of topology. Thanks!!!
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Analytic and Algebraic Methods in
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Laszlo Lempert (Purdue University), Joseph J. Kohn (Princeton University), Yum-Tong Siu
(Harvard University)

This workshop focused on both complex analysis and algebraic geometry. Its primary purpose was to fos-
ter interactions among researchers in these areas. This report will describe analytic, algebraic, and geometric
perspectives and how they blend.

Both the lectures and the informal conversations held in theworkshop developed these connections. It is
natural to place (most of) the discussions into one or more ofthree categories: those with a flavor from Partial
Differential Equations, those motivated by CR Geometry, and those concerning Algebraic Geometry. Nearly
all the lectures made at least some connections among these areas.

We begin by discussing the Cauchy-Riemann operator∂ and its impact on complex analysis. The study
of ∂ as a partial differential operator leads to the basic questions of existence and regularity. These basic
questions from partial differential equations naturally lead to theorems relating the geometry of the boundary
of a domain to the behavior of∂ on the domain. Since the 1960’s so-calledL2 methods and their applications
have played a major role. We recall some of these developments.

Many important developments in complex analysis in the twentieth century arose from the solution of the
Levi Problemidentifying domains of holomorphy with pseudoconvex domains. Pseudoconvexity is a local
geometric property of the boundary, whereas the notion of domain of holomorphy belongs to the function
theory on the domain itself. The solution of the Levi Problemincludes an existence and regularity result for
∂. A domainΩ in Cn is a domain of holomorphy if and only if the following statement holds: For each
nonnegative integerq and each smooth(p, q + 1) form α on Ω such that∂α = 0 on Ω, there is a smooth
(p, q) form u onΩ such that∂u = α.

The so-called∂-Neumann problem extends the above idea by considering the Cauchy-Riemann equations
onΩ ∪ bΩ. Suppose that the boundarybΩ is smooth and consider differential forms withL2 coefficients on
the closed domain. Given a∂-closed formα, orthogonal to the harmonic space, the∂-Neumann problem
constructs theN -operator and the solution∂

∗
Nα to the equation∂u = α. Spencer first posed this problem

in the 1950’s in order to extend Hodge Theory to manifolds with boundary, but many analytic difficulties
arose before Kohn solved the problem in 1962 using the methodof L2 estimates.

Local regularityholds when∂
∗
Nα must be smooth whereverα is smooth; local regularity follows from

subelliptic estimates, which imply thatN is a pseudo-local(but not a pseudodifferential) operator.Global
regularityfor the∂-Neumann problem holds when∂

∗
Nα is smooth everywhere on the closed domain assum-

ing thatα is itself everywhere smooth. Several years after solving the∂-Neumann problem, Kohn established
a global regularity result using weightedL2 techniques. A smooth solution to∂u = α exists whenα is every-

188
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where smooth on the closed smoothly bounded domain. For a long time it was not known however whether
the∂-Neumann solution was always smooth. When subelliptic estimates (described below) hold, of course,
the∂-Neumann solution is smooth. In 1996 Christ proved that global regularity of the∂-Neumann solution
fails for some worm domains. Boas and Straube showed that global regularity for the∂-Neumann solution
holds for domains with a defining function that is plurisubharmonic on the boundary. They also verified
global regularity when the set of points of infinite type satisfies certain topological conditions, but the prob-
lem of global regularity is not yet completely understood. Arelated open problem concerns finding necessary
and sufficient conditions for compactness estimates.

Results about global regularity often produce geometric applications. The smooth extension to the bound-
ary of biholomorphic mappings between certain weakly pseudoconvex smoothly bounded domains provides
a striking example. Siu’s work on the nonexistence of smoothLevi-flat hypersurfaces in the complex projec-
tive planeP2 gives a second example. In the workshop Ohsawa spoke furtherabout the use ofL2 methods
to study Levi flat objects. Siu has also applied techniques ofL2 estimates to establish the invariance of pluri-
genera first for the case of general type and later when the manifold is not necessarily of general type. Thus
L2 estimates for∂ have provided a deep link between analysis and algebraic geometry.

Perhaps the major advance at this workshop was Siu’s talk on the famous question of the finite generation
of the canonical ring of a compact algebraic manifoldX of complex dimensionn of general type. Siu
described the techniques he introduced fromL2 estimates for̄∂ to handle the obstacles of this problem.

He introduced the infinite sumΦ over allm of them-th root of the sum of the absolute-value squares
of elements of a basis ofm-canonical sections. By adapting Skoda’sL2 estimates of̄∂ for the generation of
ideals, he first reduced the problem to proving thatΦ and one of its finite partial sums are each dominated by
a constant multiple of the other. His method involves as intermediate steps the proofs of the rationality of the
vanishing orders ofΦ and the finiteness of the number of irreducible components ofthe super level sets of the
Lelong number of

√
−1∂∂̄ log Φ. For such proofs he used algebraic geometric techniques which are adapted

from and motivated by the following two analytic techniquesof the complex Monge-Ampère equation for(√
−1∂∂̄ log Φ

)n
:

(i) an observation of Demailly that1Φ is equivalent to the metrice−ϕ of the canonical line bundleKX of
X with ϕ maximum among all plurisubharmonicϕ subject to the normalization of the supremum of
ϕ− ψ being0 for some fixed background metrice−ψ of KX , and

(ii) a result of Bedford and Taylor that the complex Monge-Ampère equation is the Euler-Lagrange equa-
tion for maximizing a function among plurisubharmonic functions.

Notice that two analytic techniques, developed in the studyof the complex Monge-Ampère equation, have
algebraic applications here. First, Fefferman’s work (Annals 1976) on the asymptotic order of the solution of
the complex Monge-Ampère equation on a strongly pseudoconvex domain motivates the algebraic geometric
technique to prove the rationality of vanishing orders ofΦ. Second, Yau’s regularity results (Comm. Pure
and Applied Math. 1978) for the complex Monge-Ampere equation when the right-hand side has complex
analytic singularities motivates the algebraic-geometric techniques for proving the finiteness of the number of
irreducible components of the super level sets of the Lelongnumber of

√
−1∂∂̄ log Φ. By incorporating the

techniques developed for the Fujita conjecture type problems and the techniques of Shokurov’s nonvanishing
theorem, Siu’s method translated the analytic techniques to the algebraic geometric settings so that when
either some vanishing order ofΦ is irrational or there are infinite number of super level setsof the Lelong
number of

√
−1∂∂̄ log Φ, some new pluricanonical sections can be produced byL2 estimates of̄∂ to give a

contradiction to the definition ofΦ.
We return to the∂-Neumann problem on a smoothly bounded domainΩ. The geometry of the boundary

enters because of the∂-Neumann boundary condition. For a(0, 1) form φ this condition is the same as
saying that the(1, 0) vector dual toφ is tangent tobΩ. This condition therefore leads to the notion of a CR
manifold. CR manifolds are real manifolds whose tangent spaces behave like those of real submanifolds in
complex manifolds. The special case of a real hypersurface in complex Euclidean space arises of course as
the (smooth) boundary of a domain. The∂-Neumann problem therefore provides a deep link between theCR
geometry of the boundary ofΩ and the function theory onΩ.
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The ideas in the proofs of existence and regularity results for ∂ have led to the development of CR
geometry, the calculus of pseudo-differential operators,and subelliptic multiplier ideal sheaves. All three of
these topics have evolved considerably, and each played a major role in the workshop.

We next discuss subellipticity and related ideas. After much preliminary work, in 1978 Kohn introduced
subelliptic multipliers as a technique for proving subelliptic estimates in the∂-Neumann problem. Subelliptic
estimates imply local regularity results for the∂ operator. In the 1970’s Skoda introduced the use ofL2

methods in algebraic geometry. Currently the algebraic geometry community has become actively involved in
the study and use of multiplier ideal sheaves. The work of Siu, Nadel, Demailly and others have demonstrated
convincingly the power of such analytic methods in algebraic geometric problems. Nearly all participants in
the workshop have used either analytic or algebraic aspectsof these ideas in their work, and if not, have
worked on closely connected problems.

The solution of the∂-Neumann problem on strongly pseudoconvex domains can be understood by think-
ing of the determinant of the Levi formdet(λ) as a subelliptic multiplier; for any 1-formφ in the domain
of ∂

∗
, one can control the Sobolev12 -norm of det(λ)φ in terms of the usual Dirichlet form. When this

determinant vanishes things become quite difficult. Kohn posed the problem of determining necessary and
sufficient conditions for subelliptic estimates for∂. D’Angelo introduced a finite type condition that, through
deep work of Catlin, turned out to be necessary and sufficientfor subelliptic estimates on(0, 1) forms on
pseudoconvex domains. A similar result holds for forms of higher degree. Catlin’s proof does not use subel-
liptic multipliers; instead he constructs bounded plurisubharmonic functions with large Hessians. The precise
relationship between the two approaches to subelliptic estimates is not yet understood. Because they apply in
the smooth category, Catlin’s techniques have significant unrealized potential in subelliptic multiplier theory.

All these ideas are closely related to singularity theory. D’Angelo has discussed a precise analogy:
strongly pseudoconvex points correspond to the maximal ideal in the ring of germs of holomorphic functions
at a point, and finite type corresponds to ideals primary to the maximal ideal. Thus the problem of subelliptic
estimates helped establish a basic connection between hardanalysis (PDE estimates) and singularity theory.
Developing this connection was one of the reasons for holding this workshop.

The workshop itself succeeded in forging new connections onprecisely this topic. For example Lazarsfeld
spoke about thetypeof a punctual ideal, a concept invented in algebra for several reasons, and independently
in analysis for the purpose of understanding the relationship between finite type and subelliptic estimates.
The type of a punctual ideal in the ring of germs of holomorphic functions is finite if and only if the ideal
is primary to the maximal ideal, and it provides an interesting numerical measurement (always a rational
number) of the singularity. The lecture of Lazarsfeld showed how ideas in algebra such as the integral
closure of an ideal, normalized blow-ups, and the Briancon-Skoda Theorem impact the study of the type of
a punctual ideal. The theory of finite type shows how to reducethe type of an ideal in the ring of germs of
smooth functions to the types of a family of punctual ideals.Closely related to these ideas is an algebraic
version of Kohn’s theory of subelliptic multipliers in the (simpler) holomorphic setting, a topic which was
discussed by many of the participants in the informal discussion held throughout the workshop. Lazarsfeld
also gave a simple treatment and extension of a result of McNeal-Nemethi showing how a supremum over
all holomorphic arcs can be replaced by a maximum over a finitelist of well-chosen holomorphic arcs, thus
rendering evident the rationality of the type. This material illustrates well the sort of connections forged by
the workshop.

Hwang spoke about the relationship between the Arnold multiplicity and the usual notion of multiplicity
connected with orders of vanishing. The Arnold multiplicity is a local invariant of an effective divisor on a
complex manifold. It is the infimum of the set ofm for which a certain integral is finite; iff is a local equation
for the divisor, the Arnold multiplicity is the infimum of theset ofm for which |f |−2

m is locally integrable.
Hwang established a decisive estimate for the Arnold multiplicity when the base manifold is the quotient of
a complex semi-simple Lie Group by a maximal parabolic subgroup. To do so he proved a product theorem
concerning the behavior of the Arnold multiplicity for divisors on the product of two manifolds. Again
we observe a powerful connection between analysis and algebraic geometry. Hwang discussed upper-semi
continuity properties of these multiplicities, making a nice connection with other issues. For example, semi-
continuity fails for the type of a family of punctual ideals depending nicely on a parameter, and this result
has impacted subelliptic estimates. On the other hand, inequalities relating the type to the co-length, which
behaves better under change of parameter, play a role in workon finite type.

D’Angelo spoke on a monotonicity result for holomorphic volumes. At first glance this result is not ob-
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viously related to the theme we have discussed so far; on the other hand volumes involve integrals of squared
norms of Jacobians, and the results are thereby connected with both complex geometry andL2 ideas. Note
that the determinant of the complex Hessian of the squared norm of a holomorphic mapping is precisely equal
to the sum of the squared moduli of all possible Jacobians of the components of the mapping. The ideas are
thus connected with properties of the integral of the determinant of the Levi form. The monotonicity result
leads to a corollary with a nice algebraic-geometric flavor.Let p be a proper polynomial mapping between
balls, of degreed. Then the volume of the image of the ball underp is at mostπ

ndn

n! , with equality if and only
if the mapping is homogeneous. For balls and eggs one proves the monotonicity result for volumes of holo-
morphic images by carefully studying theL2 norms of monomials. A result for more general pseudoconvex
domains can be proved using Stokes’s theorem, in case the maphas some regularity at the boundary. Again
we see howL2 methods are closely related to complex geometry.

Several other talks in the meeting nicely illustratedL2 methods. McNeal spoke about a generalization
(due to McNeal-Varolin) of the celebrated Ohsawa-Takegoshi Theorem. Suppose first thatD is a pseudocon-
vex domain inCn and thatH is a complex hyperplane. Letf be holomorphic onH ∩ D, and inL2 with
respect to some weight. Ohsawa-Takegoshi proved thatf can be extended to a functionF holomorphic inD
whoseL2 norm with respect to the same weight is controlled by theL2-norm off . McNeal-Varolin showed
how to gain strength in this estimate by manipulating the weights. During the talk Siu observed a parallel
with these ideas and his use of theL2 extension result in order to establish the invariance of plurigenera.

A natural problem in complex analysis asks to express a nonnegative Hermitian symmetric polynomial as
a squared norm of a holomorphic mapping, or more generally asa quotient of squared norms of holomorphic
mappings. D’Angelo has asked, as a complex variable analogue of Hilbert’s 17th problem, for a charac-
terization of quotients of squared norms of holomorphic polynomial mappings. Work of Catlin-D’Angelo
relating isometric imbedding of holomorphic bundles to squared norms and quotients of squared norms of
holomorphic mappings provides a general framework for suchquestions. Their result assumes a nondegen-
eracy condition analogous to strong pseudoconvexity; the degenerate case is quite subtle, because the class
of quotients of squared norms is not closed under limits. In his talk at the workshop Varolin announced a
complete solution to this question. His proof usesL2 techniques and a form of the resolution of singularities.
Furthermore the setting applies for many bundles, and even the proof in the (simplest) case of powers of the
tautological bundle over projective space requires proving the theorem for more general spaces. Varolin’s
condition states that the real Hermitian polynomialR, which can always be written as||F ||2 − ||G||2 for
holomorphic mappingsF andG, is a quotient of squared norms if and only if the function

||F ||2 + ||G||2
||F ||2 − ||G||2

is bounded. The proof involves the Bergman kernel function in a rather general setting. As in the above
work on isometric embedding, the Bergman kernel function appears as an approximate generating function
for tensor powers of a metric.

Varolin also discussed other positivity conditions and Siumentioned the connection with a famous paper
of Calabi on isometric imbedding from the early 1950’s. Various forms of a non-linear version of the Cauchy-
Schwarz inequality play a key role in all the work on isometric embedding. The condition that a bundle
metric satisfies the non-linear Cauchy-Schwarz inequalityinvolves curvature, but it is distinct from the usual
curvature conditions. It could therefore could play a role in developing new connections between analysis
and complex geometry.

Next we turn to some connections between PDE and CR geometry.Perhaps the most basic example
of a CR manifold is the unit sphere. Because the unit ball is biholomorphically equivalent with the Siegel
generalized upper half-plane, its boundary (the sphere) isCR equivalent with the Heisenberg group. This
connection between several complex variables and harmonicanalysis has been especially fruitful in studying
the strongly pseudoconvex case, but new ideas are needed in general.

Several talks considered issues centering around differential and pseudo-differential operators on CR
manifolds, typically motivated by the Heisenberg group. Melrose began the workshop with a general and
abstract treatment of a calculus of pseudo-differential operators that takes into account the anisotropic be-
havior of the tangent spaces on strongly pseudoconvex boundaries. The anisotropic behavior there has one
parabolic direction. He showed that operators in a very general class behave properly under composition.
Precise descriptions of the kernels of these operators of course epitomizes the theme of the workshop; the
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relationship between the geometry of the boundary of a domain and analysis on the domain. His general
results apply in some cases admitting multiple parabolic directions and also apply to other applied boundary
problems.

A central problem of local CR geometry is the embeddability question. Is an abstract CR manifold (of
hypersurface type) locally CR-embeddable inCN? Kuranishi solved the problem for strongly pseudocon-
vex CR manifolds of dimension at least nine usingL2-estimates. Akahori and later Webster proved the
result in dimension seven. Akahori usedL2-methods, whereas Webster used integral formulas for solving
the∂-equation. Catlin has generalized these results when appropriate finite-type conditions replace strong
pseudoconvexity. It has been long known that the result fails in three dimensions, but the case of dimension
five remains open.

In the problem session Greiner proposed an approach to provelocal embeddability for CR manifolds of
dimensions at least five. This approach relies on Greiner’s program of constructing fundamental solutions
explicitly. Previous approaches construct the embedding by an iterative procedure. In each step one solves an
approximate∂b equation for(0, 1)-forms on an embedded CR manifold. The solution is obtained by solving
a precise∂b equation on(0, 2) forms. Use of this secondary equation requires the dimension to exceed
five. Greiner’s approach, by contrast, constructs an embedding in one step, by finding CR functions with
prescribed differential at one point. To do so he solves a∂b equation on (0,1) forms, using explicit kernels.
To make this approach work, one needs to extend Greiner’s explicit results on fundamental solutions from
one PDE to systems of PDE.

Studying which three-dimensional CR manifolds can be embedded is a challenging part of the general
problem. Various partial results have opened new avenues for investigating the relationships between function
theory for pseudoconcave manifolds and CR deformation theory for the boundary.

Epstein discussed the embedding problem for abstract three-dimensional CR manifolds. He related this
question to the Dirac operator∂+∂

∗
. He considered the collection of embeddable CR structures near a given

embeddable one, and gave a necessary and sufficient condition; namely, that the restriction of the Szegö
projection be Fredholm. Epstein began by describing an extension of the∂-Neumann problem to a class
of SpinC manifolds. He used it to study the relative index between twogeneralized Szegö projectors on
a contact manifold. For example, suppose that a three-dimensional contact manifold bounds two strongly
pseudoconvex complex surfaces. Then the relative index canbe expressed in terms of the differences of
their Euler characteristics, their signatures, and the dimensions of their cohomology groupsH0,1. In certain
cases it follows that the relative index assumes only finitely many values among embeddable deformations
close to a given embeddable structure. In these cases the setof embeddable CR-structures is closed in the
C∞-topology.

The talks by Greiner and Tie considered sub-Riemannian geometry, motivated again by the Heisenberg
group. Greiner’s talk provided many explicit relationships between CR geometry and geodesics. He consid-
ered second order partial differential operators given as sums of squares of vector fields; these operators arise
for example as the Kohn Laplacian in the case of three-dimensional CR manifolds, and information about
them is therefore useful for complex analysis. Greiner built explicit formulas for fundamental solutions from
geometric invariants. A new phenomenon in this sub-Riemannian geometry is the notion of the “character-
istic submanifold” attached to every pointp: the locus of points connected top by an infinite number of
geodesics.

Tie’s talk also evolved from generalizing some of the basic ideas from CR geometry. For example, we
have seen that the anisotropic behavior of the CR geometry ofa strongly pseudoconvex manifolds leads to
harmonic analysis on the Heisenberg group, which has a nilpotent Lie algebra. For certain 3-dimensional CR
manifolds of finite type, Lie algebras of higher step arise. Tie discussed a specific example of step 3 and its
relations to Hamilton’s equations and the Heisenberg group.

Polarization techniques play a key role whenever real-analytic functions arise, e. g., as defining equations
of domains or as metrics on holomorphic line bundles. The ability to vary z andz separately lies at the foun-
dation of complex analysis. Segre introduced the varietieswhich have been used extensively by Webster and
others in diverse problems. More recently Baouendi-Ebenfelt-Rothschild developed an iterative procedure to
generate additional Segre sets. These ideas have had many uses. In particular Ebenfelt and Rothschild proved
a CR transversality result for generic real-analytic CR submanifolds of finite commutator type. The result
says that the germ of a finite holomorphic mapping between twosuch manifolds is necessarily CR transverse.
In other words, in codimensiond, one obtains a result guaranteeing that a certain derivative mapping has
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rankd. The codimension one version of this result is a version of the Hopf lemma. The technique of Segre
sets also provides a characterization of finite commutator type, due to Baouendi-Ebenfelt-Rothschild; for a
generic CR manifoldM of codimensiond, the Segre setS2d(p) contains an open neighborhood ofp if and
only if M is of finite commutator type atp. Thus an issue about iterated commutators of vector fields (apart
of complexcontrol theory) has a description in terms of Segre sets and polarization.

Segre sets also arose in the talk of Christ, revealing quite an interesting connection. Christ considered
Lp estimates for generalized Radon transforms. Generalized Radon transforms are defined by integration
over families of submanifolds of an ambient space and associated with a certain geometric structure. A
basic and fascinating problem here is to relate the analysisto the underlying geometry. Part of Christ’s
talk considered this idea as a problem in continuum combinatorics. The relationship between geometry and
analysis described here meshed especially well with the several talks on pseudodifferential operators and
sub-Riemannian geometry.

The recent striking work of Kohn on hypoellipticity despiteloss of derivatives was mentioned in the
original proposal for this workshop. One talk directly considered this topic. Tartakoff discussed his work
with Derridj and Bove showing that Kohn’s example of aC∞ hypoelliptic operatorPk is also locally analytic
hypoelliptic. The proof yields a simplification of Kohn’s proof. The second order operatorPk has the simple
expression

Pk = LL∗ + (zkL)∗(zkL),

whereL is a Lewy operator of the form

L =
∂

∂z
+ iz

∂

∂t
.

Tartakoff also provided a generalizationPk,m which is hypoelliptic in both senses but losesk−1
m derivatives.

The techniques of proof involve complicated estimations which evoke earlier work by Tartakoff and Treves
on global analytic hypoellipticity for operators such as the∂-Neumann operator.

A major advance (1981) in CR geometry was the Baouendi-Treves approximation Theorem: A CR func-
tion on a CR submanifold ofCn can be locally uniformly approximated by entire holomorphic functions.
The proof uses convolution with a complex Gaussian kernel. ACR function is of course a solution to the ho-
mogeneous tangential Cauchy-Riemann equations. Boggess spoke about global and semi-global versions of
the Baouendi-Treves result. In particular Boggess and Dwilewicz proved such a result for real hypersurfaces
in Cn that are graphs over a linear space of codimension one.

An important idea in CR geometry concerns the tangential version of the inhomogeneous Cauchy-Riemann
equations. As in the case of holomorphic functions, one obtains information about the solutions of the ho-
mogeneous equation by studying the inhomogeneous equationas a system of PDE. In the smooth category
many such results have been worked out. Shaw spoke about estimates for the tangential Cauchy-Riemann
equations on CR manifolds with minimal smoothness. The mainpoint is to prove Hölder andLp regularity
for the tangential Cauchy-Riemann equations on CR manifolds of classC2. One application of these esti-
mates is to prove the embedding theorem of Boutet de Monvel for strongly pseudoconvex CR manifolds of
real dimension at least five and of classC2.

Stolovitch considered a basic question about CR singularities. Consider a real-analytic(n+r)-dimensional
submanifold ofCn having a CR-singularity at the origin. Let us restrict to quadrics for which one can define
generalized Bishop invariants. Such a quadric intersects the complex linear manifoldzp+1 = · · · = zn = 0
along some real linear setL. Stolovitch discussed what happens to this intersection under perturbation of
the quadric. In some cases, if such a submanifold is formallyequivalent to its associated quadric, then it is
holomorphically equivalent to it.

We next discuss some of the connections with algebraic geometry and complex differential geometry.
Mabuchi considered three notions of stability; K-stability, Chow-Mumfordstability, and Hilbert-Mumford

stability, and clarified their asymptotic relationships. He showed that asymptotic Chow-Mumford-Veronese
stability coincides with asymptotic Hilbert-Mumford stability and that K-stability implies asymptotic Chow-
Mumford-Veronese stability. For a polarized projective algebraic manifold with vanishing Futaki character,
Mabuchi showed that asymptotic Chow-Mumford stability relative to an algebraic torus implies K-semi-
stability.
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de Oliveira considered symmetric differentials and the hyperbolicity of hypersurfaces inP3 with appro-
priate nodal singularities. The existence of symmetric differentials on an algebraic surfaceX has a strong
impact on the algebraic and transcendental hyperbolicity of X . Unfortunately, smooth hypersurfaces inP3

have no symmetric differentials. It turns out that there aresmooth families whose general member is a
smooth hypersurface of degreed ≥ 6 in P3, but whose special member which is singular has many symmet-
ric differentials. By using a resolution of singularities in his argument, he showed that the special singular
member with appropriate nodal singularities has sufficientindependent symmetric differentials to make it
quasi-algebraically hyperbolic. This situation exhibitsjumping of the cotangent plurigenera along a family.

Miyaoka provided some new examples of stable and semistableHiggs bundles. Higgs bundles arise from
representations of the fundamental group of complex or algebraic manifolds, and are part of the active subject
of noncommutative Hodge theory. They have played an important role in gauge theory and the geometrization
of mathematical physics

Yeung discussed integrality and arithmeticity of latticesin quotients of the ball. The main result is that
a co-compact lattice in a complex two ball is integral. He also discussed related geometric and arithmetic
problems. Although arithmetic geometry was not the primaryfocus of this meeting, Yeung’s results indicate
intriguing connections between algebraic, analytic, and arithmetic geometry.

Nearly every good conference has at least one excellent talkthat, at first glance, seems a bit removed from
the other talks. Often such talks profoundly impact future developments in the subject, because they provide
fresh ideas. Larusson gave such a talk at this meeting, on thesubject of model categories and homotopical
algebra, a subject invented by Quillen. Model categories provide an abstract setting for developing analogues
of the homotopy theory of topological spaces for various other sorts of objects, and they have found important
applications not only within homotopy theory itself but also in algebra and algebraic geometry. Recently they
have appeared in complex analysis and provided a natural conceptual framework for the Oka Principle. Of
course the Oka Principle intimately connects the Cauchy-Riemann equations with topology; one expects, on
a Stein manifold, to be able to do with holomorphic functionswhat one can do with continuous functions.

Many important parts of complex analysis were not explicitly mentioned at the workshop, but the subject
remains finely woven, and many such topics made at least a spiritual appearance. We mention in particular
the possibilities associated with extending the ideas of the workshop to infinite dimensional holomorphy, an
area thriving due to deep work of Lempert.

The workshop ended with a discussion of open problems in complex analysis and algebraic geometry and
their connections.

There is no doubt that the workshop forged significant connections between complex analysis and al-
gebraic geometry. The lectures, discussions, and the session on open problems enabled a diverse group of
mathematicians with common interests to see first-hand how techniques from other parts of mathematics can
be used in their own research specialties. Furthermore the amenities of the BIRS helped create a lively and
stimulating environment. Research in both complex analyisand algebraic geometry has advanced as a result
of this meeting.
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abstract

This is the final report by the organizers of the workshop onInteractions between noncommutative algebra
and algebraic geometry, held at the Banff International Research Station September 10 - 15, 2005. The work-
shop was attended by 36 mathematicians from eight differentcountries (Australia, Canada, China, France,
Great Britain, Israel, Norway, and the United States).

This report is subdivided into three parts. In the first part we introduce the subject matter of the workshop
and briefly discuss its history, from the beginning of the 20th century to the present. In the second part we
describe some of the currently active research topics whichinvolve the use of algebro-geometric methods
in noncommutative algebra or conversely, topics in algebraic geometry (and related mathematical physics),
where noncommutative algebra plays an important role. These topics formed the core of the scientific content
of the workshop. The third part consists of summaries of lectures given at the workshop.

Introduction

Noncommutative phenomena are perhaps as old as mathematicsitself; they manifest themselves in the sim-
plest mathematical objects, such as permutations or matrices. Noncommutative algebra developed into a
separate subject in the early 20th century. The initial steps, taken by Dickson and Wedderburn, among others,
were motivated by attempts to better understand ”hypercomplex numbers”, such as the quaternions, discov-
ered by W. Hamilton in 1843. Subsequent steps, due to E. Artin, R. Brauer, H. Hasse, E. Noether, etc., came
in the context of abstract algebra, which was a rapidly developing subject in the 1920s and 30s. The next
phase, lasting roughly from the 1930s to the early 1980s and led by A. Albert, S. Amitsur, N. Jacobson, I.
Kaplansky, A. Goldie, I. Herstein, among others, focused ondeveloping the structure theory for various types
of noncommutative rings.

196
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To illustrate how quickly one encounters open problems in noncommutative algebra and to give the reader
a bit of a flavor of the subject, consider the Weyl algebraA = C{x1, x2}, given by two generators,x1 and
x2, and one relation,

x1x2 − x2x1 = 1 .

If we replace the1 on the right hand side by any other complex numberα 6= 0, we will get an isomorphic
algebra; however, if we setα = 0 then the resulting algebra will become the commutative polynomial ring
P = C[x1, x2] in two variables. Thus we can think ofA as a noncommutative deformation ofP ; the two have
some properties in common, butA is considerably more complicated. One property they have incommon is
that in both cases we can obtain a skew field by formally inverting all non-zero elements. Recall that a skew
field (otherwise known as a division algebra) satisfies all the axioms of a field (i.e., one can perform the four
arithmetic operations, and all the usual associative, distributive, etc. rules hold) except that multiplication is
not required to be commutative. Of course, if we formally invert all non-zero elements in the polynomial ring
P = C[x1, x2], the skew field we obtain will be the rational functionC(x1, x2) in two variables. If we do
the same thing toA, we will obtain a noncommutative skew fieldD, called the Weyl skew field. There are
many proper skew subfieldsS ⊂ D isomorphic toD itself. Given one suchS, we can viewD as anS-vector
space in two different ways, with scalar multiplication on the left or on the right. It is thus natural to ask
whether or not these two vector spaces have the same dimension. This seemingly simple question is, in fact,
a long-standing open problem. A more general question alongthe same lines is whether or not the left and
the right dimensions ofA overB are the same, whereA is an arbitrary skew field andB is a skew subfield.
This question was posed by E. Artin and settled in the negative by P.M. Cohn [25] and A.H. Schofield [44].
Returning to the Weyl skew fieldD, note that much is unknown here. If the left and right dimensions ofD
overS turn out to be the same, what invariants distinguishD from the examples constructed by Cohn and
Schofield? On the other hand, if the right and left dimensionsare different (for someS), is there an effective
way to compute them or to determine whether or not they are thesame for a givenS?

In last 20 years the subject of noncommutative algebra has been rapidly developing in several different
directions. Once common theme has been the increasing penetration of algebro-geometric methods into the
subject and conversely the increasing use of noncommutative ring theory within algebraic geometry and re-
lated mathematical physics. One important outgrowth of this interaction is an entirely new research area,
called noncommutative algebraic geometry. Recall that oneof the foundational steps in the early develop-
ment of (commutative) algebraic geometry was the realization that every commutative ringR can be thought
of the the ring of regular functions on a suitably defined space, namely,X = Spec(R). This dichotomy
is of fundamental importance in commutative ring theory: bypassing fromR to X , one can often trans-
late purely algebraic questions into problems about the geometry ofX , in a setting where both geometric
tools and geometric intuition are available. Noncommutative algebraic geometry is motivated by an attempt
understand noncommutative rings in a similar manner. Curiously, this turned out to be somewhat easier to
do with graded rings, using methods derived from projective(rather than affine) algebraic geometry. The
reason is that affine algebraic geometry tends to rely on techniques like localisation that are rarely available
in the noncommutative setting, whereas the more global and categorical approaches to projective geometry
can and have been generalized. Another goal of noncommutative algebraic geometry is to build up and study
“noncommutative algebraic varieties” or “noncommutativeschemes”. In addition to clarifying the structure
of noncommutative rings they are of independent interests,and may have interesting and unexpected applica-
tions (e.g., in mathematical physics). At this point we are rather far from fully realizing these goals. However,
the methods developed in noncommutative projective geometry have already found a number of applications;
in particular, they have been used to solve several outstanding open problems in noncommutative ring theory
[5, 6, 4, 7, 8].

The purpose of the workshop was to discuss various aspects ofthe interaction between noncommutative
ring theory and algebraic geometry, including the latest developments in noncommutative algebraic geometry.
In particular, the following topics were discussed.

Areas of recent activity

We will now outline several areas of interaction between algebraic geometry and noncommutative algebra,
where there have been interesting new developments in recent years. Most of these developments were
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discussed during the workshop.

Foundation of noncommutative algebraic geometry
One important question in the field concerns the foundationsof noncommutative algebraic geometry. For

example, what is “the right” axiomatic definition of a noncommutative space? The approach usually taken in
(commutative) algebraic or differential geometry is to first define what a space of the desired type should look
like locally, in a sufficiently small open neighbourhood of each point, then specify what kind of transition
functions are allowed to ”glue” these local charts together. For example, in a differentiable manifold, a
sufficiently small neighbourhood of every point looks like an open ball inRn, with differentiable transition
functions between these local charts. A scheme looks likeSpec(R) in a neighbourhood of each point, with
regular transition functions between the charts. As we pointed out above, it is not possible (or at least has
not been possible so far) to mimic this approach for noncommutative spaces, because it ultimately relies
on the assumption that one can easily pass to a smaller open subset of a given point. In the commutative
setting this is done through the technique of localization (i.e., inverting certain elements in a ring), which
is usually not available in the noncommutative setting. Thesuccessful approaches so far have taken the
global point of view from the very beginning. Here is a partial list of papers addressing this subject. M.
Artin [3], M. Artin and J.J. Zhang [9], M. Kontsevich and A. Rosenberg [34], Y.I. Manin [37], A. Rosenberg
[39, 40, 41], M. Van den Bergh [52], F. Van Oystaeyen and A. Verschoren [54], A.B. Verevkin [55, 56], V.
Ginzburg [31], W. Crawley-Boevey, P. Etingof and V. Ginzburg [27]. One purpose of having many different
approaches to noncommutative spaces is to understand them from different points of view. The foundations
of noncommutative projective geometry that were established by A.B. Verevkin [55, 56] and M. Artin and
J.J. Zhang [9] have been largely accepted but this is just thebeginning of this theory, and much foundational
work remains to be done.

Finite-dimensional division algebras of transcendence degree 2.
Division algebras (or skew fields) that are finite over their centres have been studied since the beginning of

the 20th century. These algebras play an important role in algebraic geometry, the theory of algebraic groups,
algebraic number theory and algebraicK-theory. Some of the most exciting recent developments in this field
have to do with algebras defined over function fields of surfaces. Recall that every finite-dimensional central
simple algebraA/K can be written in the formA = Mn(D), whereD is a division algebra with centreK.
The indexd of A is the degree ofD, i.e.,

√
dimK(D). The exponent ofA is the smallest positive integer

e such thatA⊗e is a matrix algebra overK. It is known thate ≤ d and thate andd have the same prime
divisors. IfK is the function field of a surface it has been long conjecturedthat e = d; this is sometimes
called the period-index problem. Special cases of this conjecture were proved by M. Artin and J. Tate [2] in
the 1980s, but a full solution was obtained only a few years ago by J.A. de Jong [28]. Similar results in the
context of arithmetic surfaces were proved earlier by D.J. Saltman [42, 43] (who spoke on this topic at the
workshop), and subsequently strengthened by M. Lieblich [36].

Another important open problem in the theory of central simple algebras is the Albert conjecture. Recall
that a cyclic algebra of degreen over a fieldK, containing a primitiventh root of unityζn, is aK-algebra
given by two generators,x andy and three relations,

xn ∈ K , yn ∈ K , and xy = ζnyx .

Albert’s conjecture asserts that every division algebra ofprime degreen = p is of this form. This conjecture
(which might or might not been stated by Albert), has motivated much of the research in the theory of central
simple algebras, going as far back as perhaps the 1930s.

In a recent preprint, M. Ojanguren and R. Parimala [38] use and further develop the ideas of M. Artin,
D.J. Saltman and J.A. de Jong, to prove Albert’s conjecture for division algebras of prime degree over the
function fieldK of a complex surface. The details of this argument are still being checked by the experts.
If the proof holds up, it is believed that a similar method canbe used to show that the abelian closure ofK
has cohomological dimension1. (HereK is the function field of a complex surface, as above.) Note that the
inequalitycd(Kab) ≤ 1 is currently only known in a few cases; in particular, forK = a number field, or a
p-adic field by class field theory and forK = C((X))((Y )) by [26, Theorem 2.2]. For a related conjecture
of Bogomolov, see [11, Conjecture 2].
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Birational classification of noncommutative surfaces.
Division algebras that are infinite dimensional over their centres appear naturally in noncommutative

algebra and noncommutative algebraic geometry. Similarlyto the commutative situation, the classification
of division algebras of transcendence degree 2 would be equivalent to the birational classification of integral
noncommutative projective surfaces. Hence it is importantto work out the classification of division algebras
of transcendence degree 2. M. Artin proposed a conjectured list of division algebras of transcendence degree
2 in [3]. All algebras on this list are known to be of transcendence degree 2; the conjecture is that there are no
others. If Artin’s conjecture is proved, it will have many strong consequences in noncommutative ring theory.

Quantum projective spaces.
QuantumP2s have been classified by M. Artin, W. Schelter, J. Tate and M. Van den Bergh [4, 7, 8].

They are well understood. So it is natural to ask if we can classify quantumP3s, or more generally quantum
Pns for all n ≥ 3. QuantumPns are fundamental objects in noncommutative algebraic geometry. Many
interesting noncommutative spaces can be embedded into some quantumPn. On the other hand, it is not
clear if every noncommutative space can be embedded into quantumPns. This problem is not solved even
for quantum or noncommutative K3 surfaces and the quantum Calabi-Yau 3-folds. The reason for this is that
quantumPns are not fully understood.

The complete classification of quantumPns is an extremely difficult project. An algebraic approach to
constructing quantumPns is to form the noncommutative schemeProj A whereA is a noetherian Artin-
Schelter regular connected graded algebra of global dimension n + 1. Therefore the algebraic form of the
above mentioned question is the classification of noetherian, Artin-Schelter regular, connected graded al-
gebras. Researchers have been studying many special classes of noetherian Artin-Schelter regular algebras
of global dimension 4. One well-studied example is the Sklyanin algebra of dimension 4, introduced by
Sklyanin [50, 51]. Artin-Schelter regular algebras of dimension four have been extensively studied by many
researchers (S.P. Smith, J.T. Stafford. T. Levasseur, L. LeBruyn, M. Van den Bergh, J. Tate, M. Vancliff, B.
Shelton, K. Van Rompay, L. Willaert, T. Cassidy, D. Stephenson, D.-M. Lu, J. Palmieri, Q.S. Wu and others).
in recent years. This gives us hope that a complete classification of quantumP3’s may be in sight. Note
that quantumP3’s will provide new examples of division algebras of transcendence degree 3. These division
algebras are likely to play an important role in noncommutative projective geometry.

Combinatorial noncommutative algebra The study of finitely generated algebras like the Weyl
algebra, enveloping algebras of finite dimensional algebras, Sklyanin algebras is greatly aided by the use of
combinatorial techniques that go back to Shirshov, Golod and Shafarevich, Gelfand and Kirillov, and others.

The first real issue is to determine when a finitely generated algebra (or a module over it) is actually
finite dimensional. In fact, Golod and Shafarevich found a criterion for infinite dimensionality of algebras
involving generators and relations that led to an example ofa finitely generated nil algebra (an algebra in
which every element is nilpotent) that is infinite dimensional. This settled the Kurosh problem for algebras
by showing that not every finitely generated algebra that is algebraic over its base field is finite dimensional.
This example also gives immediately a counterexample to theBurnside problem for groups.

Until very recently, the Golod -Shafarevich example was, insome sense, the only such example. These
rings all had exponential growth. This past year, Tom Lenagan and Agata Smoktunowicz produced examples
of finitely generated nil algebras with polynomial growth.

LetA = k[V ] be a finitely generated algebra, whereV is a finite dimensional generating subspace of the
algebra over the fieldk, and letd(n) bedim(V n), whereV n is the subspace generated by all products of n
or fewer elements ofV . The Gelfand-Kirillov dimension GK(A) of A, is defined as

GK(A) = lim sup
n→∞

logn(d(n)) .

This definition is independent of the choice of the generating set,V . For example, the GK dimension of
the commutative polynomial ring inn variables isn; a free algebra has infinite GK dimension; the GK
dimension of a finite dimensional algebra is zero; a finitely generated polynomial identity(PI) algebra has
finite GK dimension; given any real number,γ, greater than or equal to two, there is a finitely generated PI
whose GK dimension isγ. Remarkably, Victor Markov has shown that any finitely generated subalgebra of
matrices over a commutative algebra has integral GK dimension.
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In general, it ’s not known when finitely generated algebras have integral GK dimension even if they’re
noetherian. An important recent positive step is Smoktunowicz’s result that a finitely generated graded in-
tegral domain cannot have GK dimension properly between twoand three. The conjecture is that finitely
generated graded domains all have integral GK dimension.

Noncommutative Iwasawa algebras
Noncommutative Iwasawa algebras form a large and interesting class of complete semilocal noetherian

algebras, constructed as completed group algebras of compactp−adic analytic groups. Thus, letp be a prime
integer, letZp be thep−adic integers, and letG be a compactp−adic analytic group, so (equivalently - see
[29]) G is a closed subgroup ofGLd(Zp) for somed ≥ 1. Then theIwasawa algebra ofG is

ΛG := lim
←−

Zp[G/N ],

where the inverse limit is taken over the open normal subgroupsN ofG, (which have finite index inG by the
compactness hypothesis). Closely related toΛG is its epimorphic imageΩG, defined as

ΩG = lim
←−

Fp[G/N ],

whereFp is the field ofp elements.
These definitions, and the fundamental properties of these rings, were given in M. Lazard’s monumental

1965 paper [35]. In particular, Lazard proved thatG contains an open normal subgroupU , nowadays termed
a uniformsubgroup, whose Iwasawa algebra has a particularly smooth form. Thus, forU uniform,ΩU is the
J−adic completion of the ordinary group algebraFpU by its augmentation idealJ. SoΩU is filtered by the
powers ofJΩU , and the associated graded algebra is a (commutative) polynomialFp−algebra. It follows by
standard filtered-graded technology thatΩU is a complete noetherian Auslander-regular scalar local domain.
Similar remarks apply toΛU , and - thanks to the fact thatΩG [resp. ΛG] is a crossed product ofΩU [resp.
ΛU ] by the finite groupG/U , similar conclusions can be drawn regardingΩG andΛG.

In the twenty years from 1970 Iwasawa algebras were little studied. Interest in them has been revived
by developments in number theory over the past fifteen years,see for example [24]. Building on the filtered
algebra and crossed product techniques outlined above, it’s now known when Iwasawa algebras are prime,
semiprime, domains, and when they have finite global dimension. Bounds have been found for their Krull
dimension, and information obtained about their centres. Details about these results - and much else besides
- can be found in the survey article [1].

The emerging picture is of a class of rings which in some ways look similar to the classical commuta-
tive Iwasawa algebras, (which are rings of formal power series in finitely many commuting variables over
the p−adic integers), but which in other respects are very different from their commutative counterparts.
And while some progress has been made in understanding theserings, many aspects of their structure and
representation theory remain mysterious. A large number ofopen questions are discussed in [1].

Cluster algebras and cluster categories. Cluster algebras were invented by Fomin and Zelevinsky
[32, 33] in 2000 as a tool to approach Lusztig’s theory of canonical bases in quantum groups and total
positivity in algebraic groups. Since then, cluster algebras have become the center of a rapidly developing
theory, which has turned out to be closely related to a large spectrum of other subjects, notably Lie theory,
Poisson geometry, Teichmüller theory, integrable system, algebraic combinatorics and polyhedra, and quiver
representations. Recent work by many authors has shown thatthis last link is best understood using the cluster
category, which is a triangulated category associated withevery Dynkin diagram. A partial list of papers are
[10] by Assem, Brüstle, Schiffler and Todorov, [12, 13, 14, 15, 16, 17, 18] by Buan, Marsh, Reineke, Reiten
and Todorov, [19, 20] by Caldero, Chapoton and Schiffler, [21, 22] by Caldero and Keller, [30] by Geiss,
Leclerc and J. Schröer. The combinatorics of clusters is shown to be tightly related to tilting objects in
cluster categories. There have been many new questions motivated by the study of cluster algebras [57] and
cluster categories and it is expected that there will be moreactivities in this direction. Derived categories or
triangulated categories have been used more and more in manyareas. The recent development of the cluster
category is a good example of such.

In the workshop Keller gave a talk on some recent developments and present the cluster multiplication
theorem, obtained in his joint work with Caldero [21, 22], which directly links the multiplication of the cluster
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algebra to the triangles in the cluster category using a Hallalgebra approach. Reiten gave a talk based on her
recent work with Iyama about algebras of global dimension 3 where its bounded derived category of the finite
length modules is Calabi-Yau of dimension 3. This derived category has connections with cluster algebras
and the noncommutative crepant resolutions of Van den Bergh.

Noncommutative stacks. The noncommutative phenomena of algebraic stacks (i.e., Artin stacks
and Deligne-Mumford stacks) has been observed for many years. Using some ideas from Connes’ non-
commutative geometry, Chan and Ingalls recently defined a noncommutative coordinate ring associated to
a Deligne-Mumford stack with a finite flat scheme cover [23]. This has been extended to the case of Artin
stacks by Behrend. There are many moduli problems suggesting that noncommutative algebras are the correct
algebraic structure which describe the underlying geometric spaces. The noncommutative crepant resolutions
of Van den Bergh [53] is a good example. Most of noncommutative algebras appearing with stacks are finite
over their centres.

Summaries of selected talks

Speaker:Jacques Alev (Universit’e de Reims)

Title: Poisson trace group of certain quotient varieties.

Summary: LetV be a symplectic space of dimension2n,G a finite group of symplectomorphisms ofV ,
X = V/G the quotient variety,An the Weyl algebra of indexn andAGn the invariant algebra which can be
seen as ”noncommutative functions” overX , hence as a quantization ofX . A standard theme is to compare
all possible algebro-geometric invariants of the (usuallysingular) Poisson varietyX and of the algebraAGn :
Poisson (co)homology ofX , Hochschild (co)homology ofAGn , desingularizations ofX , etc. Alev presented
his computation ofdimHP0(X) in certain cases and compared it todimHH0(A

G
n ).

Speaker:Daniel Chan (University of New South Wales)

Title: Minimal resolutions of canonical orders and McKay correspondence.

Summary: Recently, the Mori program was adapted to orders over surfaces. In particular, there are
noncommutative generalisations of discrepancy, canonical singularities and resolutions of singularities. Chan
reviewed some of these concepts and showed how minimal resolutions of canonical orders can be written
down explicitly. We also discussed McKay correspondence for these canonical orders. This talk was based
on joint work with Colin Ingalls and Paul Hacking.

Speaker:William Crawley-Boevey (University of Leeds)

Title: Noncommutative Poisson structures

Summary: This talk described a notion of Poisson structures on noncommutative rings which seems to
be better than the straightforward generalization of Poisson brackets to such rings. The speaker also discussed
some open problems in this area.

Speaker:Victor Ginzburg (University of Chicago)

Title: Double derivations and cyclic homology.

Summary: Ginzburg described a new construction of cyclic homology ofan associative algebraA that
does not involve Connes’ differential. His approach is based on the complexΩA, of noncommutative dif-
ferential forms on A, and is similar in spirit to the de Rham approach to equivariant cohomology. The
cyclic homology is defined as the cohomology of the total complex ((ΩA)[t], d + t · i), arising from two
anti-commuting differentials,d andii, on ΩA of degrees+1 and−1, respectively. The differentiald, that
replaces the Connes differentialB, is the Karoubi-de Rham differential. The differentiali that replaces the
Hochschild differentialb, is a map analogous to contraction with a vector field. This new map has no com-
mutative counterpart.

Speaker:Ken Goodearl (University of California Santa Barbara)

Title: Quantum matrices and matrix Poisson varieties.
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Summary: Goodearl discussed the relations among prime and primitiveideals of the generic quantized
coordinate ringA = Oq(Mn(C)), Poisson prime and Poisson primitive ideals of the classical coordinate
ring R = O(Mn(C)), and symplectic leaves in the Poisson varietyMn(C). The Poisson algebraR is the
“semiclassical limit” ofA, and so it is conjectured that there should be a bijection between the primitive
spectrum ofA and the Poisson primitive spectrum ofR, hence also a bijection with the space of symplectic
leaves inMn(C). All of these bijections should be equivariant with respectto natural actions of the torus
H of pairs of invertible diagonal matrices. Consequently, theH-invariant prime ideals ofA should naturally
match up with theH-orbits of symplectic leaves inMn(C). Specifically: EachH-invariant prime ofA is
conjectured to be generated by a set of quantum minors, and these quantum minors should match minors
defining the closure of a correspondingH-orbit of symplectic leaves inMn(C). In recent joint work with
K.A. Brown and M. Yakimov, Goodearl determined these orbitsof symplectic leaves, and described sets
of minors defining their closures. These results lead to precise conjectures concerning generating sets for
H-invariant prime ideals inA, which were discussed in the talk.

Speaker:Birge Huisgen-Zimmermann (University of California SantaBarbara)

Title: Top-stable degenerations of finite dimensional representations

Summary: Given a finite dimensional representationM of a finite dimensional algebraA, two hierarchies
of degenerations ofM are analyzed: the poset of those degenerations ofM which share the topM/JM with
M – hereJ denotes the radical of the algebra – and the sub-poset of those which share withM the full
radical layering

(
J lM/J l+1M

)
l≥0

. In particular, the speaker addressed the existence of proper top-stable
or layer-stable degenerations – more generally, the sizes of the corresponding posets including bounds on the
lengths of saturated chains – as well as structure and classification. Here are two sample theorems to indicate
the level of detail one can draw from the proposed geometric setting. The most transparent case is that of
a squarefree topT . In this situation, two numerical invariants (with quite natural intuitive interpretations)
govern the size of the poset of top-stable degenerations ofM , namely:

• The differencet − s, wheret is the number of simple summands in the top ofM ands the number of
indecomposable summands ofM , and

• the differencem = dimKHomA(P, JM) − dimKHomA(M,JM), whereP is a projective cover of
M .

Theorem A. Top-stable degenerations. SupposeT = M/JM is a direct sum oft pairwise non-
isomorphic simpleA-modules andP a projective cover ofT . WriteM in the formM = P/C withC ⊆ JP .

(1) The lengths of chains of proper top-stable degenerations ofM are bounded above bym+ t− s.

(2) Existence:M has a proper top-stable degeneration if and only ifm+ t− s > 0, if and only if either
M fails to be a direct sum of local modules, or elseC fails to be invariant under homomorphismsP → JP .

(3) Unique existence:M has a unique proper top-stable degeneration if and only ifM is a direct sum
of local modules andm = 1. If m = 0 and t − s = 1, M has precisely two distinct proper top-stable
degenerations. For all valuesm+ t− s ≥ 2, there are infinitely many top-stable degenerations in general.

(4) Bases: W.l.o.g.,A is a path algebra modulo relations, andP a direct summand ofA. If M ′ = P/C′

is a top-stable degeneration ofM , thenM andM ′ share a basis consisting of paths in the underlying quiver.
That is, there exists a setB of paths such that{q + C | q ∈ B} is a basis forM and{q + C′ | q ∈ B} is a
basis forM ′.

(5) The maximal top-stable degenerations ofM always possess a fine moduli space, classifying them up
to isomorphism. It is a projective variety of dimension at mostmax{0, m+ (t− s) − 1}.

(6) The casem = 0: M has only finitely many top-stable degenerations, and the degeneration order
coincides with theExt-order.

As for proper layer-stable degenerations in the case of squarefree top: IfM is a direct sum of local
modules, there are none. Otherwise, “huge” hierarchies of layer-stable degenerations may arise.

As a by-product, the theory provides a method for computing the top-stable degenerations from quiver and
relations ofA and a presentation ofM . Hence, there is a rich supply of examples. Huisgen-Zimmermann
displayed three examples of particular interest and described the conjectural classification in the general
situation in terms of these specific instances.

The lecture ended with a sample of the theory for the more involved situation of an arbitrary top:
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Theorem B. SupposeM/JM ∼= St11 ⊕ · · · ⊕ Stnn , whereS1, . . . , Sn are the isomorphism types of the
simple leftA-modules (corresponding to a full set of primitive idempotentsei of A).

ThenM has no proper layer-stable degenerations if and only if
(a)M is a direct sum of local modules, sayM =

⊕n
i=1

⊕ti
j=1Mij , whereMij = Aei/Cij .

(b) dimHomA(P, JM) = dimHomA(M,JM), and
(c) For eachi, theCij are linearly ordered with respect to inclusion.

Speaker:Tom Lenagan (University of Edinburgh)

Title: Prime ideals and the automorphism group of quantum matrices.

Summary: This talk was based in joint work in progress, in collaboration with Stéphane Launois. In work
with Launois and Rigal, the speaker has recently shown that the algebra of quantum matrices is a UFD in
the generic case (q is not a root of unity), in the sense that each height one primeis principal, generated by
a normal element. The present work starts by establishing a criterion to decide when the algebra of quantum
matrices is primitive. This is linked to the description of the height one primes since each height one prime
is either invariant under the action of the natural torus that acts on quantum matrices, or it is in the so-called
0-stratum. The algebra of quantum matrices is primitive precisely when there is no height one prime in the
0-stratum, and, in this case, there are only a finite number ofheight one primes, each one invariant under the
torus action. For example, the algebra of 2x3 quantum matrices is primitive. Next, the speaker considered the
automorphism group of quantum matrices by studying the action of this group on the prime spectrum, and, in
particular on the height one primes. The situation is much more complicated in the non-primitive case, where
there are infinitely many height one primes, than in the primitive case, where there are only finitely many
primes. In the nonsquare case, Lenagan described the automorphism group. In the square case the situation
is not yet fully resolved, but there are partial results.

Speaker:Valery Lunts (Indiana University)

Title: Motivic measures and zeta functions.

Summary: A ”motivic measure” is a ring homomorphismK[V ] → A from the Grothendieck ring of
varietiesK[V ] to an arbitrary ringA. Lunts considered two interesting motivic measures. The first one is
related to stable birational geometry of varieties and the second – to derived categories of coherent sheaves.
He also discussed a counterexample to a conjecture of Kapranov on the rationality of motivic zeta function.
This lecture was based on joint work with Michael Larsen.

Speaker:Daniel Rogalski (University of California San Diego)

Title: Birationally commutative surfaces are naive blow-ups

Summary: The aim of the work presented in this lecture is to classify a wide class of graded rings of GK-
dimension 3 in terms of geometry. We say that a connected graded domainA is a birationally commutative
if its graded ring of fractions looks likeK[t, t( − 1);σ] whereK is a commutative field. The main theorem
states that ifA is such a domain which is noetherian, generated in degree 1, and withGKdim A = 3, then
A can be described as a naive blow-up of some twisted homogeneous coordinate ring of a surface. This is an
analog of the commutative result that all surfaces in a givenbirational class are related by blowing-up. This
talk was based on joint work with Toby Stafford.

Speaker:David Saltman (University of Texas at Austin)

Title: Brauer groups of function fields of surfaces.

Summary: The goal is to take a second look at the Brauer group of function fields of surfaces. One
aspect is to generalize, in a way, a result proved for p-adic curves. LetK = F (S) be the function field of a
regular surface (not necessarily over a field but excellent and Noetherian). Letα ∈ Br(K) be a Brauer group
element of order a primeq unequal to any residue characteristics. AssumeK has a primitiveq root of one.
Then we state a geometric obstruction on the ramification locus ofα to its being represented by a division
algebra of degreeq. Absent this obstruction, we show that there is a cyclic extension of degreeq which splits
all the ramification ofα. In another direction, we recall and redevelop theH3 obstruction to ramification data
coming from a Brauer group element. We want further properties of this obstruction, the ultimate goal being
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to make it computable. Along the way, we consider the case whereS = Spec(R) andR is a regular local
domain (of dimension 2 etc. ) with henselizationRh. We also consider the function fieldK = q(R), and the
relationship betweenBr(K) andBr(Kh) for Kh = q(Rh).

Speaker:Paul Smith (University of Washington)

Title: Noncommutative covers of weighted projective varieties.

Summary: LetA be a commutative graded ring generated by a finite number of elements of positive de-
grees and letXnc = ProjncA be the Artin-Zhang Proj, andX = Proj(A) the usual commutative weighted
projective variety. There is a mapf : Xnc − − > X in the sense of noncommutative geometry. Moreover,
Xnc is a quotient stack with coarse moduli spaceX , andf ”is” the natural map of stacks. We studyXnc

and the mapf from the point of view of noncommutative geometry. Oftenf is a birational isomorphism,
and oftenX can be singular whileXnc is smooth so functions as a sort of noncommutative resolution of
X . LocallyXnc is covered by affine spaces that have coordinate rings that are skew group rings for finite
cyclic groups over commutative rings. We describe a sheafB of noncommutative algebras onX such that
Mod(Xnc) = Qcoh(B). The case whereA is the polynomial ring on two generators of weights 4 and 6
was used to illustrate some of the ideas. This is an importantexample because thenXnc is the compactified
moduli stack for pointed elliptic curves. We give an easy proof (in the spirit of noncommutative geometry)
of Mumford’s result that the Picard group of the uncompactified moduli stack isZ/12.

Speaker:Michaela Vancliff (University of Texas at Arlington)

Title: Using an Algebro-Geometric Method to Construct Clifford QuantumP3s with a Predetermined Finite
Point Scheme.

Summary: The classification of generic quantumP3s (generic regular algebras of global dimension four)
has been hindered by the lack of sufficiently generic examples of quantumP3s on which to formulate and
test conjectures. Candidates for generic quantumP3s are regular algebras of global dimension four that have
a finite point scheme and a one-dimensional line scheme, but such algebras are rare in the literature. One
possibility for constructing such an algebra is to build it by deforming a regular Clifford algebra of global
dimension four that has a finite point scheme.

Speaker:Nikolaus Vonessen (University of Montana)

Title: Group actions on central simple algebras

Summary: Suppose an algebraic groupG acts on a central simple algebraA of degreen (and character-
istic 0). The goal is to be able to answer the following questions a about the action:

(a) IsAG a simple algebra, and if so, what is its degree? Its center?

(b) DoesA have aG-invariant maximal subfield?

(c) Can theG-action on the centerZ(A) be extended to a splitting fieldL, and if so, what is the minimal
possible value oftrdegZ(A) L?

It turns out that under mild assumptions onA and the action, one can obtain much information along
these lines by using techniques from birational invariant theory (i.e., the study of group actions on algebraic
varieties, up to equivariant birational isomorphisms). The talk illustrated the results with the example of
the natural action ofGLm on the universal division algebraUD(m,n) generated bym genericn × n-
matrices. In this case the invariants form a division subalgebra of degreen if and only if assumingn ≥ 3 and
2 ≤ m ≤ n2 − 2. Related methods also make it possible to give an asymptoticestimate of the dimension of
the space of SLm-invariant homogeneous central polynomialsp(X1, . . . , Xm) for n× n-matrices. This talk
was based on joint work with Zinovy Reichstein.

Speaker:Amnon Yekutieli (Ben Gurion University)

Title: Deformation quantization in algebraic geometry.

Summary: The goal is to study deformation quantization of the structure sheafOX of a smooth algebraic
varietyX in characteristic0. The universal deformation formula of Kontsevich gives rise to anL∞ quasi-
isomorphism between the pullbacks of the DG Lie algebrasTpoly,X andDpoly,X to the bundle of formal
coordinate systems ofX . Using simplicial sections one obtains an induced twistedL∞ quasi-isomorphism
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between the mixed resolutionsMix(Tpoly,X) andMix(Dpoly,X). If certain cohomologies vanish (e.g. ifX
isD-affine) it follows that there is a canonical function from the set of gauge equivalence classes of formal
Poisson structures onX to the set of gauge equivalence classes of deformation quantizations ofOX . This is
the quantization map. WhenX is affine the quantization map is in fact bijective. This is analgebro-geometric
analogue of Kontsevich’s celebrated result.
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Time-frequency analysis and
nonstationary filtering (05w5026)
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of Biomathematics and Biometry, Munich), Michael Lamoureux (University of Calgary),
Gary Margrave (University of Calgary)

Objectives

The primary objective of this workshop was to bring togetherboth theoretical researchers and the more
applied practitioners in time-frequency analysis for a constructive exchange of ideas. There are many very
advanced concepts in the recent theoretical publications in this field but most of these have had little impact
to date upon applications to real world signals. The organizers invited some of the top theoreticians in
time-frequency analysis to interact with mathematical physicists and engineers, particularly such as those
in geophysics and communications engineering where nonstationary filtering is a fundamental tool. The
workshop provided a format with time for formal presentations as well as unstructured time for interaction
and collaboration.

This workshop served as a the capstone for the special semester “Modern Methods of Time-Frequency
Analysis which was held at the Erwin Schrodinger Institute in Vienna during spring 2005. The ESI session
brought together a wide spectrum of scientists from Europe,while the following BIRS workshop involved
these top researchers with the North American contingent. The ESI special semester was organized by Fe-
ichtinger, Gröchenig, and Benedetto; two of whom are also organizers for this proposal. More information
on the ESI workshop is available at:http://www.univie.ac.at/NuHAG/ESI05/index.html

A secondary objective is to encourage long-term collaboration between the theoreticians and the applied
researchers. While the former often have a deeper understanding of the potential of time-frequency analysis,
the latter have access to physical data and are in touch with practical necessities such as computational
limitations.

Overview of the Field

Time-frequency analysis finds its roots in Fourier analysis, where a signal in time can be analyzed in the fre-
quency domain as a sum of sines and cosines. Originally developed by Fourier to solve an open problem in
heat flow on a plate, the techniques of Fourier analysis have had wide application in such diverse areas as par-
tial differential equations and mathematical physics, signal processing and electrical engineering, geometry
and Sturm-Liouville problems, probability theory and Brownian motion, to name just a few.

209
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Ironically, Fourier’s new ideas and techniques were radical enough that they forced a reassessment of
the Calculus, and ushered in a new mathematical era of analysis that could properly deal with infinite sums,
convergence issues, unusual functions that are continuousbut differentiable nowhere, and other important dif-
ficulties. So while his work lead directly to the theoreticalareas of Fourier and Harmonic analysis, indirectly
Fourier’s ideas are responsible for the development of the flourishing areas of real and complex analysis,
measure theory, functional analysis, and more.

The development of Fourier analysis and exploitation of thefactorization of translation-invariant linear
systems (convolution integrals) by the Fourier transform has lead to a rich field with many practical appli-
cations, particularly in mathematical physics (PDEs) and engineering (signal processing, vibration analysis,
and systems theory). However, there is growing recognitionthat the ever more complex applications abso-
lutely necessitate the inclusion of nonstationary systemsin analysis and filtering techniques. Extensions of
Fouriers concepts to the nonstationary setting are numerous and include: the Gabor transform, the wavelet
transform, the Wigner transform, pseudodifferential operators, Fourier integral operators, and more. While
most of these extensions have origins within quantum theory, it is now true that applications abound in many
other fields such as geophysics and engineering.

The essential idea in all these extensions is that rather than analyzing signals only in the time domain, or
only in the frequency domain, we instead can make a joint representation of the signal in a time-frequency
domain. A musical score is a excellent analogy of this analysis: an entire piece of music (signal) can be
represented as a collection of notes (frequencies) that areplayed at particular instances of time. In this
domain, it is elementary to identify particular notes, modify them, remove them, or even rearrange them.
In real applications such as medical imaging or cellular communications, these time-frequency components
may be identified as noise to be removed, features to be identified and enhanced, or encodings of complex
data messages to be transmitted and received. Modifying thesignal is a filtering operations; since the effects
of the filter changes with time and frequency, this is called anonstationary filter.

Essential in all applications is choosing a suitable time-frequency representation of a signal, whether that
be through a short time Fourier transform, a Gabor transform, a wavelet transform, or via a pseudodifferential
operator. Then choosing an appropriate operator to modify the signal, be that a Gabor multiplier, a pseudod-
ifferential operator, or some other form of time varying linear operator. Questions of achievability, stability,
and computational speed are all critical issues.

Theoretical work includes identifying appropriate function spaces that represent signals well in the time-
frequency domain (the modulation spaces), identifying mapping properties of operators on these spaces,
questions about choices of bases and frames for such spaces,and many of the analogous results that are
common in general Banach space theory and its applications.

Recent Developments and Open Problems

This is an exciting moment in time-frequency analysis as thetheory is evolving rapidly while new applications
are also constantly emerging. Similar to the trend from linear to nonlinear problems, the move from stationary
to nonstationary leads to a richer solution set but at the expense of greater mathematical and computational
complexity. Stationary filtering has been an important signal processing tool in industry for many years but
today we have an emerging understanding of nonstationary filtering that promises to have a immense impact
on signal processing as well as the associated modelling of the real world. The rapid increase of available
computing power makes the implementation of complex nonstationary filters possible today where they were
only concepts a short while ago.

Examples of recent concrete applications in nonstationaryfilter theory include the development of Gabor
deconvolution and Gabor wavefield extrapolation for seismic imaging, nonstationary filtering in cell phone
networks, nonstationary noise reduction, modelling of spatially variable quantum systems, coherent state
techniques, and filtering and analysis in commercial music production. In addition, any physical system that
can be modeled as a variable coefficient partial differential equation can be re-expressed as an equivalent
nonstationary filter problem.

Many of the open problems are deep questions in the analysis of functions, including such things as
optimal choices of base functions for frames, linear independence of time-frequency translates of base func-
tions, properties of modulation spaces and linear operators on these spaces, and the representation of linear
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operators or nonstationary filters via pseudodifferentialoperators and Gabor multipliers.

Presentation Highlights

The talks concentrated on four or five general areas, both theoretical and applied. Research questions about
frames, whether in the Gabor, wavelet, shearlet or other exotic domains, were addressed by Bodmann, Four-
nasier, Heil, Jorgensen, Kutyniok, Larson, and Torresani.The Gabor transform, and representing nonsta-
tionary filters through Gabor multipliers and pseudodifferential operators, were addressed by Ali, Balazs,
Feichtinger, Lamoureux, Okoudjou, and Strohmer. Localization operators were addressed by Groëchnig,
Oliaro and Toft. Applications considered included seismicand medical imaging, signal processing, deconvo-
lution, and psychoacoustics; talks on applications were given by Balazs, Casazza, de Hoop, Fishman, Gibson,
Hermann, Hlawatsch, Klauder, Margrave, Mitchell, Pfander, Sacchi, Shen and Stolk.

Details of individual talks are given below.

The Talks

SPEAKER: Syed T. Ali
TITLE: A Suggestion for a Vectorial Gabor Transform
ABSTRACT: Using some recent results on coherent states overmatrix and C*-algebraic domains, a possible
candidate for a vectorial Gabor transform will be presented. Such a transform is expected to have applications
to signals with additional (internal) degrees of freedom. Some interesting holomorphic properties of such
transforms will be discussed.

SPEAKER: Peter Balazs
TITLE: Gabor Multipliers with Application to Psychoacoustics
LINK-Preprint: http://www.kfs.oeaw.ac.at/xxl/dissertation/dissertation.pdf
ABSTRACT: In this talk the basic ideas of the PhD thesis ’Regular and Irregular Gabor Multipliers with
Application To Psychoacoustic Masking’ will be presented.The concept of frame multiplier will be intro-
duced. Frame multipliers are a generalization of Gabor multipliers to frames without further structure. Basic
results, like the dependency of the operator on the symbol, are proved. Furthermore irregular Gabor frames
are investigated. In particular some results on irregular Gabor multipliers are proved like the continuous de-
pendency of Gabor multipliers on the symbol, the lattice andthe windows. Finally a concept is presented
how to implement a masking filter, which approximates the simultaneous and temporal masking known in
psychoacoustics. As the linear frequency scale (in Hz) is not very well adapted to human perception, another
is chosen (Bark), this filtering can be seen as an irregular Gabor multiplier with adaptable mask.

SPEAKER: Bernhard Bodmann
TITLE: Frame paths and error bounds for sigma-delta quantization
ABSTRACT: We study the performance of finite frames for the encoding of vectors by applying first-order
sigma-delta quantization to the frame coefficients. Our discussion is restricted to uniform tight frames, given
byN vectors in ad-dimensional Hilbert space, and mostly concerns the use of quantizers that assume only
integer multiples of a step-sizeδ (mid-tread). We prove upper and lower bounds for the maximalreconstruc-
tion error in terms of geometric quantities of a path interpolating the sequence of frame vectors. We calculate
these bounds for various known frame families and introducethe so-calledd-circles and semicircles frames.
The latter give a slight improvement in the upper bound over the harmonic frames. The maximal error for
all of these families is asymptotically of the orderδd3/2/N , with numerical constants that are comparable to
that of coordinatewise application of the sigma-delta algorithm.

SPEAKER: Pete Casazza
TITLE: Pure Mathematics, Applied Mathematics and Engineering: A common thread
LINK-Preprint: http://www.math.missouri.edu/˜pete/
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ABSTRACT: We will see that the famous 1959 Kadison-Singer Problem is equivalent to fundamental un-
solved problems in a dozen areas of research in both mathematics and engineering, including problems in
signal reconstruction, internet coding, reconstruction from sparse representations and much more. This gives
all these areas of research common ground on which to interact and helps to explain why each area has
volumes of literature on their respective problems withouta satisfactory resolution.

SPEAKER: Maarten de Hoop
TITLE: Analysis of ‘wave-equation’ imaging of reflection seismic data with curvelets
ABSTRACT: In this presentation we discuss how techniques from dyadic parabolic decomposition of phase
space and curvelet frames can be exploited in representing and analyzing the process of ‘wave-equation’
seismic imaging. The approach aids in the fundamental understanding of the notion of scale in the data and
how it is coupled through imaging to scale in - and regularityof - the medium. Furthermore, the use of
curvelets admits a rigorous treatment of the concept of controlled illumination.

SPEAKER: Hans Feichtinger
TITLE: What do we know about Gabor multipliers?

SPEAKER: Lou Fishman
TITLE: Phase Space and Path Integral Methods in Seismic WavePropagation Modeling and Imaging
ABSTRACT: Seismic wave propagation modeling and imaging are complicated by the large-scale and rapidly-
varying environments encountered in the earth. Traditionally, these classical problems have been addressed
by

1. direct approximations on the wave field (e.g., asymptoticray theory, Gaussian beams, spectral repre-
sentations),

2. the application of approximate wave equations (e.g., formal one-way wave equations), and

3. the direct application of computational PD methods (e.g., finite differences, finite elements, spectral
methods).

This talk will survey the application to seismic wave propagation modeling and imaging of what is loosely
referred to as “phase space and path integral methods.” These methods were originally developed in the
quantum physics and theoretical Pd communities, and include the Feynman path integral constructions for
the Sc hrdingier equation, and the theories of pseudodifferential and Fourier integral operators, for example.
For fixed-frequency modeling, the primary aims of this approach are

1. to incorporate well-posed, one-way methods into the inherently two-way global formulations,

2. to exploit the correspondences between the classical wave propagation problem, quantum physics, and
modern mathematical asymptotes (micro local analysis), and

3. to effectively extend Fourier-analysis-based constructions to inhomogeneous environments.

It will be seen that the explicit, exact, well-posed, one-way reformulation of ”elliptic wave propagation” prob-
lems (e.g., the scalar Helmholtz equation) in phase space provides an explicit mathematical framework for
wave-equation-based seismic migration, both unifying thediverse approximations (e.g., wide-angle parabolic
modeling, generalized phase screens, generalized phase shift plus interpolation (GOSSIP)), and systemati-
cally extending the physically based GPSPI algorithm. These developments result in improved seismic imag-
ing algorithms.

SPEAKER: Massimo Fornasier
TITLE: Frame adaptive methods for signal processing and operator equations
ABSTRACT: We illustrate several adaptive algorithms for the solutions of bi-infinite singular linear sys-
tems. Such algorithms are realized from exact iterative schemes (e.g., Richardson, steepest-descent methods,
matching pursuit) by finite dimensional approximations of each iteration, performed with a greedy approach.
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We show that these algorithms are convergent and optimal with respect to certain sparseness classes of vectors
as soon as the system matrix has sufficient off-diagonal decay. Bi-infinite linear systems of this type typically
arise in the solution of functional operator equations (e.g., integral and differential equations) by discretiza-
tion with respect to frames, i.e., stable, complete, and redundant expansions. We present applications in
signal processing/transmission and PDE.

SPEAKER: Peter Gibson
TITLE: Gabor deconvolution of one-dimensional seismic data
ABSTRACT: The last several years have seen a new technique for deconvolution based on the Gabor trans-
form incorporated into industrial seismic image processing, as a replacement for so-called Wiener deconvolu-
tion coupled with certain corrections. The Gabor methods are nonstationary, and are thus much better suited
to the extraction of reflectivity, of which the data is a nonstationary combination. The real nonstationarity
stems from the relationship of the reflectivity to the Green’s function of the standard model for a layered
earth. In this sense Gabor deconvolution can be viewed as a technique for solving a nonlinear inverse prob-
lem while simultaneously removing the effects of a non-Dirac source signal. In this talk we will describe in
detail the theory and implementation of Gabor deconvolution as it is applied to actual seismic data.

SPEAKER: Karlheinz Gr ochenig
TITLE: Mapping properties of localization operators
LINK-Author: http://ibb.gsf.de/homepage/karlheinz.groechenig/
ABSTRACT: We will discuss the mapping properties of localization operators, which are a version of non-
stationary filters. Planned topics:

1. Boundedness of localization operators on modulation spaces,

2. What happens when the symbols are rough?

3. Composition of localization operators

4. The range of a localization operator.

SPEAKER: Christopher Heil
TITLE: The Homogeneous Approximation Property for WaveletFrames
LINK-Author: www.math.gatech.edu/˜heil
ABSTRACT: The Homogeneous Approximation Property is a key property of Gabor systems which leads to
necessary conditions for Gabor frames in terms of the Beurling density of the associated sequence of time-
frequency shifts of the generator. We show that, with some restrictions, wavelet frames and wavelet Schauder
bases also satisfy an analogue of the Homogeneous Approximation Property with respect to the affine group,
and that this leads to necessary conditions for existence interms of an affine Beurling density. However, in
stark contrast to the Gabor case, we show that the density depends on the generator, and there is no Nyquist
density. This is joint work with Gitta Kutyniok.

SPEAKER: Felix Herrmann
TITLE: Non-linear seismic data regularization and separation with directional curvelet frames
LINK-Preprint: zoozoo.eos.ubc.ca/ felix/BIRSprep.pdf
ABSTRACT: In this paper, directional frames known as curvelets are applied to solve two important tasks
in seismic data processing namely data interpolation and primary-multiple separation. We show that by ex-
tending the Fast Discrete Curvelet Transform (from CurveLab at www.curvelet.org) to include non-uniform
Fourier Transforms (from NFFT www.math.mu-luebeck.de/potts/nfft/) a new directional frame is defined
which is particular suitable to solve non-parametric seismic data interpolation problems. We show that min-
imizing theℓ1-norm as part of inverting the frame synthesis operator gives the sparsest set of curvelet co-
efficients that explain the unstructured data. Hitting thisset with the regularly sampled synthesis operator
gives the interpolated result. This approach is a practicalapplication of recent ideas on robust uncertainty
principles.



214 Five-day Workshop Reports

The second topic involves using curvelets to separate two signal components – the primaries and multiples
with the multiples constituting those events that include abounce at the surface. The aim is to separate the
multiples from the primaries in the presence of noise and given an inaccurate prediction for the multiples.
The main distinction of this signal separation problem is that the two signal components are sparse in the
same frame as opposed to the signal components in Morphological Component Analysis. We show that we
arrive at an viable alternative to match filtering approaches by formulating this signal-separation problem in
terms of a weightedℓ1 optimization problem with the weights defined by the predicted multiples.

SPEAKER: Franz Hlawatsch
TITLE Linear Methods for Time-Frequency Filtering (joint work with Gerald Matz)
ABSTRACT: Time-frequency (TF) filters are linear time-varying (LTV) systems whose filter characteristics
(gain/attenuation, pass/stop) are specified in the TF domain. Such a TF filter specification is convenient and
intuitive in many applications. In this talk, we discuss various linear TF filter methods that can be grouped
into the following two broad classes.

• Explicit filter design: The LTV filter is calculated such thata TF representation (”symbol”) of the filter
is equal to, or optimally approximates, a given TF weight function. A variation of this principle using
an orthogonal projector side constraint results in ”time-frequency projection filters” with very sharp
time-frequency pass/stop selectivity.

• Implicit filter design: The LTV filter is implemented as an analysis-weighting-synthesis scheme based
on a linear TF representation (an example of such a TF filter isprovided by a Gabor multiplier). Thus,
the filter is designed implicitly during the filtering process.

We also explain the connections of TF filters with the theory of underspread operators and TF transfer func-
tions. The performance and application of the TF filters presented is demonstrated through numerical simu-
lation.

SPEAKER: Palle Jorgensen
TITLE: Computation of wavelet coefficients in generalized multiresolution systems
LINK-Preprint: http://arxiv.org/abs/math.CA/0405301
ABSTRACT: We consider wavelets inL2(Rd) which have generalized multiresolutions. This means that the
initial resolution subspaceV0 in L2(Rd) is not singly generated. As a result, the representation of the integer
latticeZd restricted toV0 has a nontrivial multiplicity function. We show how the corresponding analysis
and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus
acting on a certain vector bundle. Specifically, we show how the wavelet functions onRd can be constructed
directly from the generalized wavelet filters.

SPEAKER: John Klauder
TITLE: Signal Transmission in Passive Media
ABSTRACT: Under rather general assumptions, and in a relatively simple and straightforward manner, it
is shown that the characteristics of signals which travel through homogeneous, as well as inhomogeneous,
passive media have the principal features usually associated with the phenomena of precursors, as generally
follows from more elaborate studies. The simplicity of the present arguments permit analytic studies to be
made for a greater variety of media than is normally the case.

SPEAKER: Gitta Kutyniok
TITLE: Shearlets: Sparse Directional Representations of Images within a Multiresolution Analysis Structure
LINK-Preprint: http://www.math.uni-giessen.de/Numerik/gittak/publications.html
ABSTRACT: In this talk we describe a new class of multidimensional representation systems, called shear-
lets. They are obtained by applying the actions of dilation,shear transformation and translation to a fixed
function, and exhibit the geometric and mathematical properties, e.g., directionality, elongated shapes, scales,
oscillations, recently advocated by many authors for sparse image processing applications. In contrast to
other approaches these systems can be studied within the framework of a generalized multiresolution analy-



Time-frequency analysis and nonstationary filtering 215

sis, which leads to a recursive algorithm for the implementation of these systems, that generalizes the classical
cascade algorithm. This is joint work with Demetrio Labate.

SPEAKER: Michael Lamoureux
TITLE: The Rotation Algebra in Time-Frequency Analysis
ABSTRACT: The translation and modulation operators that appear in the Gabor transform generate a rep-
resentation of a well-studied family of operators on Hilbert space, known as the rotation algebras. These
algerbas arise naturally in physics in the study of Bloch electrons, and mathematically are noncommutative
generalizations of a two torus. We will present some of the basic properties of this field of algebras and their
connection with Gabor theory.

SPEAKER: David Larson
TITLE: Frames and Operator Theory
ABSTRACT: A few years ago the speaker and his collaborators developed an operator-interpolation approach
to wavelets and frames using the local commutant (i.e. commutant at a point) of a unitary system. This is
really an abstract application of the theory of operator algebras to wavelet and frame theory. The concrete
applications of operator-interpolation to wavelet theoryinclude results obtained using specially constructed
families of wavelet sets. Our methods include the construction of certain groups of measure preserving
transformations, and groups and algebras of operators, with special algebraic properties. Other results include
applications of a theory of projection decompositions of positive operators, and a theory of operator-valued
frames. We will discuss some unpublished and partially published results, and some brand new results, that
are due to this speaker and his former and current students, and other collaborators.

Note this talk was cancelled due to travel delays.

SPEAKER: Gary Margrave
TITLE: A stable, explicit nonstationary filter for wavefieldextrapolation
ABSTRACT: We present a new approach to the design of stable and accurate wavefield extrapolation opera-
tors needed for explicit depth migration. We split the theoretical operator into two component operators, one
a forward operator that controls the phase accuracy and the other an inverse operator, designed as a Wiener
filter that stabilizes the first operator. Both component operators are designed to have a specific fixed length
and the final operator is formed as the convolution of the components. We utilize this operator design method
to build an explicit, wavefield extrapolation method based on the migration of individual source records. Two
other features of our method are the use of dual operator tables, with high and low levels of evanescent fil-
tering, and frequency-dependent spatial down sampling. Both of these features improve the accuracy and
efficiency of the overall method. Empirical testing shows that our method has a similar performance to the
time-migration method called phase shift, meaning it scales as NlogN. We illustrate the method with tests
on the Marmousi synthetic dataset. We call our method FOCI which is an acronym for forward operator
conjugate inverse.

SPEAKER: Ross Mitchell
TITLE: Time/Frequency Applications in Medical Imaging
ABSTRACT: Medical imaging research at the Hotchkiss Brain Institute, University of Calgary, is focused
on the application of mathematics, computer science, physics and engineering to help understand, diagnose,
treat and monitor neurological disease. Several multi-disciplinary research teams, consisting of both basic
scientists and clinicians, have been deployed within Foothills Medical Center. This seminar will provide
an overview of the Fourier-based medical imaging modalities of computerized tomography and magnetic
resonance imaging. It will then cover several neurologicalapplications of time/frequency analysis. In par-
ticular, our team is using time/frequency techniques to investigate signals and images from patients suffering
from stroke, brain cancer, multiple sclerosis, and epilepsy. We believe that time/frequency techniques have
tremendous potential to advance the science of medical imaging, and improve outcomes for patients.

Note: this presentation will be targeted towards a non-medical audience. Nevertheless, it may contain some
graphic images.
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SPEAKER: Kasso Okoudjou
TITLE: On some Fourier multipliers for modulation spaces
LINK-Author: http://www.math.cornell.edu/˜kasso
ABSTRACT: In this talk, I will use some time-frequencyanalysis techniques to study the continuity propeprties
of a class of Fourier multipliers on the modulation spaces. It must be pointed out that, in general, these Fourier
multipliers are known to be unbounded on Lebesgue spaces.

SPEAKER: Alessandro Oliaro
TITLE: Continuity of localization operators inLp spaces
ABSTRACT: We study some properties of two-wavelet localization operators, i.e., operators which depend
on a symbol and two different windows. In the case when the symbolF belongs toLp(R2n), we give results
onLq(Rn) boundedness, non-boundedness and compactness of the corresponding operator.

SPEAKER: Goetz Pfander
TITLE: Sampling of operators and channel measurements

SPEAKER: Mauricio Sacchi
TITLE: On the Regularization of the Local Radon Transform - Applications to Seismic Coherent Noise
Atenuation

SPEAKER: Zuowei Shen
TITLE: Deconvolution: A wavelet frame approach.

SPEAKER: Chris Stolk
TITLE: Combining finite elements and geometric wave propagation in 1-D
ABSTRACT: We consider the initial value problem for a strictly hyperbolic partial differential equation on
the circle. We transform the equation to an operator valued ODE du/dt = R(t)u, whereR(t) is bounded.
The transformation involves application of differential operators, solving an elliptic differential equation, and
applying a coordinate transformation involving the characteristics, which can be done at costO(N). The
resulting ODE is solved using a multiscale time-stepping method, which results in anO(N) algorithm for
the original hyperbolic equation.

SPEAKER: Thomas Strohmer
TITLE: Capacity of time-varying channels and pseudodifferential operators

SPEAKER: Joachim Toft
TITLE: Schatten properties for pseudo-differential operators and localization operators on modulation spaces
of Hilbert type
ABSTRACT: Schatten-von Neumann (SN) classes are spaces of linear and continuous operators between
Hilbert spaces. The largest SN class consists of of continuous operators, and all other SN classes are subsets of
compact operators, where in particular the smallest SN-class is the set of trace-class operators. Consequently,
by using such classes, it is possible to make a detailed studyon compactness. In general it is hard to decide
if an explicit operator belongs to a certain SN class or not. One is therefore forced to search embedding
properties between SN classes and well-known spaces. In thepast, such embeddings have been established
between SN classes in context of pseudo-differential operators (psdo) acting onL2, and Besov, Sobolev or
modulation spaces. In the talk we present a non-trivial generalization of embedding between SN classes in
psdo and modulation spaces, where theL2 here above is replaced by general modulation spaces of Hilbert
type. This generalization is obtained by a combination of careful use of time-frequence methods and Hilbert
space techniques.

SPEAKER: Bruno Torresani
TITLE: Identifying sparse hybrid time-frequency models
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ABSTRACT: Several signal families may be adequately modeled as sparse expansions with respect to unions
of time-frequency bases or frames. We shall focus on probabilistic models involving several layers of ran-
domness (sparse subset of the dictionary, coefficients of the expansion,...) and the corresponding estimation
algorithms . A couple of two-steps estimation procedures will be studied and compared. Thesretical estimates
as well as numericalm results will be presented.

Outcome of the Meeting

The best outcome of this meeting was to get the theoreticiansand the applied researchers talking together.
Many of the theoretical people have not been aware of the details nor the great extent to which applied re-
searchers have been making use of time-frequency ideas in concrete applications. In fact, researchers have
created commercial software and hardware in imaging (medical, seismic, etc) and telecommunications (cell-
phones) that take advantage of these techniques, and have developed a whole vocabulary that is distinct from
the theoretical work. The applied researchers have been similarly unaware of details of extensive theoreti-
cal work that has been done on the mathematics of time-frequency analysis which will directly benefit the
applications. In particular in optimal choices of frames, deconvolution work in wavelet bases, properties of
localization operations which are particularly suited forrapid numerical computations, design and implemen-
tation of Gabor multipliers and other time-frequency filters all depend on good theoretical work.

It has been particularly useful to bring together the European and the North American researchers. The
Vienna school is outstanding in its theoretical work and is developing a strong applied connections. The
organizers at Calgary are very pleased to be learning about this theoretical work and begin applying it to their
large project in the mathematics of seismic imaging. We expect further collaborations to develop from these
new connections.
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Chapter 20

Challenges in Linear and Polynomial
Algebra in Symbolic Computation
Software (05w5039)

October 1, 2005 – October 6, 2005
Organizer(s): Wolfram Decker (University of the Saarland), Keith Geddes (University of
Waterloo), Erich Kaltofen (North Carolina State University), Stephen M. Watt (University
of Western Ontario)

Summary

Overview of area covered

The subject of the workshop was innovation in algorithms andsoftware addressing key bottlenecks in sym-
bolic mathematical computation software. By symbolic mathematical computation software we mean soft-
ware like Maple (represented by several participants including Jürgen Gerhard from Maplesoft), Mathemat-
ica, Macaulay 2 (represented by Michael Stillman), Magma (represented by Allan Steele), MuPAD, NTL,
SINGULAR (represented by Gert-Martin Greuel) etc., whose purpose it is to aid a mathematician, scientist,
engineer, or educator to solve mathematical problems on a computer. The specific area of focus for this
workshop was challenges arising from linear and polynomialalgebra at the core of these systems.

Symbolic computation software implements many sophisticated algorithms on polynomials, matrices,
combinatorial structures and other mathematical objects in a multitude of different dense, sparse, or im-
plicit (black box) representations. Several of the algorithms are well-known: Buchberger’s Gröbner basis
reduction algorithm in all its flavors, lattice bases reduction algorithms (LLL, PSLQ) [addressed by M. van
Hoeij’s presentation], Wiedemann’s sparse linear system solver for scalars from a finite field [addressed by P.
Giorgi’s and J.-G. Dumas’s presentations], polynomial factorization algorithms [addressed by M. van Hoeij’s
presentation], algorithms for solving in closed form differential and difference equations [addressed by E.
Hubert’s presentation], sparse interpolation algorithms[addressed by W.-s. Lee’s presentation], and many
more. These algorithms form the backbone of any symbolic computation software, and their improvement is
the continuous effort of researchers.

In addition, several categories of algorithms for new basicproblems are the subject of vigorous current
investigation: diophantine linear system solution, algorithms for approximate data, e.g., floating point scalars,
such as approximate polynomial greatest common divisors [addressed by L. Zhi’s and H. Kai’s presentations],
factorization and non-linear system solving via homotopical deformation [addressed by A. Sommese’s pre-
sentation], manipulation of polynomials over non-commutative domains, and more.
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We estimate that the company-based systems Maple and Mathematica together are licensed to over five
million users. We note that the Research & Development divisions in these companies are quite small. One
objective subject of the workshop was how academia and industry can provide the users an ever-increasing
speedup in the known algorithmic solutions on platforms designed with modern computer science principles.
This entails the discovery of completely new algorithms, such as the ones in the new problem categories
mentioned above, the change of existent algorithms for efficient computer implementation [addressed by A.
Steele’s presentation], and the computer science of meshing the individually implemented algorithms into a
large symbolic computing environment [see the section on the two software discussions].

Overview of achieved objectives

Our workshop brought together algorithm designers and symbolic computation software builders from indus-
try and academia. Our first objective was to review the statusof the problems in the core area whose solution
has the greatest impact in systems for symbolic mathematical computation. Our second objective was to de-
sign an approach that can achieve fast transfer of new mathematical algorithmic advances and new computer
science concepts into the available software. We invited for discussion those who make the new mathematics
for the discipline and those who make the computer programs,in particular those who are engaged in both
activities.

The software builder is faced with a mammoth task: the involved mathematical analysis in current algo-
rithms can be highly sophisticated, using deep mathematical ideas. We give as an example the computation
of sparse resultant formulas via exterior algebras and Chowforms or F.-O. Schreyer’s presentation.

The underlying system for programming these algorithms is highly complex, combining techniques from
reusable object-oriented design with entirely original data structures and standards. For example, the LinBox
group, which is developing a symbolic linear algebra library in analogy to numerical libraries such as LinPack
and MatLab, had to revise the basic generic archetype for a black box matrix three times, thus requiring a
re-programming of the entire library. The revisions were necessitated when new concepts such as non-native
garbage collection and BLAS (basic linear algebra subprograms) were introduced. J.-G. Dumas presentation
addressed several of those issues. In general, our experience is that efficient delivery of effective symbolic
computation software requires ongoing and often original computer science research.

Clearly, given the proliferation of algorithmic ideas and the complexity of a modern computer environ-
ment, innovative design principles and linkages are required to bring the new breakthroughs quickly into the
software that the users, including our own community, need.

This workshop provided a forum for focused discussion amongthe experts in industry and academia, and
among algorithm designers and algorithm implementors. Thegoal was to understand a framework which
will foster the evolution of new algorithmic ideas into usable software in a timely fashion. The pressures on
being able to faster compute more are great. In some cases, the difference can be the proof or disproval of a
mathematical conjecture [addressed in part in D. Lazard’s talk on the Solotareff problem]. In others, the yield
can be a better FFT (fast Fourier transform) algorithm.

Titles and abstracts of presentations

SCHEDULE

Sunday Monday Tuesday Wednesday Thursday

Session chairs M. Dewar A. Storjohann C. Brown M. Stillman

9:00-9:45 J. Demmel P. Giorgi L. Zhi E. Hubert‡ SW disc.† II
9:45-10:30 E. Schost F. Rouillier H. Kai F.-O. Schreyer
11:00-11:45 M. van Hoeij J.-G. Dumas W.-s. Lee G.-M. Greuel

Session chairs T. Lange F. Winkler J. Gerhard

14:30-15:15 von zur Gathen D. Lazard Hike at Lake Luise/ A. Steel
15:45-16:30 A. Sommese SW disc.† I Moraine Lake M. Monagan
†Software group discussion
‡Hubert’s talk was recorded
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Speaker:James Demmel(University of California at Berkeley)
Title: Toward accurate polynomial evaluation in rounded arithmetic
Abstract: Given a multivariate real (or complex) polynomial p and a domainD, we would like to decide whether
an algorithm exists to evaluatep(x) accurately for allx ∈ D using rounded real (or complex) arithmetic. Here
“accurately” means with relative error less than 1, i.e., with some correct leading digits. The answer depends
on the model of rounded arithmetic: We assume that for any arithmetic operatorop(a, b), for examplea+ b
or a · b, its computed value isop(a, b) · (1 + δ), where|δ| is bounded by some constantǫ where0 < ǫ ≪ 1,
but δ is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point
algorithms. Our ultimate goal is to establish a decision procedure that, for anyp andD, either exhibits an
accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipu-
lated as finite bit strings (e.g., as floating point numbers orrational numbers) we show that some polynomials
p are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just onp
andD, but on which arithmetic operators and which constants are are available and whether branching is
permitted. Toward this goal, we present necessary conditions onp for it to be accurately evaluable on open
real or complex domainsD. We also give sufficient conditions, and describe progress toward a complete de-
cision procedure. We do present a complete decision procedure for homogeneous polynomialsp with integer
coefficients,D = Cn, and using only the arithmetic operations+, − and·. Reference: [1].

Speaker:Jean-Guillaume Dumas(Université de Grenoble, France)
Title: LinBox-1.0
Abstract: Three major threads have come together to form thelinear algebra library LinBox. The first is the
use of modular algorithms when solving integer or rational matrix problems. The second thread and original
motive for LinBox is the implementation of black box algorithms for sparse/structured matrices. Finally, it has
proven valuable to introduce elimination techniques that exploit the floating point BLAS libraries even when
our domains are finite fields. The latter is useful for dense problems and for block iterative methods. Black
box techniques are enabling exact linear algebra computations of a scale well beyond anything previously
possible. The development of new and interesting algorithms has proceeded apace for the past two decades.
It is time for the dissemination of these algorithms in an easily used software library so that the mathematical
community may readily take advantage of their power. LinBoxis that library. In this talk, we sketch the
current range of capabilities, describe the design and giveseveral examples of use. Reference:

http://www.linalg.org

Speaker:Joachim von zur Gathen(B-IT, University of Bonn, Germany)
Title: High-performance computer algebra
Abstract: There are two scenarios for putting the asymptotically fast algorithms of computer algebra to work:
in software and in hardware. The first is exemplified by polynomial arithmetic, in particular factorization, on
sequential and parallel machines. The size of cutting edge problems is measured in megabits. The second one
deals with a few hundred bits and yields fast cryptographic coprocessors at the size of current key lengths.
Reference: [4].

Speaker:Pascal Giorgi(University of Waterloo)
Title: Integer Linear System Solving
Abstract: Recent implementations of algorithms for integer linear system solving can compute solutions of
systems with around2, 000 equations over word size numbers in about a minute. These performances are
achieved for dense matrices using the highly optimized BLASlibrary. Currently we are exploiting the same
approach to provide practical implementations for large sparse systems. In our talk we describe our prototype
implementation of an experimental algorithm for sparse solving which reduces much of the computation to
level 2 and 3 BLAS and seems to improve the bit complexity fromn3 to n2.5. Reference: [3].

Speaker:Gert-Martin Greuel (University of Kaiserslautern Germany)
Title: Computing equisingularity strata of plane curve sigularities
Abstract: Equisingular families of plane curve singularities, starting from Zariski’s pioneering ’Studies in
Equisingularity I–III’ have been of constant interest eversince. The theory was basically topologically moti-
vated and so far it was only considered in characteristic 0. We develop a new theory for equisingularity in any
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characteristic which gives even new insight in characteristic 0. Moreover, it is algorithmic and the algorithms
for computing equisingularity strata have been implemented in Singular.

Speaker:Mark van Hoeij (Florida State University)
Title: Complexity results for factoring univariate polynomials over the rationals and bivariate polynomials
over finite fields
Abstract: In this talk, a polynomial time complexity bound is given for the algorithm in “Factoring polyno-
mials and the knapsack problem” [6]. A complexity result is also given for factoring bivariate polynomials
over finite fields. Specifically, to solve the combinatorial problem, it suffices to Hensel lift to accuracy
min(p, n) · (n− 1) + 1 wherep is the characteristic of the finite field andn is the total degree.

Speaker:Evelyne Hubert (INRIA Sophia Antipolis)
Title: Rational and Replacement Invariants of a Group Action
Abstract: Group actions are ubiquitous in mathematics. They arise in diverse areas of applications, from
classical mechanics to computer vision. A classical but central problem is to compute a generating set of
invariants. The proposed presentation is based on a joint article with I. Kogan, North Carolina State Univer-
stity, and is part of a bigger project for differential systems invariant under a Lie group that was started with
E. Mansfield, University of Kent at Canterburry.

We consider a rational group action on the affine space and propose a construction of a finite set of rational
invariants and a simple algorithm to rewrite any rational invariant in terms of those generators.

The rewriting of any rational invariant in terms of the computed generating set becomes a trivial replace-
ment. For the general case we introduce a finite set of replacement invariants that are algebraic functions
of the rational invariants. They are the algebraic analogues of the normalized invariants in Cartan’s mov-
ing frame construction. The construction generalizes to the computation of a fundamental set of differential
invariants.

Speaker:Hiroshi Kai (Ehime University)
Title: Reliable rational interpolation by symbolic-numeric computation
Abstract: A rational interpolation is computed by simultaneous linear equations numerically. But, if the linear
equations are solved by fixed precision floating point arithmetic, there appear a pathological feature such as
undesired pole and zero. An algorithm is presented to eliminate the feature and then give a reliable rational
interpolation with the help from stabilization theory and computer assisted proof. Reference: [7].

Speaker:Daniel Lazard (INRIA France)
Title: New challenges in polynomial computation and real algebraic geometry: Example of Solotareff ap-
proximation problem
Abstract: Most of the computations related to polynomial equations and inegalities are done either by numeric
computation, either by using Gröbner bases, Collin’s cylindrical decomposition or triangular systems. With
the progress of all these methods, the main algorithmic challenge becomes to select well specified classes of
problems which may be solved by using appropriately severalof these methods.

Examples of such an approach may be found in global optimization or parametric systems (see Rouillier’s
talk).

We illustrate this with Solotareff approximation problem (Kaltofen’s challenge 2) for which CAD fails
in degree 6, while a complete solution in degrees up to 10 may be obtained by mixing theoretical considera-
tions on quantifier elimination and with well choosen operations of localization and projection done through
Gröbner bases. Reference [10].

Speaker:Wen-shin Lee(University of Antwerp, Belgium)
Title: Sparse Polynomial Interpolation and Representation
Abstract: As polynomials are one of the fundamental objectsin symbolic computation, being able to represent
and manipulate them efficiently can have dramatic effects onthe cost of many algorithms.

This talk focuses on sparse polynomials. I discuss black boxsparse interpolation and explore sparse
representations of polynomials. The interplay between these problems and recent development [5] are also
addressed.



224 Five-day Workshop Reports

Speaker:Michael Monagan (Simon Fraser University)
The talk was on sparse rational interpolation.

Speaker:Fabrice Rouillier (INRIA France)
The talk was on parametric system solving.

Speaker:́Eric Schost(Ecole Polytechnique France)
Title: Point counting in genus 2, and some of the problems it raises
Abstract: Computing the number of points in the Jacobian of ahyperelliptic curve is a basic question for
hyperelliptic cryptosystem design. For curves of genus 2 over prime fields, present solutions rely on a variety
of tasks: polynomial system solving, root finding, computation with algebraic numbers, ...

This talk (given from a computer algebraist point-of-view)aims at describing problems met when trying
to reach ”cryptographic size”, some solutions, and how theymeet, or can motivate, research in symbolic
computation. This is joint work with Pierrick Gaudry.

Speaker:Frank-Olaf Schreyer (Universität des Saarlandes, Germany)
Title: Computing the higher direct image complex of coherent sheaves
Abstract: The higher direct image complex of a coherent sheaf (or finite complex of coherent sheaves) under
a projective morphism is a fundamental construction that can be defined via a Cech complex or an injective
resolution, both inherently infinite constructions. Usingexterior algebras and relative versions of theorems
of Beilinson and Bernstein-Gel’fand-Gel’fand, we give an alternate description in finite terms.

Using this description we can give explicit descriptions ofthe loci in the base spaces of flat families of
sheaves in which some cohomological conditions are satisfied—for example, the loci where vector bundles
on projective space split in a certain way, or the loci where aprojective morphism has higher dimensional
fibers.

Our approach is so explicit that it yields an algorithm suited for computer algebra systems.

Speaker:Andrew Sommese(University of Notre Dame)
Title: Exceptional Sets and Fiber Products
Abstract: Regard the solution set of a polynomial systemf(x : y) = 0 with algebraic parameters as a family
X → Y of algebraic sets. A symbolic/numeric algorithm based on fiber products is given to compute the
subsets ofX consisting of points where the fiber dimension ofX is greater than it is for generic values of the
parameters. A discussion of motivating problems from engineering is given.

Speaker:Allan Steel (University of Syndey)
Title: Linear and Polynomial Algebra in Magma: A Detailed Overview
Abstract: I give a detailed overview of the many structures and algorithms in the Magma Computer Algebra
system for computing in Linear and Polynomial Algebra. The key challenges and successes are highlighted,
particularly in the goal of practical implementations of asymptotically-fast algorithms.

Speaker:Lihong Zhi (Key Lab of Mathematics Mechanization, AMSS Beijing China)
Title: Structured Low Rank Approximation of a Sylvester Matrix
Abstract: The task of determining the approximate greatestcommon divisor (GCD) of polynomials with
inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of
lower rank whose entries are near the corresponding entriesof that input matrix. We solve the approximate
GCD problem by new methods: one is based on structured total least norm algorithm, another is based on
structured total least squares algorithm, in our case for matrices with Sylvester structure. We present iterative
algorithms that compute a minimum approximate GCD and that can certify an approximateǫ-GCD when a
toleranceǫ is given on input. Each single iteration is carried out with anumber of floating point operations
that is of cubic order in the input degrees. In the univariateGCD case, we explore the displacement structure
and reduce the complexity of each single iteration to be of only quadratic with respect to the degrees of
the input polynomials. We also demonstrate the practical performance of our algorithms on a diverse set
of univariate and multivariate pairs of polynomials. This is joint work with Erich Kaltofen, Bingyu Li and
Zhengfeng Yang [11, 9, 8].
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Summary of the two discussions on software

Both discussions were moderated by Stephen M. Watt.
The first discussion on Monday afternoon covered two topics,one given by Gert-Martin Greuel on the

Oberwolfach References on Mathematical Software (ORMS)project

http://orms.mfo.de

and one by James Demmel on plans for the next release of LAPACK

http://www.netlib.org

and ScaLAPACK

http://www.netlib.org/scalapack

, including arbitrary precision versions, [joint work withJack Dongarra et al.]. In particular, arbitrary preci-
sion, was discussed. One approach is to use F90 operator overloading so that one can produce fixed precision
versions of any precision, calling someone else’s arbitrary precision package. A web site to enter opinions
was

http://icl.cs.utk.edu/lapack-forum/survey/

, which now has the survey’s results.
The second discussion on Thursday morning addressed problems in transferring algorithms into systems.

The use of generic algorithm techniques either by templatesin C++ or by types in Aldor was promoted.
The philosophical difference between opensource free software and commercial products was noted. For
purpose of comparing implementations, the creation of a standard repository for tests and specific versions of
software was deemed to be useful. E. Kaltofen pointed out that many symbolic computation problems require
parallel computation like those done in ScaLAPACK. He suggested that more parallel symbolic computation
algorithms and implementations should be developed in the next five years.

Assessment

This workshop provided a unique opportunity for leading researchers and developing younger investigators
to exchange ideas on current challenges in several important areas of computer algebra. The areas of concen-
tration of the workshop were:

• Linear algebra, both for exact methods (Dumas’s and Giorgi’s talk) and numerical methods (Demmel’s
presentation in the first discussion on software).

• Polynomial algebra. Polynomial factorization was coveredby three speakers (von zur Gathen, van
Hoeij and Steel), sparse polynomial interpolation by Monagan and problems in commutative algebra
and polynomial systems by Greuel, Lazard, Roullier and Schreyer.

• Applications of symbolic computation to cryptography werepresented by Schost.

• Hybrid symbolic-numeric algorithms were a focus, covered by Kai, Lee, Sommese and Zhi.

• Differential equations were addressed by Hubert, the talk which we chose to record.

We feel the workshop was valuable for several reasons: First, many speakers chose to discuss new on-
going work. Second, Demmel’s numerical computation point-of-view made it apparent that numerical meth-
ods must be an integral part of symbolic computation software. One of the questions Demmel raised, that
of the difference of structured vs. unstructured conditionnumbers in the case of the Sylvester matrices has
subsequently been addressed [8]. Third, there was participation from the software industry, namely Gerhard
from Waterloo Maplesoft and Dewar from the Numerical Algorithms Group (NAG).
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Chapter 21

Progress in algebraic geometry inspired
by physics (05w5081)

Oct 08 – Oct 13, 2005
Organizer(s): Jim Bryan (University of British Columbia), Michael Thaddeus (Columbia
University), Ravi Vakil (Stanford University)

This is a report of the workshopProgress in algebraic geometry inspired by physics, held at the Banff
International Research Station, October 8–13, 2005.

This meeting was a great success and a stimulating beginningto the 2005–06 academic year. Some 37
participants attended from top institutions in Canada, theUSA, Europe, Korea, Hong Kong, and Japan. As
anticipated in its proposal, the workshop covered many of the topics where theoretical physics has most
greatly influenced algebraic geometry in recent years.

Gromov-Witten theory, for example, which originated as a quantum field theory governing the propa-
gation of loops or strings on a Ricci-flat space-time, has become a mathematical theory of the enumerative
geometry of algebraic curves on projective varieties. It was discussed in many of the lectures, such as those
of Conan Leung and Jim Bryan.

A related topic from physics was discussed in two related lectures by Lothar Göttsche and Hiraku Naka-
jima: the Nekrasov partition function. This partition function can be regarded, thoroughly physically, as
a partition function in anN = 2 supersymmetric quantum field theory, but also has mathematical inter-
pretations both in terms of Gromov-Witten invariants and interms of their analogues and forerunners, the
Donaldson invariants of real4-dimensional manifolds.

Mirror symmetry provides another example of an explicitly physical topic discussed at the meeting. Mir-
ror symmetry began as a duality between quantum field theories, and was reinterpreted in physics as the
“T-duality” of Strominger-Yau-Zaslow, in which string theory on a torus of large radius is dual to that on a
torus of small radius. Mirror symmetry has received many mathematical interpretations:

• in terms of duality of polytopes by Victor Batyrev and Lev Borisov,

• the “homological mirror symmetry” of Maxim Kontsevich involving derived categories of sheaves and
related to the Fourier-Mukai transform, and

• the torus fibrations inspired by Strominger, S.-T. Yau, and Zaslow.

These were represented in the conference by the lectures of Batyrev, Hori and Mark Gross, respectively.
The principal topic of Kentaro Hori’s lecture was, however,different, and perhaps more surprising to

most participants at the meeting. As one of the few card-carrying physicists present, Hori was able to inform
the mathematicians that physics is able to shed light on matrix factorizations of polynomials — certainly a
new and intriguing direction that we are likely to hear more of in the future.
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But there were also topics of a more purely mathematical nature. Izzet Coskun and Bumsig Kim gave
talks on moduli spaces of curves, for example, a more “classical” topic as it goes back in some sense to the
nineteenth century. In its modern incarnation, interest dates to the late 1960’s, long before the resurgence
of physicists’ interest in algebraic geometry. Yet it is also clearly a subject that has been revivified and
reanimated by the indirect influence of physics. Coskun’s talk made this clear: stable curves can be better
understood using stable maps, which were only introduced byKontsevich thanks to the motivation of physics.

Another “classical” topic which kept cropping up was that ofK3 surfaces, which were discussed in (at
least) the lectures of Leung, Gross, and Bertram. There was no explicit reference to physics in any of these
talks, but the indirect influence was clear: these K3 surfaces are (rather elaborate) toy models of Calabi-Yau
threefolds, proposed by string theorists to constitute themissing dimensions of space-time.

Some other recurring themes, though less classical, were also purely mathematical. Derived categories
of coherent sheaves made an appearance several times, in thelectures of Aaron Bertram, Kentaro Hori, and
Alistair Craw, for example. These certainly play a role in physics, as is evident in the work of Michael
Douglas, and this was a motivation for Bertram’s construction, but the elementary transformations that he
described in holomorphic symplectic geometry had a purely mathematical elegance. Craw explained how the
study of derived categories could be led in another direction — towards combinatorics — by applying them
to the theory of toric varieties.

Another contemporary mathematical theory that was often invoked at the meeting was that of orbifolds
or Deligne-Mumford stacks. These are now understood to havea quantum cohomology theory analogous to
that of smooth varieties (work due to a number of researchers), and their Gromov-Witten theory, K-theory,
and Hochshild cohomology were discussed by Charles Cadman,Takashi Kimura, and Andrei Caldararu
respectively.

The concept of topological quantum field theory or TQFT should not be overlooked either. This is not
really part of physics; it is more a mathematical formalism,put forward in around 1990 by Michael Atiyah
and Graeme Segal, inspired by such physicists as Edward Witten and Robbert Dijkgraaf. But it simplifies
and systematizes many calculations in algebraic geometry inspired by physics, any time we want to cal-
culate some invariant on a moduli space by degenerating or cutting up the space on which it is based into
smaller constituents (for example, by cutting up a Riemann surface into pairs of pants, interpretable as thrice-
punctured spheres). It was discussed, for the enumerative geometry of spaces of admissible covers, in an
attractive lecture by Renzo Cavalieri, and alluded to in thetalks by Leung and Bryan as well.

There was much informal discussion of all of these topics, and more, at the meeting. The number of
formal lectures was intentionally kept small — only sixteen— to provide ample time for informal discus-
sions. However, each of the sixteen speakers was given a full75 minutes to speak, which ensured an in-depth
treatment in each lecture. The topics discussed in the lectures are briefly summarized below.

Conan Leungfirst reviewed the conjectural Yau-Zaslow formula, which expresses the generating func-
tion on the number of curves in a K3 surface as a quasi-modularform.

Then he explained his recent joint work with Junho Lee on the proof of this formula for the index 2 case,
generalizing previous work with Jim Bryan for the index 1 case.

The technique employed was the gluing formula for Gromov-Witten invariants.
Lothar G öttschespoke on his recent work on instanton counting, Donaldson invariants, and line bundles

on moduli spaces. (This is joint work with Hiraku Nakajima and Kota Yoshioka.) They computed the
Donaldson invariants of a rational surface in terms of the aforementioned Nekrasov partition function, which
can be viewed as a generating function for the Donaldson invariants of the affine plane. For a line bundleL
on the rational surfaceX , they computed the holomorphic Euler characteristic

χ(MH
X (c1, c2),O(µ(L)))

of associated line bundles on the moduli space ofH-stable rank 2 bundles onX . Using the Nekrasov con-
jecture, this yielded explicit generating functions for the Donaldson invariants and the holomorphic Euler
characteristics in terms of modular forms and elliptic functions.

Reporting on joint work with Bernd Siebert,Mark Gross described a “nonlinear Mumford construction,”
by which he menat the following. Mumford’s construction produces explicit degenerations of abelian vari-
eties, starting with data of a polyhedral decomposition of areal torus and a (multi-valued) convex piecewise
linear function on the torus. This can be generalized by replacing the torus with a more general integral affine
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manifold with singularities. From these data, one can easily produce the central fiber of the degeneration, so
the challenge is to smooth this fiber.

Gross showed how Kontsevich and Soibelman’s approach translates naturally into this setting, producing
explicit smoothings of K3 surfaces. Tropical rational curves emerged naturally out of his construction.

Aaron Bertram spoke about new moduli associated to a K3 surface, studied injoint work with Daniele
Arcara. For a K3 surfaceS whose Picard group is generated by a divisor classC of self-intersection2g − 2,
he considered the “old” moduli spaceM of stable coherent sheaves onS with invariantsch0 = 0, ch1 = H ,
ch2 = g − 1 agreeing with those of the push-forward of a sheaf onC of rank 1 and degree2g − 2. This is a
smooth holomorphic-symplectic manifold.

The object of Bertram’s talk was to exhibit a sequence of moduli spaces

M ↔M ′ ↔M ′′ ↔ · · ·

that are linked by Mukai flops over projective bundles over products of Hilbert schemes of points onS. These
new moduli spaces are not (at least in any manifest way) moduli spaces of coherent sheaves onS, but rather
are moduli space of stable objects in the derived category ofcoherent sheaves onS under a family of stability
conditions motivated by physics. Bertram argued that this sequence of flops was the natural generalization of
Thaddeus flips to K3 surfaces.

Kentaro Hori reported on his work on matrix factorizations and complexesof vector bundles. Physics
shows the equivalence of certain aspects of matrix factorizations of, say, a degree5 polynomial in5 variables

G(x1, . . . , x5),

and complexes of coherent sheaves of the quintic hypersurfaceG(x1, . . . , x5) = 0 in complex projective
4-space. Recently D. Orlov proved the equivalence of the category of matrix factorizations ofG and the
bounded derived category of coherent sheaves on the quintic.

In his talk, Hori described these equivalences and argued that they are the “right ones” for physics. He
suggested that a proper understanding of the physics may have many applications, for example, to stability
or to homological mirror symmetry.

Victor Batyrev also spoke about mirror symmetry for Calabi-Yau threefolds, but discussed a subtle fea-
ture not previously studied: their integral cohomology. For Calabi-Yau varietiesX andY of dimensiond
that are mirror to each other, mirror symmetry predicts thatthe Hodge numbers ofX andY are related by
the equality

hp,q(X) = hd−p,q(Y ).

Batyrev’s main interest was to understand the relationshipbetween the torsion in their integral cohomology
rings. Ford = 3, he observed that the torsion inH2 andH3 must be exchanged by mirror symmetry. His
verification of this statement for Calabi-Yau complete intersections in toric varieties reduced to an explicit
computation of the fundamental group and the Brauer group.

Izzet Coskungave a lecture about the cones of ample and effective divisors on Kontsevich moduli spaces.
The cones of ample and effective divisors are among the most important invariants associated to any variety.
But the study of these cones for moduli spaces is especially important. For example, in a celebrated series
of papers in the 1980’s, Harris, Mumford, and Eisenbud were able to prove that the moduli space of stable
curves is of general type in genus greater than23 by studying these cones.

In recent work with Joe Harris and Jason Starr, Coskun reduced the computation of the ample cone of
the Kontsevich space of (genus zero) stable maps to projective space to a standard conjecture about curves.
They also determined the stable effective cone of the Kontsevich moduli spaces. He described these results in
his talk and discussed applications to the theory of rational connectivity and the divisor theory of the moduli
spaces of pointed stable curves. For example, similar techniques have allowed him to determine the effective
cone of the moduli space of pointed (genus zero) stable curves, modulo permutations.

Hiraku Nakajima discussed his joint work with Kota Yoshioka on instanton counting. This refers to
the computation of Nekrasov’s deformed partition functions ofN = 2 supersymmetric Yang-Mills theories
by integrating in the equivariant cohomology or Grothendieck groups of instanton moduli spaces over four-
dimensional Euclidean space, which are quiver varieties associated with the Jordan quiver. These partition
functions are analogues of the Donaldson invariants, and equal to the Gromov-Wiotten invariants of certain
noncompact Calabi-Yau threefolds. Nakajima reviewed the recent results on these functions.
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Alastair Craw reported on work about quivers and exceptional collectionsfor projective toric manifolds.
He described how certain collections of line bundles on a projective toric manifold can be used to reconstruct
that manifold as a moduli space of quiver representations. To put it another way, he introduced new quiver
gauge theory constructions of projective toric manifolds.His condition on the line bundles was remarkably
weak, and in particular holds for nice “full strong exceptional collections” (if they exist) that describe the
derived category of coherent sheaves. Indeed, Craw’s program leads to new examples of such collections.
(This was joint work with Greg Smith.)

Harry Tamvakis spoke about the Gromov-Witten invariants of isotropic Grassmannians. He has studied
them in joint work with Anders Buch and Andrew Kresch. For a homogeneous space which is the quotient of
a classical Lie group by a maximal parabolic subgroup, Tamvakis explained a series of results which show that
the three-point genus-zero Gromov-Witten invariants can be equated with, and hence derived from, classical
triple intersection numbers on related homogeneous spaces. He applied this principle to prove structure
theorems for the small quantum cohomology of these homogeneous spaces, which give new results in the
case of a Grassmannian parametrizing non-maximal isotropic subspaces of a vector space equipped with a
symplectic or orthogonal form. Buch was also a participant in the workshop, and explained many technical
aspects of this work informally in the evenings.

In his lecture on “Hurwitz-Hodge integrals and the crepant resolution conjecture,”Jim Bryan stated the
following. A well-known principle from physics asserts that string theory on an orbifold is equivalent to string
theory on any crepant resolution of its coarse moduli space.In mathematics, this can be stated as saying that
the Gromov-Witten potentials for the orbifold and the crepant resolution contain equivalent information: that
is, one can be transformed to another by an appropriate change of variables. Bryan illustrated this in some
examples, showing how it leads to interesting new formulas for integrals of Hodge classes over Hurwitz
schemes. The lecture touched on important work joint with Rahul Pandharipande, Andrei Okounkov, Tom
Graber, Dagan Karp, and others.

Bumsig Kim spoke about the moduli space of rational plane curves with a unique irreducible singular
point. He showed that this moduli space can be decomposed as aunion of irreducible smooth rational varieties
of varying dimensions. He showed how to compute the degree ofthe largest component with fixed tangent
line at the singular point. He was reporting on joint work with Dosang Joe and Hyungju Park.

Andrei Caldararu gave a stimulating lecture entitled “Towards computing theHochschild cohomology
ring of orbifolds,” in which he attempted to explain the ingredients that should go into proving the general-
ization of Kontsevich’s Theorem for complex manifolds to orbifolds. More explicitly, he went over the proof
of Kontsevich’s Theorem and pointed out what changes have tobe made when dealing with orbifolds. For
example, the inertial orbifold appears in a natural way in the course of the argument.

Takashi Kimura described the latest results from his long-standing collaboration with Tyler Jarvis. They
apply to the setting of a global quotient, that is, a smooth projective variety equipped with the action of a
finite groupG. To these data, they have associated aG-equivariant Frobenius algebra, which they call the
“stringy K-theory,” whoseG-coinvariants yield the orbifold K-theory of the quotient.They then introduced a
stringy Chern character, which is a ring isomorphism from stringy K-theory to its cohomological counterpart.
It contains “corrections” to the ordinary Chern character.The proof of the isomorphism follows from a new,
simple reformulation of the relevant obstruction bundle, which does not involve stable maps. Hence their
work significantly simplifies earlier work in simpler situations.

Renzo Cavalierispoke about his doctoral work which gave the intersection numbers on moduli spaces
of admisible covers the structure of a topological quantum field theory. More precisely, he explained how to
construct a two-level weighted topological quantum field theory whose structure coefficents are equivariant
intersection numbers on moduli spaces of admissible covers. Such a structure is parallel (and related, albeit
somewhat mysteriously) to the local Gromov-Witten theory of curves of Jim Bryan and Rahul Pandharipande.

Cavalieri described the explicit computation of the theoryusing techniques of localization on moduli
spaces of admissible covers of a parametrized projective line. The Frobenius algebras he obtained were one
parameter deformations of the class algebra of the symmetric group. In certain special cases he could produce
explicit closed formulas for such deformations in terms of the representation theory of the symmetric group.

Charles Cadmanalso described the work of his doctoral thesis, which uses high technology from the
theory of stable maps to Deligne-Mumford stacks to solve a thoroughly classical problem, namely the enu-
meration of rational plane curves with tangency conditionsto a fixed cubic. His key idea was to consider
what he calls the “stack ofnth roots” associated to a schemeX with a Cartier divisorD: that is, the stack
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whose objects are morphisms toX together with sections of annth root of the pullback of the line bundle
O(D), whosenth powers correspond to the natural section ofO(D). This is a Deligne-Mumford stack whose
coarse moduli space isX , and (for smoothX andD) stable maps to this stack correspond to maps toX with
tangencies of ordern alongD. Recursions solving the enumerative problem can then be obtained, following
Kontsevich, by applying the Witten-Dijkgraaf-Verlinde-Verlinde equations in the quantum cohomology of
the stack ofnth roots.
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Therapeutic Efficacy in Population
Veterinary Medicine (05w5201)

Oct 19 – Oct 22, 2005
Organizer(s): Fahima Nekka (Université de Montréal)

Report

• General

This workshop has been organized by the MITACS BIO5 team around the general theme of therapeutic ef-
ficacy in population veterinary medicine at Banff International Research Station. It has brought researchers
working in applied mathematics, veterinary sciences, behavioural sciences as well as in microbiology and
nutrition. Additional to academic researchers, speakers and participants from other public sectors attended
the workshop: Agriculture and Agri-Food Canada and the Public Health Agency of Canada. Representatives
of Pfizer Animal Health and Elanco Animal Health were present. The representatives of Scheringer-Plough
Animal Health and Avantis, who are among the sponsors of the workshop, were not able to attend but asked
for a follow up on the workshop outcomes. The conferences covered different aspects relating to animal col-
lective therapy, in particular in swine and poultry, in terms of determinants and outcomes, spanning the areas
of: animal behaviour, quantification of feeding behaviour and its relationship with pharmacokinetics, phar-
macodynamics and antibiotic resistance, risk assessment in terms of antibiotic use and genetic determinants
for antibiotic resistance and its different transfer modes, resistance to infection diseases, zoonotical borne
viruses, identification of contamination sources, characterization of microbial hazards and manure, impact
on the environment. A complete portrait of animal behaviourin the context of therapeutic efficacy has been
drawn. A whole overview of the Canadian Integrated Program for Antimicrobial Resistance Surveillance
(CIPARS/PICRA) has been given to explain the national program of antimicrobial use in food animals and
surveillance system for antimicrobial resistance arisingfrom food animal production. An update of PK/PD
analysis in antibiotics was very useful to highlight the role of the prudent use of antibiotics in preserving their
effectiveness and to clarify the objectives of the seed project. A general idea of mathematical approaches used
to handle biological complexity has been given with emphasis on the need for collaborative efforts between
mathematical sciences and experimental research. The keynote speakers have given their own ideas of possi-
ble collaborations with the MITACS team, in terms of their research interests/expertise and in complement to
the current MITACS project. Very interesting discussions took place, always balanced between the different
areas of research. Presence of industrial researchers fromPfizer Animal health in particular, allowed gaining
a clear idea of the pharmaceutical industry expectations and practices.

• Financial support of the workshop

– MITACS
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– AFMnet

– MSRI

– CRM

– Pfizer Animal Health

– Scheringer-Plough Animal Health

– Avantis

• Organizing Committee

– Chair, Fahima Nekka, Université de Montréal

– Jérôme del Castillo, Université de Montral

– Renée Bergeron, Université Laval

– Jacques Bélair, Université de Montréal

– Jun Li, Université de Montréal

– Don Schaffner, Rutgers University

– Heidi Shraft, Lakehead University/AFMnet

– Claude Miville, FPPQ

– Jeff Lucas, MITACS

• Minutes from the discussion about collaborations and perspectives, October 22nd

Were present at this last day meeting researchers from MITACS team (F. Nekka, J. del Castillo, R. Berg-
eron, J. Bélair); from FPPQ (C. Miville); from AFMnet (A. Paulson, M. McLaughlin, H. Schraft, L. Truel-
strup, H. Eberl, J. France); from Pfizer Animal Health (BruceGroves). The objective was to identify potential
collaborations to be added to the current MITACS project or to make it a joint MITACS-AFMnet project, to
identify additional funding sources and to address the involvement of pharmaceutical companies.

1. Discussion on research avenues

The following questions have been suggested as being important to be addressed: o Is the veterinary use
of antibiotics (AB) appropriate? o How could we improve AB use to make it safer and more efficient: this
is the main aim of the seed project which is centred around thejudicious use of antibiotics. o How does the
risk of using the labelled dose compare with the risk of usingan unapproved one? o It would be interesting
to model withdrawal time according to dosage. o Another avenue is to compare the efficacy of alternatives to
AB versus AB efficacy. o The risk of using the approved dose must be weighed against the risk of using an
off-label dose. o One concern about risk assessment is that it may lead to a ban on AB use.

Three main areas of research have been identified for the fullproject o Impact of feeding behaviour
on dosage efficacy o Alternatives to AB and their assessment oRisk analysis, including assessment, pol-
icy making and risk communication. Qualitative risk ratingsystems show major limitations (for example,
passing from high-dimensional information to low-dimensional evaluation causes loss of information). Use
of more/new mathematical methods, including Rapid Risk Rating Technique, for quantitative human health
impact of continued animal use of antibiotics. ! With MITACSfunding, we have to make sure that new
mathematics are being developed. In the seed project, from the mathematical point of view, we have used
dynamical systems (represented by the multi-compartmental approach defined by systems of ODE) with
stochastic input. We analyzed the statistical properties in terms of stability and conservation of the dynamical
system. This approach is new in pharmacokinetics. Use of this approach has to be widespread in biologi-
cal problems and include other sources of stochasticity andanalyse their impacts since the generally- used
assumption of determinism are questionable when considering the randomness involved in biological real-
ity. We have also introduced competition mechanisms in collective behaviour which accounts for dynamical
interactions between individuals (the interaction between individuals is incorporated in the evolution of the
group). The approach we have used to model competition situations has to be put within the framework of
hierarchical nonlinear models used for repeated measurement data.

2. Stakeholders and potential funding sources
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• Veterinary Drugs Directorate (VDD) Divisions

• Health Canada

• Public Health Agency of Canada (PHAC)

• Canadian Integrated Program for Antimicrobial ResistanceSurveillance (CIPARS)

• Canadian Food Inspection Agency (CFIA)

• Agriculture and Agri-Food Canada (AAC)

• Pork producers associations (Alberta Pork, Sask Pork, Manitoba Pork, Ontario Pork, etc.).

• Fonds québécois de la recherche sur la nature et les technologies (FQRNT)

• Conseil des recherches en pêche et en agroalimentaire du Québec (CORPAQ)

• Pharmaceutical industry

• Nutrition companies and integrators

• CIHR NSERC

• NSERC strategic

• AFMnet

• CVMA (Canadian Veterinary Medical Association)

• CAHI (Canadian Animal Health Institute)

3. Discussion regarding the involvement of pharmaceuticalcompanies in the project

• The pharmaceutical industry is product oriented. Mathematics are used in drug development, but not
much in resistance studies.

• Pharmaceutical companies work with approved products, andresearch using off-label dosage may
place them in an awkward position. They report to Health Canada and must demonstrate that they
comply with their guidelines.

• Pharmaceutical companies may not be interested in funding aproject that may benefit their competitors,
for instance, research that may eventually lead to approvalof the off- label dosage of a non-proprietary
drug. However, they may want to fund projects that would evaluate the risk of using the approved dose
of a medication.

• Perhaps suppliers of CTC (the antibiotic used by MITACS teamin the seed project) would be willing
to get involved in our project, given that it may lead to the approval of a higher dosage for their product.

• Much research has been done on newer antibiotics. In fact, new antibiotics are in general derivatives of
known families of drugs. Old antibiotics appear to be used the most and yet have not been documented
as much.

Invitations have been sent to US researchers. Unfortunately, due to delays in reply of the first invited
researchers, tentative to reach other persons were not successful for different reasons (other meetings on
similar subjects at the same period in Europe in particular).
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Overview

Probabilistic Combinatorics is an interface between Probability and Discrete Mathematics. Initiated by P.
Erdős over fifty years ago, it has now become one of the fastest developing areas in all mathematics, with
fascinating applications to many other important areas, such as Theoretical Computer Science and Statistical
Physics. Roughly speaking, Probabilistic Combinatorics comprises three main topics, for each of which we
give a short description. Naturally, there are considerable overlaps between these topics.

The first topic is the application of probability to solve combinatorial problems, and conversely the appli-
cation of combinatorial methods to prove results in probability theory. Typical examples of the former are the
“existence” proofs of Erdős. In general, one wants to show the existence of certain objects by generating an
appropriate probabilistic space and proving that the desired object has positive measure in this space. The last
twenty years or so have witnessed significant progress in this approach. The development of new and pow-
erful techniques, such as the semi-random method and various sharp concentration inequalities, has enabled
researchers to attack many famous open problems, considered intractable not so long ago, with considerable
success. Furthermore, many new ideas discovered in this process have turned out to be useful for problems
from different areas. For instance, the recent Galvin-Kahnresult on Gibb’s measures has its roots in an earlier
graph colouring result of Kahn. For an example of combinatorics being used in the field of probability, one
can look at some recent work of Louigi Addario-Berry and Bruce Reed, which uses combinatorial techniques
to bound the point at which a random walk first returns to zero.

The second topic is the study of random combinatorial structures, such as random graphs. The typical
question here is to show that at a given density, a random graph has a desired property with very high proba-
bility. The study of random graphs has recently received a major boost from industry. It has been discovered
that various important real-life graphs (such as the Internet) can be modeled as a random graph of a special
type. If one can analyze these graphs, then one can make predictions about the evolution of the real-life
networks.

The third topic is the study of randomized algorithms. Here the main question is either to design random-
ized algorithms for a certain goal or to analyze natural algorithms given special inputs. While this topic can
also be considered as a topic in Computer Science, it has turned out quite recently that it also has much to
do with Statistical Physics. For instance, there is a natural algorithm (motivated by problems from statistical
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physics) for generating a random colouring of a graph. A tantalizing question is to know when this algorithm
runs in polynomial time, and a proper bound would have amazing consequences in Physics.

The focus of the workshop lay specifically in the above three main research topics of Probabilistic Combi-
natorics. One aim of the workshop was simply to foster interaction and collaboration between researchers in
these fields, and to discuss recent progress and communicatenew results and ideas. To mention an example,
the following conjecture of Louigi Addario-Berry (see [1]), communicated during an open problem session,
was solved at the workshop by Jacques Verstraete using the technique of combinatorial nullstellensatz:

Theorem 23.0.62Given a graphG = (V,E) and, for everyv ∈ V , a listDv ⊆ {0, 1, . . . , d(v)} satisfying
|Dv| > ⌈d(v)/2⌉, there is a spanning subgraphH ⊆ G such that for allv, dH(v) ∈ Dv.

Additionally, this forum was an opportunity to make state-of-the-art probabilistic techniques available to a
broader audience, in particular graduate students.

With the rapid development in recent years of probabilistictechniques and their applications to various
mathematical disciplines, the workshop was a key opportunity to bring together researchers representing the
entire spectrum of Probabilistic Combinatorics, so as to consolidate our knowledge at present and set new
horizons for future discoveries.

In the remainder of the report we describe in detail some of the advances presented at the workshop.

The Erdős-Ŕenyi Random Graph

Joel Spencer- Connectedness ofG(n, p)
I gave a talk on The Probability of Connectedness, the resultbeing an asymptotic formula for the proba-

bility that the random graphGn, p is connected, for the entire range ofp. The key to it is a new analysis of
breadth first search over the random graphGn, p. This is an idea I have been working on for a year or so but
it really came together during the workshop. I have given talks on this general topic before, most recently at
the CMS Annual Meeting in Waterloo in June, but at this workshop the ideas were clearer than before.

The asymptotic probability ofG(n, p) being connected isA1A2, with

A1 = A1(n, p) = (1 − (1 − p)n)n−1

A2 = A2(n, p) ∼





1 for pgn−1

1 − (c+ 1)e−c for p ∼ cn−1

1
2ǫ

2 for p ∼ ǫn−1 andn−1/2 ≪ ǫ = o(1)
complicated forp ∼ cn−3/2

n−1 for 0 < p≪ n−3/2

(Note that the probability that there are no isolated vertices if the events of being isolated were independent
would be(1 − (1 − p)n−1)n which is quite close.)

Whenp ≪ n−3/2 it is simpler to write that the probability ofG(n, p) being connected is roughly the
probability thatG(n, p) is precisely a tree, which isnn−2pn−1(1 − p)m−(n−1) with m =

(
n
2

)
.

Whenp ∼ cn−3/2 letB be the probabilityG(n, p) is precisely a tree. ThenG(n, p) is a tree plusl edges
with probabilityBclc3l/2 where thecl are the “Wright constants”. Convergence occurs and the probability
thatG(n, p) is a tree isB

∑∞
i=0 clc

3l/2.
The arrangements were excellent, giving myself and the others plenty of time to “prove and conjecture.”

Louigi Addario-Berry - The Diameter of the Minimum Weight Spanning Tree
Given a connected graphG = (V,E), E = {e1, . . . , e|E|}, together with edge weightsW = {w(e)|e ∈

E}, a minimum weight spanning tree ofG is a spanning treeT = (V,E′) that minimizes

∑

e∈E′

w(e).
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If the edge weights are distinct then this tree is unique; in this case we denote it by MWST(G). Minimum
spanning trees are at the heart of many combinatorial optimization problems. In particular, they are easy to
compute, and may be used to approximate hard problems such asthe minimum weight traveling salesman
tour. As a consequence, much attention has been given to studying their structure, especially in random
settings and under various models of randomness. For instance, Frieze determined the weight of a the MWST
of a complete graph whose edges have been weighted by independent and identically distributed (i.i.d.)[0, 1]-
random variables. This result has been reproved and generalized by Frieze and McDiarmid [8] and Aldous
[2]. Under the same model, Aldous derived the degree distribution of the MWST. Both these results rely on
local properties of minimum spanning trees. We are interested in their global structure.

Thedistancebetween verticesx andy in a graphH is the length of the shortest path fromx to y. The
diameterdiam(H) of a connected graphH is the greatest distance between any two vertices inH . We are
interested in the diameters of the minimum weight spanning trees of a cliqueKn onn vertices whose edges
have been assigned i.i.d. real weights. We usew(e) to denote the weight ofe. In Banff we presented our
proof of the following theorem, answering a question of Frieze and McDiarmid [9].

Theorem 23.0.63LetKn = (V,E) be the complete graph onn vertices, and let{Xe|e ∈ E} be independent
identically distributed edge-weights. Then conditional upon the event that for alle 6= f , Xe 6= Xf , it is the
case that the expected value of the diameter of MWST(Kn) is Θ(n1/3).

Benny Sudakov- Embedding Nearly-Spanning Bounded Degree Trees
In this talk we describe a sufficient condition for a sparse graphG to contain a copy of every nearly-

spanning treeT of bounded maximum degree, in terms of the expansion properties ofG. The restriction on
the degree ofT comes naturally from the fact that we consider graphs of constant degree. Two important
examples where our condition applies are random graphs and graphs with a large spectral gap.

The problem of existence of large trees with specified shape in random graphs has a long history starting
with conjecture of Erdős that a random graphG(n, c/n) almost surely contains a path of length at least
(1 − α(c))n, whereα(c) is a constant smaller than one for allc > 1 andlimc→∞ α(c) = 0. The question
of existence of large trees of bounded degree other than paths in sparse random graphs was studied by de
la Vega. He proved that for sufficiently largec one can almost surely embed inG(n, c/n) any tree with
maximum degree at mostd that occupies a small constant proportion of the random graph. Our first result
improves the result of Fernandez de la Vega and generalizes several results on the existence of long paths.
It shows that the sparse random graph contains almost surelyevery nearly-spanning tree of bounded degree,
i.e., tree of size(1 − ǫ)n.

For a graphG let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of its adjacency matrix. The quantity
λ(G) = maxi≥2 |λi| is called thesecond eigenvalueof G. A graphG = (V,E) is called an(n,D, λ)-graph
if it is D-regular, hasn vertices and the second eigenvalue ofG is at mostλ. It is well known that ifλ is
much smaller than the degreeD, thenG has strong expansion properties, so the ratioD/λ could serve as
some kind of measure of expansion ofG. Our second result shows that an(n,D, λ)-graphG with large
enough spectral gapD/λ contains a copy of every nearly-spanning tree with bounded degree. This extends a
result of Friedman and Pippenger [7].

Regular Graphs

Nicholas Wormald - Large Independent Sets in Regular Graphs of Large Girth
An independent setI of a graphG is a subset of the vertices ofG such that no two vertices ofI are joined

by an edge. Theindependence numberof G is the cardinality of a maximum independent set, and is denoted
byα(G). Thegirth of G is the length of its shortest cycle.

In 1991, Shearer gave the best known lower bounds onα(G) forGwith given maximum degree and large
girth. For instance, ifG is 3-regular withn vertices, Shearer’s results imply thatα(G) ≥ 125

302n provided the
girth is sufficiently large, and he gave other results for graphs of maximum degreed in terms off(d) where
the functionf is defined iteratively.

It is known that looking at graphs with maximum degreed for such problems is equivalent to looking atd-
regular graphs. In 1995, the speaker analyzed two greedy algorithms which give rise to large independent sets
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in random regular graphs, one simple and one more sophisticated. With Joe Lauer, we recently studied the
simple greedy algorithm, applied to large girth graphs, andestablished a result for all regular graphs of large
girth, that coincides with the corresponding result for random graphs. We use a “nibble”-type approach but
require none of the sophistication of the usual nibble method arguments, using only linearity of expectation.
We obtained the following result.

Theorem 23.0.64For all d ≥ 3, the independence number of a graph withn vertices, maximum degreed
and girthg is at least

(
1 − ε(g)

)n
2

(
1 − (d− 1)−2/(d−2)

)
,

whereε(g) → 0 asg → ∞.

This improves Shearer’s result for alld ≥ 7.
More recently, with Mohammad Salavatipour, we have analyzed the more sophisticated greedy algorithm

mentioned above. The results are stronger but are given in terms of the solutions of differential equations
which have only been solved numerically. With Carlos Hoppenwe have examined algorithms for finding
large induced forests in graphs with bounded degree and large girth. It is believed that, in all cases, the
constants obtained for regular graphs of large girth coincide with those already known for random regular
graphs.

It was known that, given such a bound for regular graphs of arbitrarily large girth, the same bound carries
over to an asymptotic bound for random regular graphs. The current work indicates that for many problems
with results on random regular graphs obtained by analyzinggreedy algorithms the results can be “explained”
in this way, despite the fact that they were first proved directly in the random case. It is not known to what
extent this is a general phenomenon. In particular, it is notknown if all 4-regular graphs with sufficiently
large girth are 3-colourable.

Angelika Steger- A Probabilistic Counting Lemma for Sparse Regular Graphs
This is joint work with S. Gerke and M. Marciniszyn.
Over the last decades Szemerédi’s regularity lemma [18] has proven to be a very powerful tool in modern

graph theory. Unfortunately, in its original setting it only gives nontrivial results for dense graphs, that is
graphs withΘ(n2) edges. In 1996 Kohayakawa [14] and independently Rödl introduced a variant which
holds for sparse graphs, provided they satisfy some additional structural conditions (which essentially mean
that the graph does not contain regions that are too dense). However, using this sparse regularity lemma
to prove e.g. extremal and Ramsey type results similar to theknown results in the dense case requires as
an additional step: the existence of appropriate embeddingor counting lemmas. For the sparse case this
missing step has been formulated as a conjecture by Kohayakawa, Łuczak and Rödl [15]. For a graphH , let
G(H,n,m) be the family of graphs on vertex setV =

⋃
x∈V (H) Vx, where the setsVx are pairwise disjoint

sets of vertices of sizen, and edge setE =
⋃
{x,y}∈E(H)Exy, whereExy ⊆ Vx × Vy and |Exy| = m.

Let G(H,n,m, ε) ⊆ G(H,n,m) denote the set of graphs inG(H,n,m) satisfying that each(Vx ∪ Vy, Exy)
is an(ε)-regular graph.

Conjecture 23.0.65 (KŁR Conjecture [15]) LetH be a fixed graph and define

F(H,n,m) = {G ∈ G(H,n,m) : H is not a subgraph ofG}.

For anyβ > 0, there exist constantsε0 > 0, C > 0, n0 > 0 such that for allm ≥ Cn2−1/d2(H), n ≥ n0,
and0 < ε ≤ ε0,

|F(H,n,m) ∩ G(H,n,m, ε)| ≤ βm
(
n2

m

)|E(H)|
,

whered2(H) = max
{
|E(F )|−1
|V (F )|−2 : F ⊆ H, |V (F )| ≥ 3

}
.

One of the key difficulties in the proof of the KŁR Conjecture is the fact that form = o(n2) the size of
a neighbourhood of a vertex is on averageo(n). The definition of regularity, however, only deals with linear
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sized subsets and thus regularity seems not to be inherited by subgraphs induced on the neighbourhoods of
some vertices. In a joint paper [10] with Gerke, Kohayakawa,and Rödl we were recently able to prove that
nevertheless in the sparse case a hereditary version holds as well, at least in the probabilistic setting. This
result readily implies much shorter and more elegant proofsof the results known so far, namely the case
of cyclesCk for all k ≥ 3 and forH = K4 andK5. In this talk we show that in fact a much stronger
property holds. Namely, small sets not only inherit with high probability the regularity property, but they also
satisfy with high probability all properties that regular tuples satisfy with high probability. This allows us
to show that the KŁR Conjecture holds for all complete graphsfor slightly larger number of edges than the
conjectured value. In return, we can show the existence of many copies instead of just one copy. That is, we
get a so-called counting lemma.

Theorem 23.0.66 ([11])For all ℓ ≥ 3, δ > 0, andβ > 0, there exist constantsn0 ∈ N, C > 0, andε > 0
such that

|F(Kℓ, n,m, δ) ∩ G(Kℓ, n,m, ε)| ≤ βm ·
(
n2

m

)(ℓ
2)

provided thatm ≥ Cn2−1/(ℓ−1), n ≥ n0, and0 < ε ≤ ε0 and whereF(Kℓ, n,m, δ) denotes the family of
graphs inG(Kℓ, n,m) that contain less than(1 − δ)n|V (H)|(mn2 )|E(H)| copies ofH .

Graph Colouring

Andrew King - Advances Towards Reed’s Conjecture
My current research includes several problems: partial results towards Reed’s Conjecture, probabilistic

colouring work to similar ends, and the reconciliation of probabilistic models via rapidly-mixing Markov
chains.

Reed’s Conjecture states that for any graphG, χ(G) ≤ ⌈(1/2)(∆(G) + 1 + ω(G))⌉ [19]. Generally
speaking, there are two ways to work towards this result. Thefirst involves proving it outright for certain
classes of graphs, and the second involves proving that it isnot far from the truth. That is,χ(G) ≤ ⌈(1/2 +
o(1))(∆(G) + 1 + ω(G))⌉, meaning thatχ(G) ≤ ⌈(1/2 + f(∆(G)))(∆(G) + 1 + ω(G))⌉ wheref tends
to 0 as∆ tends to infinity. There are partial results of this flavour, and I am working towards broadening this
body of work as well as finding ways to colour graphs with few colours in polynomial time.

Since the workshop, Bruce Reed and I have proved that Reed’s Conjecture holds for quasi-line graphs,
improving upon a result of Chudnovsky and Ovetsky [3]. Furthermore, for these graphs a colouring using at
most⌈(1/2)(∆(G) + 1 + ω(G))⌉ colours can be found in polynomial time.

Pseudorandom Graphs

Yoshiharu Kohayakawa - Turán’s Theorem for Pseudorandom Graphs
This is joint work with V. Rödl (Emory University), M. Schacht (Humboldt-Universität zu Berlin), P. Sis-

sokho (Illinois State University), and J. Skokan (Universidade de São Paulo).
Thegeneralized Tuŕan number ex(G,H) of two graphsG andH is the maximal number of edges in a

subgraph ofG not containingH . If G is the complete graphKn on n vertices, then, by the Erdős–Stone–

Simonovits theorem, we have ex(Kn, H) =
(
1 − 1/(χ(H) − 1) + o(1)

)(
n
2

)
, whereo(1) → 0 asn→ ∞.

We give an analogous result for triangle-free graphsH and pseudorandom graphsG. Our concept of
pseudorandomness is inspired by thejumbledgraphs introduced by A. Thomason. We say that a graphG is
(q, α)-bijumbledif ∣∣∣eG(X,Y ) − q|X ||Y |

∣∣∣ ≤ α
√

|X ||Y |

for every pair of setsX , Y ⊂ V (G), whereeG(X,Y ) denotes the number of pairs(x, y) ∈ X × Y with
xy ∈ E(G).

For simplicity, here we only state a consequence of our main result: for any triangle-free graphH
with maximum degree∆ and for anyδ > 0, there existsγ > 0 such that any large enoughn-vertex,
(q, γq∆+1/2n)-bijumbled graphG satisfies
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ex(G,H) ≤
(

1 − 1

χ(H) − 1
+ δ

) ∣∣E(G)
∣∣.

Jan Vondrák - 2-Colourability of Randomly Perturbed Hypergraphs
This is joint work with Benny Sudakov.
In the classical Erdős-Rényi model, a random graph is generated by starting from an empty graph and

then adding a certain number of random edges. More recently,Bohman, Frieze and Martin considered a gen-
eralized model where one starts with a fixed graphG = (V,E) and then inserts a collectionR of additional
random edges. We denote the resulting random graph byG+R. The initial graphG can be regarded as given
by an adversary, while the random perturbationR represents noise or uncertainty, independent of the initial
choice. This scenario is analogous to thesmoothed analysisof algorithms proposed by Spielman and Teng,
where an algorithm is assumed to run on the worst-case input,modified by a small random perturbation.

In subsequent work, Krivelevich, Sudakov and Tetali [16] considered random formulas obtained by
adding randomk-clauses (disjunctions ofk literals) to a fixedk-SAT formula. They proved that for any
formula with at leastnk−ǫ k-clauses, addingω(nkǫ) random clauses of sizek makes the formula almost
surely unsatisfiable. This is tight, since there is ak-SAT formula withnk−ǫ clauses which almost surely
remains satisfiable after addingo(nkǫ) random clauses. A related question, which was raised in thispaper,
is to find a threshold for non-2-colourability of a random hypergraph obtained by adding random edges to a
large hypergraph of a given density.

While 2-colourability of graphs is well understood, being equivalent to non-existence of odd cycles,
for k-uniform hypergraphs withk ≥ 3 it is alreadyNP -complete to decide whether a2-colouring ex-
ists. Consequently, there is no efficient characterizationof 2-colourable hypergraphs. The problem of2-
colourability of randomk-uniform hypergraphs fork ≥ 3 was first studied by Alon and Spencer. Recently,
the threshold for2-colourability has been determined very precisely. Achlioptas and Moore proved that
the number of edges for which a randomk-uniform hypergraph becomes almost surely non-2-colourable is
(2k−1 ln 2 −O(1))n. Interestingly, the threshold for non-2-colourability is roughly one half of the threshold
for k-SAT. Achlioptas and Peres proved that a formula withm randomk-clauses becomes almost surely un-
satisfiable form = (2k ln 2 − O(k))n. The two problems seem to be intimately related and it is natural to
ask what is their relationship in the case of a random perturbation of a fixed instance.

The proof of Krivelevich et al. (for randomly perturbedk-SAT) also yields that for anyk-uniform hyper-
graphH with nk−ǫ edges, addingω(nkǫ) random edges destroys2-colourability almost surely. Nonetheless,
it turns out that this is not the right answer. It is enough to use substantially fewer random edges to destroy
2-colourability: roughly a square root of the number of random clauses necessary to destroy satisfiability.
Our main result is that for anyk-uniform hypergraph withΩ(nk−ǫ) edges, addingω(nkǫ/2) random edges
makes it almost surely non-2-colourable. This is almost tight in the sense that addingo(nkǫ/2) random edges
is not sufficient in general.

First Order Graph Properties

Oleg Pikhurko - First Order Graph Properties
Graph properties expressible in first order logic were studied. The vocabulary consists of variables,

connectives (∨,∧ and¬), quantifiers (∃ and∀), and two binary relations: the equality and the graph adjacency
(= and∼ respectively). The variables denote vertices only so we arenot allowed to quantify over sets or
relations. The notationG |= A means that a graphG is a model for asentenceA (a first order formula
without free variables); in other words,A is true for the graphG.

A first order sentenceA definesG if G is the unique (up to an isomorphism) finite model forA. The
quantifier depth(or simplydepth) D(A) is the largest number of nested quantifiers inA. This parameter is
closely related to the complexity of checking whetherG |= A. LetD(G) be the smallest quantifier depth of
a first order formula definingG.

In a sense, a defining formulaA can be viewed as the canonical form forG (except thatA is not unique):
in order to check whetherG ∼= H it suffices to check whetherH |= A. Unfortunately this approach does
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not seem to lead to better isomorphism algorithms, but this notion, being on the borderline of combinatorics,
logic and computer science, is interesting on its own and might yield unforeseen applications.

Recently, various results on the values ofD(G) for order-n graphs appeared. The paper of Pikhurko,
Veith and Verbitsky studied the maximum ofD(G) (the ‘worst’ case). The ‘best’ case is considered by
Pikhurko, Spencer, and Verbitsky, while Kim, Pikhurko, Spencer and Verbitsky obtained various results for
the random graphG(n, p).

Pikhurko presented new results for random sparse structures obtained jointly with Bohman, Frieze,
Łuczak, Smyth, Spencer, and Verbitsky. Specifically, it wasproved that almost surely

• D(G) = Θ( lnn
ln lnn ), whereG is the giant component of a random graphG(n, cn ) with constantc > 1;

• D(T ) = (1 + o(1)) lnn
ln lnn whereT is a random tree of ordern.

These results rely on computing the maximum ofD(T ) for a treeT of ordern and maximum degreel, so
this problem was studied as well.

Combinatorial Games

Thomas Bohman- Making and Breaking the Giant Component
I presented the following results at the workshop. We consider a game that can be viewed as a random

graph process. The game has two players and begins with the empty graph on a set of n vertices. During each
turn a pair of random edges is generated and one of the playerschooses one of these edges to be an edge in the
graph. Thus the players guide the evolution of the graph as the game is played. One player controls the even
rounds with the goal of creating a so-called giant componentas quickly as possible. The other player controls
the odd rounds and has the goal of keeping the giant from forming for as long as possible. We show that
the product rule is an asymptotically optimal strategy for both players. (The product rule chooses between
two edges by comparing the products of the sizes of the components joined. For example, the player who
is trying to create a giant component would choose the edge that maximized the product of the sizes of the
components joined.)

Geometric Problems

Imre Bárány - On the Randomized Integer Convex Hull
This is joint work with J. Matoušek.
AssumeK ⊂ Rd is a convex body. Its integer convex hull is, by definition, the convex hull ofK ∩ Zd

whereZd is the usual integer lattice. Notation:I(K) = conv(K ∩Zd). The integer convex hull is of central
interest in integer programming. Define the latticeLρ,t = ρ(Zd+t) wheret ∈ [0, 1)D andρ ∈ SO(d), which
is an isometric copy ofZd. The set of latticesL = {Lρ,t} is a probability space with probability measure
equal to the product of the Lebesgue measure on[0, 1)d and the Haar measure onSO(d). The randomized
integer convex hull isIL(K) = conv(K ∩ L), whereL is a random element ofL. IL(K) is a polytope.

Motivated by integer programming, we estimate the expectednumber of vertices ofIL(K), and also
the expected missed volume, that is, the expectation of vol(K \ IL(K)). One of our results says that the
expected number of vertices ofIL(K) is of order(vol(K))(d−1)/(d+1) whenK is smooth, and is of order
(log vol(K))d−1 whenK is a polytope. The expected missed volume problem leads to the following question
which is a distant relative of Buffon’s needle problem. Given a convex bodyK ⊂ Rd, what is the probability
that a randomly chosen congruent copy ofK is lattice point free? We show that this probability (1) is always
smaller thanc1/vol(K) for c1 constant, and (2) is larger thanc2/vol(K) for c2 constant if the width ofK is
small enough. The constants depend only on dimension.

Ross M. Richardson- Random Inscribing Polytopes
This is joint work with Van Vu and Lei Wu.
Let K be a compact convex body inRd. Choosen points uniformly inK. The convex hull of these

n points is referred to as arandom polytope. The study of random polytopes is the study of certain key
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functionals of these polytopes; the volume of the random polytope and the number ofi−dimensional faces
are the most studied. There has been much recent progress in their characterization, and a broad range of
techniques have arisen out of the intersection of geometry,probability, and combinatorics. A comprehensive
survey by I. Bárány will soon appear in the volumeStochastic Geometry.

Now restrictK to have smooth boundary and everywhere positive Gaussian curvature. We define a new
model of random polytopes where we now choose points on the boundary∂K according to some positive
continuous distribution. The convex hull ofn points chosen in this manner is referred to as therandom
inscribing polytope.

Our work focuses on determining the distribution of the volume functional, which we denote byZ. We
prove a concentration result of the following form:

P
(
|Z − EZ| ≥

√
λV
)
≤ 2 exp(−λ/4) + exp(−cǫn),

where hereǫ ≥ α lnn/n, V = Θ(ǫ(d+3)/(d−1)) andc, α are constants. We can use this result to show that
thekth momentMk satisfies

Mk = O(V k/2).

We can also prove better bounds, though with more complicated error terms.
In contrast to the integral geometric methods typically employed to study random polytopes, we rely on

the notion ofǫ−nets and VC-dimension to control the relevant geometry. Ourconcentration result employs
a special instance of a more general martingale concentration theorem due to Kim and Vu. In particular we
provide a quantitative notion of the volume added with the addition of a new point to the random polytope
and show how this implies sharp concentration via the aforementioned tools.

We also provide a lower bound on the variance of the volume functional as well as showing the volume
satisfies a central limit theorem.

Random Matrices

Van H. Vu - Singularity of Random Matrices
The study of random matrices is an important area of mathematics, with strong connections to various

other fields. One of the main objects in this area is matrices whose entries are i.i.d. random variables. We
focus on the basic model in whichMn is ann by n matrix whose entries are i.i.d. variables with Bernoulli
distribution (taking values−1 and1 with probability1/2).

A famous problem is to estimate the probability thatMn is singular. Let us denote bypn this probability.
SinceMn is singular if it has two identical rows, it is trivial thatpn ≥ (1/2 + o(1))n. A notorious conjecture
in the field is that this bound is sharp:

Conjecture 23.0.67pn = (1/2 + o(1))n.

The first result concerning singularity was obtained by Komlós in 1967, who provedpn = o(1). Later,
he improved the bound toO(n−1/2). A significant progress was made in 1995, when Kahn, Komlós and
Szemerédi proved thatpn ≤ .999n (see [13] and the references therein).

Recently, T. Tao and I made progress by further improving theupper bound to(3/4 + o(1))n [20]. We
discovered a surprising connection between problems on random matrices and additive combinatorics. In
particular, the proof of the new bound uses various ingredients from additive combinatorics (in particular,
Freiman’s theorem).

The details are somewhat technical, but my feeling is that the optimal bound(1/2 + o(1))n might be
within sight. In fact, I believe that any improvement upon the constant3/4 could perhaps lead to the solution
of the conjecture. Furthermore, our techniques can be used for other discrete distributions as well and in
certain cases we can obtain sharp results.

A closely related question is to estimate the probability that a random symmetric matrix is singular.
Let Qn be the random symmetricn by n matrix whose upper diagonal entries are i.i.d. Bernoulli random
variables. Weiss conjectured in the 1980s thatQn is almost surely non-singular. Recently, Costello, Tao and
I confirmed this conjecture. Our proof again makes a detour toadditive combinatorics, with the main lemma
being a quadratic version of the classical Littlewood-Offord-Erdős problem [5].
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There have been several further developments in the research of random matrices reported at BIRS:
(1) The singularity problem: Costello, Tao and I generalized the singularity result for random matrices

with arbitrary distribution. It seems that for any (discrete) random matrix with independent entries with
distributions not concentrated on one value, the probability that the matrix is singular is exponentially small.

(2) Rank of random graphs: Costello reported a result showing that the threshold for singularity of (the
adjacency matrix of) a random graph is(log n)/n. (It is clear that below(logn)/n, the graph has isolated
vertices which correspond to all zero row; the main part is tohandle the other side of the threshold.) We have
extended this result to the following: For anyp > (log n)/2n, the corank ofG(n, p) equals the number of
isolated vertices. As a corollary, it follows that the giantcomponent has full rank.

(3) Richardson and Wu reported a result showing central limit theorems for random inscribing polytopes.
Bárány and I extended these results for random polytopes spanned by points sampled from the Gaussian
distribution.

Sequential Growth Models

Graham Brightwell - Classical Sequential Growth Models
Graham Brightwell gave a talk entitled “Classical Sequential Growth Models”, including a discussion of

joint work with Nicholas Georgiou.
Classical sequential growth models were introduced by Rideout and Sorkin in 2000; they are of particular

interest as they are the only models satisfying some natural-looking conditions for discrete random models
of space-time.

A particular classical sequential growth model is defined bya sequencet = (t0, t1, . . .) of non-negative
constants. The process starts with the partial orderP0 with one element labeled0. At stagen = 1, 2, . . .,
the elementn is added toPn−1 and placed above all elements inDn, whereDn is a random subset of
{0, 1, . . . , n−1}, the probability thatDn is equal to a setD being proportional tot|D|. The transitive closure
is taken to form the partial orderPn.

One can either stop after stagen and study the finite partial order, or continue to get a partial order on the
set of non-negative integers.

Special cases include random forests (t0 = t1 = 1, ti = 0 for i ≥ 2), and random binary orders (t2 is
the highest non-zero entry). Although random binary ordersare very sparse, it is nevertheless the case that,
a.s., in the infinite partial order, every element is incomparable with finitely many others. In a recent paper,
Georgiou proves that, for anyε > 0, most elementsr are incomparable with at mostr2+ε other elements.

A random graph order, also known as a transitive percolationprocess, is defined by taking a random
graphG(n, p) on the vertex set{0, . . . , n − 1}, and puttingi belowj if there is a pathi = i1, . . . , ik = j
in the graph withi1 < . . . < ik. This is equivalent to a classical sequential growth model with tn = tn,
t = p/(1 − p).

In a later paper, Rideout and Sorkin provide computational evidence that suitably normalized sequences
of random graph orders have a “continuum limit”. Brightwelland Georgiou use results about the structure of
random graph orders to confirm that this is indeed the case, and showed that the continuum limit is always a
semiorder, i.e., a partial order representable by unit intervals in the line, one below another if it lies entirely to
the left. Alternatively, a semiorder is a partial order containing no induced copy of either of the two specific
partial orders1 + 3 and2 + 2.

It might be hoped that sequences of classical sequential growth models can have more interesting con-
tinuum limits, in particular ones that bear a closer resemblance to 4-dimensional Minkowski space-time.
However, Brightwell and Georgiou show that classical sequential growth models are all “almost” semiorders,
so that any continuum limit must also be very close to being a semiorder.

To be more precise, Brightwell and Georgiou show that, for any sequence{Pn}∞n=0, wherePn is a
classical sequential growth model stopped at stagen, the proportion of 4-element subsets isomorphic to
either1 + 3 or 2 + 2 tends to 0 asn tends to infinity.

Markov Chain Mixing Times

Prasad Tetali - Analysis of Markov Chain Mixing Times
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Prasad Tetali gave a brief update on some recent progress in the analysis of Markov chain mixing times.
The update included the status of several long-standing open problems, as well as recent theoretical develop-
ments in the topic.

The update on the theoretical development focused on isoperimetric and functional approaches to bound-
ing mixing times. It is well known that the spectral gap of a Markov chain can be estimated in terms of
conductance, facilitating isoperimetric bounds on mixingtime. Observing that small sets often have large
conductance, Lovász and Kannan refined this result by bounding the total variation mixing time for reversible
chains in terms of the “average conductance” taken over setsof various sizes. Morris and Peres introduced
the idea of evolving sets and strengthened the Lovász-Kannan result by extending the results to bound theL∞

mixing time. Side-stepping conductance (and using a more direct functional approach, along the lines of the
works on manifolds by Coulhon, Grigor’yan, and Pittet), Goel, Montenegro, and Tetali recently introduced
the notion of “spectral profile” to boundL∞ mixing time. Standard Cheeger-type inequalities show thatthe
spectral profile bounds imply the conductance bounds. Furthermore, the known estimates on mixing times
using Logarithmic Sobolev inequalities and Nash inequalities can also be derived easily with the spectral
profile approach.

The strength of the above isoperimetric and spectral profiletechniques has further been demonstrated in
card-shuffling: A recent breakthrough result of Ben Morris provides an upper bound ofd44 on the mixing
time of the so-called Thorp shuffle on a card-deck of size2d, resolving a long-standing conjecture. The result
of Morris has already been improved tod29 using the new technique of spectral profile. Morris used coupling
and evolving sets techniques to prove his result, while a recent survey-style article by Montenegro and Tetali
illustrates the derivation of thed29 mixing time for the Thorp shuffle using each technique – spectral profile
as well as the evolving sets.

Tetali’s report also mentioned that progress has been slow on other problems, most notably (random)
sampling of contingency tables, which are of interest in statistics. The same is true for acyclic orientations,
matroid bases, and Euler tours, all of which are of interest to combinatorialists. The need for new techniques
in facilitating a tighter analysis of additional Markov chains such as triangulations of regular polygons and
card-shuffling on general graphs has also been made clear.
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Chapter 24

Number Theory Inspired by
Cryptography (05w5021)

Nov 05 – Nov 10, 2005
Organizer(s): David Boyd (University of British Columbia), Carl Pomerance (Dartmouth
College), Igor Shparlinski (Macquarie University), Hugh Williams (University of Calgary)

Introduction

Theobjectiveof this workshop was to bring together most active and productive researchers, especially those
with expertise in computational number theory and who are willing to share their expertise and also open to
working on new topics.

Developments in both number theory and cryptography are vast and quick. However, often lack of con-
tacts and communication between cryptographers and numbertheorists is an obstacle in achieving significant
advances on both sides. We hope that our workshop has been a step towards bridging the gap and will foster
new links between both areas.

The program of the workshop contained a number of formal talks. All talks were typically 45 minutes
long (some were 30 minutes long) with substantial breaks to allow plenty of time for questions and discussion.
Such discussions were of great use for both the speaker and the audience.

Besides the formal program with scheduled talks there was plenty of time for informal discussions which
suit more exchange of ideas which are still in the “mid-air” and cannot be put on paper, but which could
eventually become very fruitful.

Speakers who presented their research all got very valuablefeedback, plus some ideas for further work. In
the same time the people in the audience learned some new things. This also continued through the informal
conversations and gatherings after the end of the official daily program. Several attendees came from small
universities where they are the only computational/algorithmic number theorist, so any chance of personal
interaction with others in this area is vital for them. This meeting has already led to many new concrete
results with probably many other effects which will resonate in the future.

Although most of the people knew each other by name, not everybody met personally. So the meeting
has contributed to establishing a stronger and more diverseresearch network, which is always valuable.

We believe that the workshop has provided a significant learning experience and exposure to current ideas
and trends to younger researchers the early stages of their careers.

250
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Overview of the Field

It is common knowledge that most of the constructions of public key cryptography, and many of the con-
structions of private key cryptography, are based on numbertheory. There is however a constantly extending
flow in the opposite direction, from cryptography to number theory. Namely many problems and results
of intrinsic interest for number theory have been motivatedby possible cryptographic applications. These
include, but are not limited to smooth numbers, elliptic andhyperelliptic curves, lattices, exponential sums,
polynomials over finite fields and many others.

The aforementioned topics do not co-exist independently and separately but weave through each other and
lead to very exciting, and often completely unexpected, directions of theoretic research with a great potential
for practical applications in the area of information technology.

A very impressive example of such interleaving between various areas is given by recent activities stimu-
lated by the polynomial time primality testing algorithm ofby M. Agarwal, N. Saxena and N. Kayal. Follow
up works around this algorithm have lead to such important results as:

• an effective version of the Bombieri-Vinogradov theorem;

• a new algorithm for constructing irreducible polynomials in finite fields;

• new lower bounds on the size of finitely generated groups in function fields over a finite field;

and will probably lead to a number of other mathematically rich explorations. Certainly these and many other
topics have been discussed at the workshop as well.

Recent Developments and Open Problems

The following topics have recently been actively studied inthe literature and certainly also got a lot of
attention during the workshop:

• Studying the distribution of smooth numbers. This is related to several important algorithms, such
as the integer factorization, primality testing and discrete logarithm problems. Less know applications
involve attacks on padded RSA signature scheme and on the ElGamal cryptosystem. The topic has
been addressed in a talk of Jonathan Sorenson.

• Studying the structure of the groups of points on elliptic curves. This is important for better un-
derstanding of the present and future potential of ellipticcurve cryptography. Same questions for class
groups of hyperelliptic curves are of great interest as well. Certainly finding new classes of crypto-
graphically strong (or identifying new types of cryptographically weak) curves is of great importance
and interest. The topic has been addressed in talks of Isabelle Dechene, Florian Luca, Kumar Murty,
Takakazu Satoh, Renate Scheidler and Edlyn Teske.

• Fast calculations on elliptic curves and other algebraic structures. This is important for better un-
derstanding of the present and future potential of ellipticcurve cryptography. Same questions for class
groups of hyperelliptic curves are of great interest as well. Certainly finding new classes of crypto-
graphically strong (or identifying new types of cryptographically weak) curves is of great importance
and interest. The topic has been addressed in talks of Tanja Lange.

• Studying the structure of class groups of algebraic number fields. In particular, quadratic fields
provide very interesting structures when an analogue of theDiffie–Hellman protocol can be executed.
This area definitely requires more attention from both mathematicians and practical cryptographers.
The topic has been addressed in a talk of Allison Pacelli.

• Hash functions based on hard number theoretic problems.Traditionally hash functions are based
on various Boolean operations and whose design reminds art more than anything else. Such functions
are usually very fast but have no proofs of security behind them, which sometimes leads to such dra-
matic events of the recent collapse of MD5. Thus since recently hash functions which are based on
various algebraic structures have received a lot of attention. Such functions are usually much slower
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but admit at least conditional security proofs. The topic has been addressed in talks of Qi Cheng and
Kristin Lauter

• New subexponential attacks on the discrete logarithm problem on elliptic and hyperelliptic curves
Although in generic settings still there are no viable approaches to designing a subexponential algo-
rithm for these problems, in many special cases such attacksexist. One of the very recent approaches
was discussed in a talk of Gerhard Frey and Nicolas Theriault.

• Studying smooth and other special values occurred among group orders of various groups on
cryptographic interest. It is known that “smooth” group orders must be avoided, however the area
is lacking rigorous results confirming that this can be achieved. Group orders of elliptic curves over a
finite field ofq elementsFq which divideqk−1 for some “small”k are of great interest too. They lead
to elliptic curves which are not suitable for standard Diffie-Hellman protocol but instead are of great
values for Weil and Tate pairing based cryptography. The topic has been addressed in talks of Florian
Luca and Edlyn Teske.

• Studying the distribution of various types of polynomials over finite fields. In particular, this in-
volves obtaining sharp bounds on the number of smooth polynomials is important for the discrete
logarithm problem. Certainly, the results of at least the same level of precision as for the integers are
expected. Moreover, for polynomials over finite fields, the celebrated Weil result provided a rigorous
version of the Riemann Hypothesis and thus one can actually anticipate stronger results. The topic has
been addressed in talks of Omran Ahmadi and Qi Cheng.

• Computational challenges arising in algorithmic number theory and cryptography. There is an
on-going quest for developing new and making already algorithms faster, more portable and better ad-
justed to already existing hardware and software. Parallelesation is a new trend in this area as well.
Recently there have been remarkable achievements in several benchmark problems, such integer fac-
torization, primality testing, computing the number of points on elliptic curves and computing discrete
logarithms. The topic has been addressed in talks of Dan Bernstein, Pedro Berrizbeitia, Francois
Morain, Oliver Schirokauer and Samuel Wagstaff.

• Bounds of new exponential sums involving functions of cryptographic interest. Such bounds may
lead to a proving expected pseudorandomness properties of various cryptographic primitives, which
can be reformulated in terms of statistical distance, accepted in cryptology. Very often such exponen-
tial sums appear as eigenvalues of certain transformationsof cryptographic interest and thus obtaining
sharp upper bounds on their magnitude becomes the of primal importance. The topic has been ad-
dressed in talks of Kristin Lauter and Kumar Murty.

• Extending the scope on applications of computational number theory. Finding new surprising
areas of applications is always a welcome task. One of such new areas has been outlined in a talk of
Denis Charles.

• Studying multidimensional geometric lattices associatedto cryptographic constructions. Typi-
cally it is expected that such lattices behave as a “random” lattices and thus this argument is used to
justify the success of the LLL algorithm when applied to suchlattices. The underlying philosophy is:
“the vector which we want to find is much shorter than it is usually expected for a lattice of this volume,
thus it is very unlikely that there is another nonparallel vector of similar length, thus LLL should find
the desired vector”. Rigorous justification of this principle typically leads to new interesting number
theoretic questions and studying system of equations in finite rings and fields. Although there has not
been any specialised talk on this topic its main underlying motif could be seen through many workshop
talks.

Scientific Progress Made

Most of the participants notice in their emails that this wasa very useful workshop with an atmosphere very
conducive to advancing research. Also the program was varied, stimulating and interesting, the best part of
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the meeting was the time we had available for discussions. The meeting happened just a few months before
the submission deadline for ANTS-7 (Algorithmic Number Theory Symposium, Berlin, July 2006), which
is a major event in the area of computational number theory and cryptography. Many participants got new
ideas during this workshop which advanced and improved their follow-up submission to ANTS, for example,
see [6, 7, 8, 10].

Besides general discussions which have created a very stimulating environment and generated many new
productive ideas (as well as helped to clarify and weed out less viable approaches), the following concrete
results have been achieved (this account is based on post-workshop email exachange with the participants).

• William Banks, John Friedlander, Florian Luca and Igor Shparlinski discussed and found an improve-
ment to their joint work with F. Pappalardi [2], which has since then been accepted for Acta Arith-
metica. The paper studies the distribution of values of the Carmichael function which apprears in
context in computational number theory and cryptography. During these discussions an idea to use our
result to denominators of Bernoulli numbers was born and theauthors hope to explore this idea in the
future.

• William Banks, John Friedlander and Florian Luca worked andmade some significant progress on
their project on numbersn ≤ x without a divisor in a fixed arithmetic progression. This complement a
series of results (of various authors) about integers with adivisor in a given interval. The fact that all
three co-authors were together for the first time in a long while helped to achieve a breakthrough in that
work. In particular, during the meeting one of the very difficult issues in that paper was sorted out. That
paper has been finished since then and submitted a couple of months ago. This paper, as many other
papers initiated directly or indirectly by this meeting, contains the corresponding acknowledgment of
the BIRS hospitality and support.

• Ian Blake and Kristin Lauter had several discussions about hash functions based on elliptic curves and
found some interesting possibilities for further collaboration on this topic.

• Motivated by several workshop talks on hash functions basedon advanced mathematical structures,
Ian Blake and Igor Shparlinski started a joint project investigating the VHS (“Very Smooth Hash”)
proposed in 2005 by S. Contini, A. K. Lenstra and R. Steinfeld, and which was frequently mentioned
at the workshop. Since then Igor Shparlinski visited Ian Blake in Toronto where they continued to work
on the VHS. The preliminary version of their results is now available [3].

• Florian Luca and Allison Pacelli started a couple of projects about divisibilities of class numbers of
function fields and algebraic number fields. Since then Florian Luca got a visiting position at Williams
College for the next academic year (to work with Allison Pacelli). In turn, Allison Pacelli got an AWM
travelling grant to visit Florian Luca in Montreal and Mexico. They have worked on these projects and
already have an almost final preprint of about 15 pages which they hope to finish soon.

• Florian Luca and Igor Shparlinski discussed the problem of estimating the square free part of linear
recurrence sequences. This is also related to estimating the number of quadratic fields generated by
square roots of elements of linear recurrence sequences, which would be an analogue of some results
of [5]. This project is now in progress and hopefully will be finalised in 2006.

• John Friedlander and Florian Luca discussed a conjecture from [1] related to some combinatorial num-
ber theory problem. Florian Luca made some initial progresson their conjecture in Banff and since
then he settled this conjecture and submitted the paper.

• Andreas Stein and Hugh Williams had very useful discussionsconcerning a new method of determining
rapidly large scalar multiples of divisors in the Jacobian of a hyperelliptic curve. It was particulary
interesting because of possible applications of this method to the problem of fast exponentiation of
ideals in real quadratic number fields, a problem of interestin implementing certain cryptographic
key exchange protocols. The problems are similar, but are byno means the same; nevertheless, Hugh
Williams was able after some time to apply Andreas Stein’s idea to an old problem in this area.
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• Tanja Lange and Igor Shparlinski finished [9] where several new bounds of exponential sums are given.
These bounds imply the uniformity of distribution of some sequences of points on elliptic curves (and in
particular can be of interest for pseudorandom number generation and for elliptic curve cryptography).
It has already been accepted for the J. of Mathematical Cryptology.

• Gerhard Frey and Tanja Lange finished the paper [8] which has been accepted for presentation at (and
publication in the proceedings of) ANTS 2006. The results ofthis paper have very strong cryptographic
motivation and can be used to accelerate several cryptographic protocols.

• After several conversations at the meeting Allison Pacelliand Andreas Stein started a joint research
project. Allison Pacelli has been invited by Andreas Stein to Wyoming to give a talk.

• For primality proving for numbers of a certain type, the computation ofαn (mod ν) is required, where
α is an element of a ring of integers of a number field or simply ofthe number field,n is the number to
be tested andν an ideal of the ring of integers, lying overn. The computation is interesting for other
problems too. During the Banff meeting, in conversations with Alice Silverberg, Pedro Berrizbeitia
learned about some progress that has been done in that area (for example, in the context of the XTR
cryptosystem) and, as a consequence, he has looked again at problem that he had considered some years
ago, which is to look at that precise equation for a rather specific idealν in a cyclotomic field. Pedro
Berrizbeitia is hopping to conclude his work and to present it in the meeting in the Fields Institute,
from October 31 to November 3 2006.

• Pedro Berrizbeitia and Hugh Williams had very useful discussions concerning the problem of very fast
primality testing for numbers that are of cryptographic utility in fast cryptographic signature verifica-
tion. They have started a joint project on pseudosquares, pseudocubes, and pseudorth-powers. Hugh
Williams now has a PhD student doing his thesis on this.

• During the Banff meeting Pedro Berrizbeitia and Florian Luca, exchanged some ideas, as a conse-
quence of this, Florian Luca, will be visiting Pedro Berrizbeitia at the University Simon Bolivar, at
Caracas, Venezuela from June 24 to July 9, 2006 to teach a minicourse. Pedro Berrizbeitia and Florian
Luca also hope to be able to collaborate on some specific mathematical problem during this visit, and
beyond.

• Collaborative efforts between Michael Jacobson, Renate Scheidler and Andreas Stein on cryptosystems
based on real hyperelliptic curves has resulted in a paper (currently in preparation) be submitted to a
new journal called “Advances in Mathematics of Communications”.

• Collaboration between Michael Jacobson, Yoonjin Lee, Renate Scheidler and Hugh Williams on a
function field generalization the CUFFQI algorithm of Shanks for enumerating non-isomorphic cubic
fields using infrastructure of real quadratic fieldshas resulted in a paper (currently in preparation) be
submitted to Mathematics of Computation in the near future.

• Takakazu Satoh has discovered a gap in his arguments during his talk (which was unscheduled and
given on the first day) but he could fix it during the conference. It is quite certain that it would take
several weeks if he was not attending the workshop.

• Denis Charles and Kristin Lauter had several very productive discussions with Francois Morain about
their computing modular polynomials algorithm [4]. Francois Morain asked about some details and
pointed out a variation on that algorithm. He intended to implement this algorithm to test its perfor-
mance against the approach his student has been using.

• Denis Charles and Kristin Lauter also had useful conversations with Kumar Murty.

• Denis Charles had several illuminating discussions with Florian Lucan and Edelyn Teske regarding
embedding degrees of elliptic curves over finite fields.

• Kristin Lauter had several discussions with Gerhard Frey which were very useful to her in advancing
another project which is now finished and is to appear in ANTS this year [7].



Number Theory Inspired by Cryptography 255

• Kristin Lauter and Oliver Schirokauer have started a joint project on attacking the ECDLP (Elliptic
Curve Discrete Logarithm Problem).

• Alf van der Poorten has learned from conversations with Pedro Berrizbeita about recent work of Pedro
colleague Tom Berry, which is of immediate relevance to Alf van der Poorten’s current research activity.

• During a lecture of Renate Scheidler, Alf van der Poorten hasdiscovered that her work had strong
interaction with his and thus he was able to give her useful information and insights.

• Gary Walsh posed an interesting problem to Alf van der Poorten to which he hope to be able to make
a contribution.

• Francois Morain finished the writing of a joint paper with P. Gaudry, ”Fast algorithms for computing the
eigenvalue in the Schoof-Elkies-Atkin algorithm”, which will appear in the Proceedings of ISSAC’06.

• After a series of discussions, Pedro Berrizbeitia invited Igor Shparlinski to give a mini-course on expo-
nential sums at the University Simon Bolivar, at Caracas, Venezuela in 2007 and establish a research
program in this direction.
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Flavors of Groups (05w5105)

November 17 – November 22, 2005
Organizer(s): Mladen Bestvina (University of Utah), Jeff Brock (Brown University), Jon
Carlson (University of Georgia), Persi Diaconis (StanfordUniversity), Hugo Rossi (Math-
ematical Sciences Research Institute)

Overview of the Field

This workshop brought together researchers working on algebraic, analytic, combinatoric, geometric and
topological aspects of group theory in order to exchange techniques and ideas in preparation for the full year
emphasis at MSRI in the academic year 2007-2008 on all these aspects of groups. The four particular topics
present (representing the four individual semester programs at MSRI) were:

Geometric Group Theory

This is a relatively young field, with older and deeper roots in the study of groups from combinatorial and
topological perspectives. In the mid 1980s, spurred by ideas of Cannon and Gromov, group theorists began
to pay attention to the geometric structures which cell compexes can carry. This attention shed light on
the earlier combinatorial and topological investigations, and stimulated innovative ideas which have been
developing at a rapid pace: Gromov hyperbolicity, Bestvina-Brady Morse theory, splittings and actions on
trees, rapid decay and the Baum-Connes conjecture.

Kleinian Groups

The study and application of recent advances in the classification of hyperbolic 3-manifolds (the solution of
the tameness and ending lamination conjectures of Marden and Thurston) can lead to a better understanding of
the geometry of closed hyperbolic 3-manifolds. This work also touches on Teichmuller theory, and questions
concerning billiards and flows on Moduli space. Many of theseavenues are potentially very fruitful for
further research and synthesis between, up to now, largely disparate fields.

Combinatorial Representation Theory

There is a productive interplay between combinatorics, geometry, finite groups, Lie theory and hyperplane
arrangements in the applications to representation theory. Examples are: (1) the use of symmetric functions
and Hecke algebras in the modular representation theory of finite groups of Lie type, (2) the use of braid
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groups and finite dimensional algebras in the study of categories of highest weight modules and (3) the
use of tableaux, crystals, and the path model in the study of representations of algebras with triangular
decomposition.

Representation Theory of Finite Groups

Current research centers on many open questions, particularly regarding representations over the integers or
rings of positive characteristic. Brauer developed block theory to better understand such representations, and
in the last few years there have been many exciting new conjectures concerning correspondence of characters
and derived equivalences of blocks. Topics such as p-local groups, group actions on finite complexes and
homotpy representations blend algebra and topology in novel and productive ways.

With four talks a day there was plenty of time for informal discussion and interaction among the various
areas of interest. On Sunday evening there was a meeting of the MSRI program organizers, initiating inte-
grated planning for the MSRI intensive year. In all, there were 32 participants, of whom 7 were women. The
participants (speakers are asterisked), with their affiliations were:
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Regulators II (05w5032)

December 10 – December 15, 2005
Organizer(s): James Lewis (University of Alberta), Victor Snaith (University of Sheffield)

History of the subject

A regulator is a generalization of the logarithm. Dirichletused the logarithm to define a map from the mul-
tiplicative group of a ring of algebraic integers to a real vector space. Then Dirichlet proved the celebrated
analytic class number formula which relates all the important number theoretic invariants of the number field
to the covolume of the Dirichlet regulator. Since the 1960’sDirichlet’s fundamental discovery has been found
potentially to occur elsewhere in number theory, in algebraic geometry, in class field theory, in algebraic K-
theory, in the theory of algebraic cycles and motives, and inHodge theory. Regulators come in many different
forms, according to the context.

For instance, the Borel regulator is the higher-dimensional analogue of the Dirichlet regulator, considered
as a map on algebraic K-theory in dimension one. On the other hand, in Riemann surface theory, the regu-
lators might involve abelian integrals and Jacobians, extending the ideas of the 19th century analytic number
theorists and geometers. Generally speaking, in its current incarnation, a regulator is a map from the alge-
braic K-theory of an algebraic variety to a suitable cohomology theory such as étale cohomology or Deligne
cohomology.

The subject of regulators is a highly intricate field that gives and takes from a number of core fields in
mathematics, such as algebraic and analytic geometry, and arithmetic geometry, Hodge theory, mathematical
physics, algebraic and analytic number theory, algebraic K-theory, and so on. For instance, one of the simplest
examples of a regulator complex projective geometry is thatof the cycle class map from the so-called group of
analytic subvarieties of a given dimension to standard singular cohomology. The celebrated Hodge conjecture
is a statement about the image of this cycle class map.

Purpose of this meeting

A meeting of this type allowed the various groups of experts viewing the subject of regulators either arith-
metically, topologically (as in Voevodsky’s work, or as well as in terms of Lawson’s homology), or transcen-
dentally (i.e. Hodge theory) to compare notes. For this reason the topic of Regulators was particular ripe for
a conference at that time. In May 1998 there was an Oberwolfach meeting on regulators (organised by Bloch,
Kolster, Schneider and Snaith) which resulted in some of theadvancements mentioned above. The Oberwol-
fach workshop was generally regarded as a real success and the current organisers felt that this meeting was
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an appropriate sequel.

Relevancy, objectives and recent developments in the subject

The recent work by Voevodsky in constructing the “motivic cohomology” theory as suggested by Grothendieck,
and the resulting homological machinery associated to his approach, and its subsequent use to solve the long-
standing Milnor conjecture, resulted in his winning the Fields medal in 2002. This provides an infusion of
new and powerful ideas in the study of regulators. Indeed Voevodsky proved that his definition of motivic
cohomology agrees with two other versions already used in regulator theory. Thus one can arguably make the
case that regulators are maps (sometimes called “realizations”) from Voevodsky motivic cohomology, albeit
still hard to compute, to the “more computable” cohomology theories (Deligne, étale, absolute Hodge, etc.).
It is often the case that regulator maps can have highly nontrivial kernels and images, which leads to higher
order invariants associated motivic cohomology groups. This is generally the case if one works with varieties
over the complex numbers, or even function fields of transcendence degree 1 over the rational numbers.

A case at point is the conjectured “Bloch-Beilinson” filtration, and the resulting “higher regulators” that
are associated to this filtration. Working over number fields, one expects a rather different situation when it
comes to the kernels of regulator maps. Another case at pointis the Bloch-Beilinson conjecture on the injec-
tivity (modulo torsion) of the Abel-Jacobi map for smooth varieties over number fields. What is the status of
the conjectures related to the images and kernels of regulators for varietes over number fields, as well as over
the complex numbers?

There are the camps of arithmetists, “K-theory/motivic topologists” and transcendental algebraic geome-
ters who study these problems from different angles. It is often the case that real progress in one camp is not
fully understood in the other camp. Two examples of related problems that involve the various camps are the
celebrated Hodge and Tate conjectures. A consequence of some fruitful interactions between the arithmetists
and transcendental geometers on regulators on algebraic varieties has led to the fascinating development of
“arithmetical variations of Hodge structures” (P. Griffiths, M. Green, S. Saito, M. Saito, et al). A case at point
is the highly successful NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cy-
cles, in Banff (1998), where these issues among the various camps became transparent. This led to a sequel 3
week conference on The Arithmetic, Geometry and Topology ofAlgebraic Cycles, held in Morelia Mexico,
in the summer of 2003. At that time, V. Voevodsky’s recent proof of the Milnor conjecture, as well as the
Bloch-Kato conjecture, was being discussed. This was a major milestone, which eventually led to Voevodsky
receiving the Fields medal.

Organizational details and the Banff setting

Except for a scheduled free afternoon, noon departure on thefinal day, and an extra lecture at night, all lectures
were planned during the day (a total of 5 daytime 1 hour talks), so as to encourage research collaboration at
night. It is fair to say that this conference was an enormous success. The atmosphere was “electric”, with a
lot of interaction between speakers and audience, as well asfruitful discussions during coffee breaks and at
nights. The quiet scenic Banff backdrop provided the perfect setting for research. Many of the participants at
this workshop are familiar with the European counterpart inOberwolfach Germany. The general concensus is
that BIRS facility is superior, not only in the capacity of offering better computerized facilities, with printer
and electronic library, but with a nicer scenic backdrop anda bustling town within walking distance. The
support staff at BIRS performed their duties very professionally.

Scientific merit of the talks

The talks can be broken down into a number of distinct areas under the umbrella of “regulators”.
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(i) Motives. As K-theory is central to the subject of regulators, it permits an interpretation of everything
in terms of motives. Several outstanding talks in this direction were presented by S. Bloch, H. Esnault and
M. Hanamura.

(ii) Topological. A natural cohomology theory associated to “equivariant” Chow groups is the notion of
Bredon cohomology. This video taped lecture was presented by Paulo Lima-Filho. Bredon cohomology is
considered more sensitive than ordinary singular cohomology. Recently, this has led to a development of a
“Bredon” version of Deligne cohomology for real varieties.

(iii) Polylogarithms. Based on joint work with A. Goncharov and A. Levin, and connected to the work of
D. Zagier, H. Gangl presented recent developments on the subject of multiple polylogarithms associated to
algebraic cycles.

(iv) Transendental methods. Using the techniques of Hodge theory, were several talks onthe following.
M. Asakura presented his results for elliptic surfaces, in support of a conjecture of Beilinson that general-
izes the classical Hodge conjecture. P. Brosnan, in his joint work with G. Pearstein, presented results on
the asymptotic nature of a variational height pairing, in terms of degenerating Hodge structures. J. Lewis
presented a normal function interpretation of a candidate Bloch-Beilinson filtration on higher Chow groups.
From a different perspective, there was the talk given by K. Kimura. H. Gillet presented his results towards a
sheaf theoretic construction of arithmetic Chow groups.

(v) Number theory. That part of the subject of regulators connected to number theory, p-adic methods
and L-functions, connections to the Borel regulator and Stark’s conjecture was presented by R. de Jeu, W.
Raskind, Z. Wojtkowiak, V. Maillot and V. Snaith.

(vi) Arithmetic methods. Those methods in the subject of regulators dealing with ell-adic cohomology,
rigidity, varieties over finite fields, were presented by T. Geisser, A. Langer, A. Rosenschon, and S. Saito.

Summary

The subject of Regulators is a highly evolved and intrintic subject, involving some of the finest minds in the
world of mathematics, including many Fields medalists. It is a subject that is expanding at an accelerated
rate, and has attracted and inspired a new generation of promising young researchers.

By any reasonable measure, this conference, being a sequel to an Oberwolfach conference on Regulators
held in 1998, was an outstanding success. There is certainlya desire and need for another sequel to this
conference, most likely entitled, “Regulators III”, to be held sometime and place in the not too distant future.
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Chapter 27

Second Northwest Functional Analysis
Symposium (05w2089)

March 17–19, 2005
Organizer(s): Douglas R. Farenick (University of Regina), Marcelo Laca (University of
Victoria), Michael Lamoureux (University of Calgary), Volker Runde (University of Al-
berta)

Functional analysis grew out of attempts—in the first half ofthe twentieth century—to find a conceptual
framework for a wide range of analytic phenomena concerningalgebraic systems of functions, such as ex-
istence and uniqueness of solutions to differential and integral equations. The discipline is well established
at universities in Western Canada, with two large groups working at the Universities of Alberta and Victoria,
respectively, and smaller groups elsewhere (Calgary and Regina, for instance).

Research in functional analysis in Western Canada is carried out in the following areas:

• Abstract harmonic analysis (Tony Lau and Volker Runde, bothat Alberta);

• Banach space theory and geometric functional analysis (Sasha Litvak, Nicole Tomczak-Jaegermann,
and Vaclav Zizler, all at Alberta);

• Operator algebras (Marcelo Laca, John Phillips, and Ian Putnam, all at Victoria, Berndt Brenken and
Mike Lamoureux, at Calgary, and Martin Argerami and JulianaErlijman, both at Regina);

• Operator theory (Doug Farenick at Regina, Ahmed Sourour at Victoria, and Vladimir Troitsky at Al-
berta).

The aims of the workshop were twofold: firstly, to enable researchers from a large geographical area
to stay in touch with developments in the general field, but outside their respective areas of specialization,
and secondly, to provide a forum for young researchers—junior faculty, postdocs, and graduate students—to
present their results to a wider audience. For the second reason, five of the 14 talks at the workshop were
given by graduate students, and four by postdocs.

Besides researchers in functional analysis from Western Canada, there were also participants whose re-
search was not really in functional analysis, but in an area sufficiently close. For instance, Karoly Bezdek
(Calgary) spoke about a topic in convex geometry, which has connections with geometric functional anal-
ysis, Bahram Rangipour (Victoria) presented results in non-commutative geometry, a discipline with many
connections to operator algebras, and Alex Brudnyi was dealing with Lipschitz functions between metric
spaces. As there turned out to be sufficient space at BIRS in the end, we were also able to invite people from
Manitoba, and Ebrahim Samei (Manitoba) presented his results on hyper-Tauberian Banach algebras from
his (soon to be defended) PhD thesis.
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As indicated by the title of the workshop, there was a First Northwest Functional Analysis Symposium.
It was held at BIRS in 2003 and organized by Tony Lau, Mike Lamoureux, Ian Putnam, Nicole Tomczak-
Jaegermann. At the present workshop, the possibility of a third meeting in the series was discussed, and the
general attitude was positive. A successor meeting next year would probably be premature, but two years
should generated enough new results and sufficient turnoverin the postdoc and graduate student population
to justify a Third Northwest Functional Analysis Symposium.
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BIRS 2005 Math Fair Workshop
(05w2608)

April 21–23, 2005

Organizer(s): Ted Lewis (University of Alberta), Andy Liu (University of Alberta)

This was the third BIRS Math Fair, previous ones being held inthe spring of 2003 and 2004. The
focus of these workshops was Mathematics Education, and theparticipants were teachers and educators
elementary schools, junior high schools, colleges and universities, and also people from other institutions and
organizations that have a deep interest in Mathematics Education.

As with the two previous workshops, the purpose of this workshop was to help teachers learn how to
run a successful math fair, to exchange information about math fairs, and to put the members of this diverse
group in contact with each other. The deeper purpose is to change the mathematical culture in the classroom,
and we believe that this is beginning to happen. For the most part, the math fairs have been held in Alberta.
The BIRS math fair workshops have helped in spreading the word about the success of our type of math fair
(which is radically different from a traditional science fair) and now such math fairs have been held several
provinces in Canada, in some states in the US, in Sweden, and reports have been received that a math fair
based on our principles has been held in Africa.

As just one example of the local effect of this year’s BIRS math fair workshop, the Edmonton Catholic
School Board is involving a large number of schools in presenting math fairs in the 2005/2006 school year.
Schools in other districts are doing similar things, and teachers have reported evidence that the math fair
has changed classroom attitudes to the extent that students’ success rates in mathematics have dramatically
increased.
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Dark Side of Extra Dimensions
(05w2041)

May 12–14, 2005

Organizer(s): Valeri P. Frolov (University of Alberta)

The idea that the spacetime may have more than four dimensions is very old. Starting with works of
Kaluza [1] and Klein [2], higher dimensional models were used to unify gravity with other fields. In more
recent time, it was demonstrated that the string theory, which is often called a theory of everything, requires
higher dimensions for its consistency. Models with the spacetime with large extra dimensions were recently
proposed in order to solve the hierarchy problem, that is to explain why the gravitational coupling constant is
much smaller than the coupling constants of other physical interactions. In such models, our 4-dimensional
spacetime is described by a 4-dimensional brane (submanifold) embedded into a higher dimensional (bulk)
space. Particles and fields (except gravity) propagate within the brane, while the gravity can propagate in the
bulk space. These new concepts of higher dimensional physics have a number of interesting applications in
modern cosmology and theory of gravity. At the same time theyrequire developments of the theoretical and
mathematical tools to address many new important questions. At the ”Dark Side” workshop new results and
open questions in this fast developing field were discussed.

One of the most important questions is to analyze how the gravitational theory is modified in the presence
of extra dimensions. In the study of the Einstein equations in the 4-dimensional spacetime several powerful
mathematical tools were developed, based on the spacetime symmetry, algebraical structure of spacetime,
internal symmetry and solution generation technique, global analysis, and so on. At our workshop there was
discussion and concrete proposal, how to develop some of these methods to higher dimensional spacetime.

Many exact solutions of the Einstein equations in 4-dimensional case were obtained by algebraic methods
based on the Petrov classification. At the workshop it was proposed and discussed the generalization of
the Petrov classification to higher dimensional case. It wasdemonstrated that the robust classification into
Petrov classes can be done in arbitrary number of dimensions[1]. At the same time, the number of different
degenerate subclasses within each of the Petrov class depends on the number of spacetime dimensions. To
classify these subclasses in higher dimensions is much moresophisticated problem than in 4-dimensional
case.

Another problem which was discussed at the workshop is an existence and properties of different ”black
objects” in higher dimensions. These objects are generalization of 4-dimensional black hole solutions. Ac-
cording to the definition, a black hole is an (asymptoticallyflat) spacetime with non-trivial causal structure.
Black hole boundary is an event horizon, a 3-dimensional surface which separates a spacetime region which
can be ”seen” from infinity from an ”invisible” region. Underphysically reasonable conditions, in 4 di-
mensions the horizon has the topology ofS2 × R1. Moreover, ”uniqueness theorems” were proved, which
guarantee that for given value of global parameters (mass, angular momentum, and charge) the stationary
solutions describing black holes are unique. Recently it was demonstrated that the uniqueness theorems are
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not valid if the number of spacetime dimensions is greater than 4 [4]. Higher dimensions open room for
a variety of dark objects, which are natural generalizations of 4-dimensional black holes. Main difference
between these dark objects is the topology of their horizons.

One of the problems which was discussed at the workshop is stability of higher dimensional dark objects
and possible transitions between them. Gregory and Laflamme[6] described a particular mechanism of the
instability of higher dimensional string, but what is a finalstate of a decaying dark string is still an open ques-
tion. At the workshop there were presented results of the numerical simulations of decaying dark strings [7].
Unfortunately these results do not allow one to resolve dynamics and final state of this process. There exist
evidences in favor that the black-string–black-hoole transitions may be similar to critical phenomena and the
very transition from a black string to a black hole phase may have similarity with the critical gravitational
collapse phenomena [8]. Another important connected problem which was discussed at the workshop is pos-
sible instability of rapidly rotating black holes and blackrings [5]. This area (stability of higher dimensional
dark objects and possible transitions between them) is developing very fast and for its progress developed
mathematical tools are required.

Another subject which was in the focus of the workshop was study of exact solutions of higher dimen-
sional Einstein equations. Two new families of solutions were presented and discussed at the workshop. One
of them is a generalization of Mayers-Perry metrics for higher dimensional black holes to the case when there
a non-vanishing cosmological constant [9]. Another new setof solutions describes the gravitational field of
spinning relativistic objects (gyratons) in a spacetime with arbitrary number of dimensions [10]. An interest-
ing property of the latter solutions, that the non-linear system of Einstein equations is effectively reduces to
two linear set of equations in a flat spacetime. By solving these linear equations, one can generate a solutions
of the non-linear problem.

One of the reasons why the higher dimensional theories becomes so popular recently is a possibility that
in the presence of extra dimensions one can expect creation of mini black holes in future collider and cosmic
ray experiments. At the workshop there was given a detailed overview of the corresponding results and were
formulated concrete physical problems which are to be solved for better understanding of such processes
[11].

To summarize, the workshop gave very nice view of the state ofart in the higher dimensions physics and
mathematics of dark objects. It has very enthusiastic support and many of participants proposed to organize
again a workshop on a similar subject in future.
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Convex and Abstract Polytopes
(05w2037)

May 19–21, 2005

Organizer(s): Ted Bisztriczky (University of Calgary), Egon Schulte (Northeastern Uni-
versity), Asia Ivić Weiss (York University)

The rapid development of polytope theory in the past thirty years has resulted in a rich theory featuring
an attractive interplay of several mathematical disciplines. The 2-day Workshop was evidence that polytope
theory is very much alive and is the unifying theme of a lot of research activity.

The Workshop provided a much desired opportunity to share recent developments and emerging direc-
tions on geometric, combinatorial, and abstract aspects ofpolytope theory. We had twenty-nine official
participants (among them seven women, two graduate students, and many junior faculty), plus a number
of graduate student participants not officially registered. With few exceptions, the participants came from
North-America. It is noteworthy that the last major meetingon convex and abstract polytopes was the NATO
Advanced Study Institute on ”Polytopes - Abstract, Convex and Computational” in 1993 at Scarborough,
Ontario.

The Workshop focused on two overlapping directions of research,

• the classical theory of convex polytopes (see [2, 4, 5]), and

• the more recent theory of abstract polytopes (see [1, 3]).

The program featured three invited 50-minute lectures and ten 20-minute talks. For convex polytopes, there
was an attractive mix of talks about the combinatorial theory (concerning the numbers of faces of different
dimensions, the relations among various facial structures, and generalizations such as matroids, oriented
matroids, and posets), and the metrical theory (the convex-geometric study of volumes, surface areas, mixed
volumes, angles, and projections and sections). One of the major themes to crystallize during the Workshop
was the necessity and importance of constructing new classes of polytopes. For abstract polytopes, most
talks focused on polytopes with various degrees of combinatorial or geometric symmetry (regular, chiral, or
equivelar polytopes, and their geometric realization theory), as well as the structure of their symmetry groups
or automorphism groups (reflection groups, Coxeter groups,and C-groups, and their representation theory).

The 2-day Workshop at BIRS was followed by aPolytopes Day in Calgaryat the University of Calgary
on Sunday, May 22, 2005, with two invited 50-minute lecturesand five 20-minute talks, as well as two state
of the art discussions (problem sessions), one on convex polytopes and one on abstract polytopes.

Both Workshops were very favorably received by the participants and were viewed as a success. In
particular, they prompted collaboration among participants with several papers as outcome.
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Computer Science Chairs Meeting
(05w2602)

June 9 – 11, 2005
Organizer(s): Gord McCalla (University of Saskatchewan), Ken Barker (University of
Calgary)

The Department Heads/Chairs of Computer Science meet annually to share ideas, discuss problems facing
the community, and set directions that are in the best of interest of all Computer Science Departments across
the country. Each year the venue changes to encourage those from various regions to attend the meeting
even if they are challenged financially. The 2005 meeting washosted by the University of Calgary and BIRS
generously offered to host the meeting as a part of their series in Banff.

Unlike other BIRS workshops the purpose of this meeting was primarily administrative rather than being
focused on addressing a particular research question. Thus, this report is intended to provide a very brief
indication of the kinds of discussions undertaken at the meeting. As a result of the administrative nature of
the meeting, some of the discussions were also somewhat confidential and we are unable to report details of
the actual discussions undertaken.

The meeting consisted of a wide range of topics including:

• A Survey of the various Departments

• Research Challenges facing the discipline

• Graduate student funding and education

• NSERC grants and funding issues

• Software Engineering

• Computer Science Department Accreditation

• Establishing Awards for top ranked students

• Development of committees to initialize various initiatives

The details of each of these discussions are not included here but if more detail about the meetings is
required interested reader can contact Gord McCalla or Ken Barker.
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Cascade Topology Seminar Meeting
Spring 2005 (05w2612)

July 14 – 16, 2005

Organizer(s): George Peschke (University of Alberta), Laura Scull (UBC)

This workshop was a meeting of the Cascade Topology Seminar.This is a semi-annual gathering of the
region’s topologists which began in 1987, overseen by SteveBleiler (Portland State University) and Dale
Rolfsen (UBC). It is designed to foster contacts between workers, as well as graduate students, in similar
fields across the region. It provides a venue for local topologists to showcase their own work, and also an
opportunity to bring in speakers from outside the region, helping local topologists to keep abreast of recent
developments.

In all these respects, the BIRS meeting of the Cascade Topology Seminar was a great success. This
meeting had 25 participants from various schools in westernCanada and the Pacific Northwestern US; a
few participants also came from the east (Ontario and the midwestern US). The group included established
researchers, early career mathematicians and quite a few graduate students from various schools.

There were 6 one-hour lectures given during the meeting. True to the spirit of the Seminar, the speakers
included a mix of established mathematicians (Ralph Cohen,Stanford U; Tony Elmendorf, Purdue U at
Calumet; and John Palmieri, U Washington) and early career topologists (Ryan Budney, U Oregon; Keir
Lockridge, U Washington; and Jens von Bergmann, U Calgary).The talks ranged from pure homotopy
theory (stable homotopy andA∞algebras) to more geometric topology (spaces of graphs and knots) and
symplectic geometry (contact homology). Details on the titles and abstracts for individual talks can be found
at

http://www.pims.math.ca/birs/workshops/2005/05w2612/Schedule05w2612.pdf

In addition to displaying the range of recent work being doneby the region’s topologists, the workshop
was also a valuable opportunity for personal contact between the members of our various departments. In the
times provided for informal discussion, current research projects were discussed, and recent advances such
as the new book by Dave Morris (University of Lethbridge) were advertised. PIMS and NSF funding was
extended to a number of graduate students to attend the event, and they had the opportunity to meet both
each other and the more senior topologists. In addition, plans for upcoming area topology events such as
expected visitors to the area and the special Topolgy sessions at the AMS meeting in Oregon and the CMS
winter meeting in Victoria were discussed. Overall, the opportunity for the region’s topologists to meet and
discuss items of mutual interest face-to-face contributedto the sense of community which is so valuable for
its members’ research.

The BIRS setting provided a beautiful and congenial environment for this workshop, and the organizers
wish to thank PIMS for giving us this opportunity.
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Connecting Women in Mathematics
Across Canada II (05w2010)

Jul 21 – Jul 23, 2005
Organizer(s): Malgorzata Dubiel (Simon Fraser University), Rachel Kuske(University of
British Columbia), Barbara Keyfitz (Fields Institute for the Mathematical Sciences), Judith
J McDonald (Washington State University), Leah Keshet (University of British Columbia),
Ortrud Oellermann, (University of Winnipeg), Gerda de Vries (University of Alberta),
Mateja Sajna (University of Ottawa)

Conference Activities

The participation in the conference was by invitation: the applicants had to submit a statement of interest, a
title and abstract of a talk about their work and/or researchinterests, and a letter of support from their super-
visor. Twenty six women graduate students in mathematics from universities across Canada were selected to
attend. They spend two intensive and exciting days, attending talks and presentations, and sharing experi-
ences with ten women faculty members, speakers and mentors at the conference. The graduate students each
gave a 20 min presentation or a poster on their work. The mentors coordinating these sessions insured that the
women presented their work in a friendly, supportive environment and interacted with their peers and senior
women in the frbara Keyfitz, Director of the Fields Institute, and Neeza Thandi, Actuary for Liberty Mutual,
gave the two plenary talks. They spoke about their work, research they are involved in, and their careers.

The program included two panel discussions: Launching a Career in Mathematics, and Changing Envi-
ronments in Mathematics and Academia. Both were followed bysmall group discussions involving students
and mentors. These discussions focused on giving participants the opportunity to discuss the hurdles they
have faced or may face in their studies and future careers, and how to overcome them.

For more information and the schedule of the workshop, see
http://www.cms.math.ca/bulletins/2005/cwimac05.html?nomenu=1

Assessment of Benefits

Connecting Women in Mathematics Across Canada Program has been successful in many ways. The work-
shop provided a venue for covering important topics relevant to pursuing a mathematical career. It brought
together different viewpoints on options for career paths and different routes to reach career goals.
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Young mathematicians received advice on practical issues such as applications, reviewing of files, net-
working, and interviewing. They also had a chance to voice problems they may be experiencing, get some
new perspectives on their successes and concerns, and to make network connections, which they can use now
and in the future as their careers develop.

Timely issues such as the changing the culture of science, discussed in an environment with a mix of
viewpoints of the experienced and junior researchers, was very enlightening and motivating for all involved.
In particular it has been a pleasure to see a growing number ofwomen participating in our workshops that
continue to come to CMS meetings and are getting tenure trackpositions at universities across Canada.

Future Plans

This workshop and the previous CWiMAC workshop have been thebasis for an upcoming series of work-
shops to be held at BIRS in the coming years. These workshops will focus on examining recent advances and
barriers for increasing diversity in mathematics, seekingways to get the larger community involved.

In September 2006, BIRS workshop 06w5504 will bring together women and men mathematicians from
Canada, US and Mexico to examine what the institutes and professional organizations are doing now to sup-
port women, and what other initiatives can be undertaken. They will develop recommendations for future
collaboration and for activities in support of women in mathematics. In December 2006, Fields Institute will
sponsor the third workshop for women graduate students.

In Summer 2007 we will reconvene for a short workshop to review the progress on the initiatives devel-
oped in 2006, and also to increase international connections. We will also collaborate with another BIRS
workshop on Women in Engineering.
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West Coast Operator Algebras Seminar
2005 (05w2610)

Sep 15 – Sep 17, 2005

Organizer(s): Anthony To-Ming Lau (University of Alberta), Volker Runde (University of
Alberta)

The theory of operator algebras originated with the work of F. J. Murray and J. von Neumann in the
1930s and 1940s. It has been an active—and still expanding—area of research ever since, which has manifold
interactions with other areas of mathematics such as mathematical physics, algebraic topology, differential
geometry, and even (quantum) computing.

The area is very well represented throughtout the North American West Coast. Berkeley—with Arve-
son, Jones, Rieffel, Voiculescu—and UCLA—with Effros, Ozawa, Popa, Shlyakhtenko—are probably the
best known centers of high level research in operator algebras. In Canada, a strong group—Laca, Phillips,
Putnam—exists at the university of Victoria. There are manymore, albeit smaller, groups working on opera-
tor algebras throughout Western Canada and the Western United States.

The series of conferences now known as the West Coast Operator Algebras Seminar (WCOAS) started
with a meeting at UCLA in 1991, and has been held almost every year since. It was held in Canada for the
first time in 1996 (UNBC), then again in 1999 (Victoria), and finally twice at BIRS (2003 and 2005). In
the years since its inception, the WCOAS has become a remarkably successful forum for the interaction of
researchers that are spread out over a vast geographical area and otherwise have little opportunity to exchange
ideas. In particular, it is of considerable value to graduate students and young researchers in the area.

The 2005 meeting in the series was the second one at BIRS. It had 32 participants, four of whom were
graduate students and three postdocs. With two exceptions,all participants were affiliated with universities
in Western Canada or in the Western United States. The two exceptions were George Elliot of Toronto and
Hiroki Matui of Chiba (Japan) and currently visiting at Victoria.

The program consisted of twelve talks altogether. Three talks were one hour long:

• J. Phillips,A survey of the analytic approach to spectral flow with some applications;

• E. G. Effros,On the free analogues of Hopf algebras associated with the Faà di Bruno algebra, and
the Connes–Kreimer theory;

• D. Blecher,Dual operator algebras and non-commutativeH∞.

Further talks of half hour length were given by D. R. Farenick, R. Floricel, K. Goodearl, A. Kumijan, H.
Matui, I. Nikolaev, N. C. Phillips, D. Sherman and A. Sourour.

The talks were all of considerable mathematical quality andcovered a wide range of topics, showing
once again how diverse and lively the area of operator algebras has become. Even though the tight timeframe
of a 2-day workshop did not leave as much time for interactionas may have been desirable, the workshop
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certainly accomplished its goal of bringing researchers together and providing a platform for the exchange of
new mathematical ideas.

The next WCOAS will be—in all likelihood—be held at the University of Hawaii in early 2007.
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Alberta Postsecondary Curriculum
Conference II (05w2613)

Sep 29 - Oct 01, 2005

Organizer(s): Jack Macki (University of Alberta)

Decision 1: To form the group ACUPMS: Alberta Committee on Undergraduate Programs in the Mathe-
matical Sciences, with initial secretariat consisting of Manny Estabrooks (Red Deer College), Dave McLaugh-
lin (Grant McEwan), Jack Macki (PIMS), Joan Stelmach (U of Calgary), and Pamini Thangarajah (Mt.
Royal). (Other names suggested: Math for the Millennium, Pi, and Alberta Advanced Curriculum Study
Group–this last has the great sounding acronym AACSG).

Decision 2: A new curriculum in Analysis will be prepared by agroup: Gary DeYoung (Kings College),
Bill Freed and Andreas Guelzow (Concordia), Bill Hackborn (Augustana), Tom Holloway (U of Alberta),
Dave McLaughlin (Grant McEwan), Viena Stastna (U of Calgary), and Peter Zizler (Mt. Royal), chair Jack
Macki (PIMS). It will be Jack Mackis responsibility to prepare a detailed syllabus for each of these two se-
quences.

Decision 3. We will set up a website for the ACUPMS. It will runon a server based at an Alberta school,
and there will be a link to it from the PIMS website under Education.

Decision 4. A group will investigate e-learning: Manny Estabrooks, Andreas Guelzow, Len Bos (U of
Calgary), Darius Holland (U of Calgary), Malcolm Roberts and Tom Holloway (U of Alberta). The group
will be examining, among other items, the quality and feasibility of: Webworks (U of Calgary), MACSYMA
(now called MAXIMA–open source), Maple online, eGrade.

Decision 5. Form a visiting committee from PIMS. This committee could consist of college and univer-
sity mathematicians and non-academics with a scientific background. The mandate would be to 1. Visit,
by invitation, college math departments and talk over issues – funding, failure rates (pressure to pass more
students), grade inflation, admission standards.
2. If requested by the department, ask to meet with university administrators and hear their concerns.
3. Meet with representatives of client departments and faculties who send their students to study math with
the department.
4. Take some time to discuss their findings among themselves,and provide a formal report.

From Thursday evening until Saturday noon, the meeting was intense and the participants hardworking
and looking for solutions rather than simply criticizing. Peter Zwengrowski of the U of Calgary provided a
nice break in the intensity by describing his course Mathematical Explorations, aimed primarily at Arts and
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Elementary Education students. To begin, Peter asked for information on other courses aimed at these stu-
dents. Mt. Royal has The Beauty of Mathematics, Kings College has Modern Applications of Mathematics
and Foundations of Mathematics, Concordia has Math Motifs.

A BRIEF SUMMARY OF DISCUSSIONS

1. The Social and Political Context: Colleges are expanding, university enrollment is increasing, and
these huge numbers of students are arriving with high expectations (like Garrison Keillors Lake Wobegon,
where every child is above average). Among the students are the sharks (e.g., highly aggressive pre-med
students). Many (too many) of entry level math courses are taught by sessionals. The financial pressures on
the higher administrationat least as they see itare such that they want a high flow-through, which is adminis-
tratese for pass them. Students are not accustomed to covering topics at the rapid pace of university courses.
Do we need some sort of accreditation procedure to ensure introductory courses are being taught by qualified
instructors. Do we need remedial courses?

A sample of thoughts presented:
We may want to consider allowing students to write the final exam in a math course many times (e.g. three
times), during any exam period within say two years of their taking the course. This is a common practice in
Europe.

We should make every effort make our core compatible with theB.C. core curriculum.

We will need to distinguish carefully between curriculum and pedagogy. This proposal is only about
curriculum (so far).

How does computation enter at each stage of our analysis sequence?

Applications–which are relevant, how do we integrate them?

Evaluation can use a variety of techniques.

2. e-Learning, Blended Learning
Con Ferris at Red Deer College has been using eGrade for five years. Red Deer has a committee (Manny
Estabrooks is on it) which is evaluating Maple On-Line and other possibilities. Andreas Guelzow is very en-
thusiastic about open-source MAXIMA. At the U of A, Maple is used for Engineering labs in year 1. Statistics
courses use a range of tools, including on-line exams. VienaStastna reported that on-line lab quizzes for a
linear algebra course was not a success (actually, she said it was a mess). Gary DeYoung has just started a
project at Kings College, using LaTeX. Len Bos is running a major project at the U of Calgary (WebWorks?)
with a $100,000 grant. Joan Stelmach (U of Calgary) piloted WebWorks with a discussion board. She was
amazed at the time students would spend trying to get a correct answer, rather than studying and analyzing
the source of their difficulty. ePlus is better because it hashints that help avoid this problem. Peter Zwen-
growski (U of Calgary) reported that they stopped using WebWorks for testing and grading in a four section
ode course–it was just too much hassle. Upside pointed out byseveral: eLearning allows students to learn
on their schedule. Some students thrive with it. Downside: Students dont learn to organize their homework
as a written presentation; they do not learn to be neat and organized. Consensus: Thorough and long-term
evaluation of eLearning is needed.

List of Participants

Akbary, Amir (University of Lethbridge)
Allegretto, Walter (University of Alberta)
Bailey, Jim (College of the Rockies)



Alberta Postsecondary Curriculum Conference II 289

Cliff, Gerald (University of Alberta)
De Young, Gary(Kings College)
Dinh, Thi (University of Calgary)
Dmitrasinovic-Vidovic, Gordana (Mount Royal College)
Estabrooks, Manny (Red Deer College)
Freed, Bill (Concordia University College)
Ganta, Reddy(Grande prairie Regional College)
Girvan, Doug (Red Deer College)
Guelzow, Andreas J.(Concordia University College of Alberta)
Hackborn, Bill (University of Alberta, Augustana campus)
Hohn, Tiina (Grant MacEwan College)
Holloway, Thomas(none)
Holzmann, Wolf (University of Lethbridge)
Kaip, Thomas (Grande Prairie Regional College)
Kharaghani, Hadi (University of Lethbridge)
Kudryavtseva, Elena(University of Calgary/Moscow State University)
LaHaye, Roberta(Mount Royal)
Ling, Joseph(University of Calgary)
Macki, Jack (University of Alberta)
McLaughlin, David (Grant MacEwan College)
Pivovarov, Peter(University of Alberta)
Roberts, Malcolm (University of Alberta)
Stastna, Viena(University of Calgary)
Stellmach, Joan(University of Calgary)
Svishchuk, Mariya (Mount Royal College)
Thangarajah, Pamini (Mount Royal College)
Timourian, James(University of Alberta)
Tomoda, Satoshi(Mount Royal College)
Zvengrowski, Peter(University of Calgary)



290 Two-day Workshop Reports



Focused
Research

Group

Reports



292 Focused Research Group Reports



Chapter 36

Analysis, Computations, and
Experiments (05frg060)

March 12, 2005 - Mar 26, 2005
Organizer(s): Huaxiong Huang (York University), Robert M. Miura (New Jersey Institute
of Technology), Demetrius Papageorgiou (New Jersey Institute of Technology), Michael
Siegel (New Jersey Institute of Technology)

Introduction

This Focussed Research Group brought together a critical mass of researchers to work on fundamental prob-
lems that involve the breakup of liquid jets and on fluid and fluid jet problems that are motivated by industrial
applications. Recent theoretical advances in the understanding of the breakup of single fluid jets are ripe to
translate the control of breakup of jets. We also used concrete mathematical models to investigate utilizing
liquid jet phenomena in the manufacture of micro- and nano-scale structures. Significant work remains to
be done in the modeling and analysis of jets with more complicated geometries (e.g., compound jets) and
involving complex fluids, which are typically found in industrial applications.

The FRG included applied mathematicians involved in modelling and asymptotic analysis in fundamental
problems (Papageorgiou, Siegel, Howell, Young) as well as more applied problems motivated by industrial
applications (Huang, Miura, Wylie), and a physicist with expertise in modelling and numerical simulation
(Zhang). Many of the program participants are internationally known for their contributions to interfacial
fluid dynamics.

Microdroplet Formation in a Patterned Hele-Shaw Cell

Parallel submicroliter polymerase chain reactions (pcr) have been utilized for DNA diagnostic applications
[14]. A lattice of wetting (hydrophilic) patches is patterned on the interior faces of two (hydrophobic) glass
plates of a Hele-Shaw cell and the patterns are aligned. A liquid first fills up the cell, and then a second, im-
miscible fluid is used to displace the excess liquid between the wetting patches to form multiple microdroplet
liquid bridges between the plates. The droplets of liquid have a thickness which is usually much smaller than
the characteristic lengths of the plates.

Preliminary studies that focused on the steady configuration indicate that the dynamic aspects of the filling
process may be important. For example, droplets would not form if the filling speed is too fast. Furthermore,
the viscous forces between the displacing and the droplet fluids may be important in the filling process.
Motivated by these important issues, during the BIRS FRG, wemodelled the dynamic filling process as a
pressure-driven, two-dimensional Hele-Shaw flow.

We started a preliminary investigation of solving the modelequations numerically using moving boundary
methods. The standard boundary integral method has been used to simulate drop dynamics due to electro-
wetting in a Hele-Shaw cell [6]. However, this method cannothandle topological changes of the interface,
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such as during droplet formation as the interface is pushed through a wetting patch. Consequently, level set
methods are used to accurately capture droplet formation with little artificial manipulation of the interface.
The problem also has been reformulated using a phase field approach where the sharp interface is replaced
by a thin layer characterized by an order parameter.

Influence of Surfactant on Contact Line Stability for Coating Flows

The coating of a surface is a process of obvious industrial importance and provides strength to the surface or
achieves some desired physical properties [12]. We consider the two-dimensional coating flow of a moving
substrate in contact with a liquid bath (e.g., see Figure 1).Experiments show that at sufficiently high coating
speed, there is an instability of the fluid-substrate contact line, whereby a filament of air is ejected downstream
into the liquid bath. This instability, which has been referred to as ‘tip-streaming’, is detrimental to the coating
process.

Figure 36.1: Geometry for the coating problem. The fluid coats a substrate moving to the right with speedU .

At the BIRS FRG, we investigated the role of surfactant on tip-streaming and air entrainment during
coating flows. The presence of surfactant has been shown to beimportant during tip-streaming for the related
problem of a bubble in an imposed extensional flow, see Figure36.4. Surfactant transport at a contact line
between a liquid and a moving solid substrate is a fundamental problem that has received scant attention.

Unfortunately, mathematical modelling is complicated by the presence of the contact line. It is well
known that imposing a dynamic contact angle other thanπ gives rise to a discontinuous velocity field at
the contact line. This is accompanied by a nonintegrable stress singularity at that point, which is physically
unrealistic. To avoid this difficulty, we can assume that theinterface is tangential to the solid at the attachment
point, i.e., the contact angle isπ. This has the advantage that, for single fluid systems, thereexist local
solutions which are devoid of nonintegrable stress singularities.

In our analysis, we therefore assume that the (microscopic)contact angle equalsπ. Material points on the
free surface are prescribed to have speedU , the speed of the solid, and the surface velocity is continuous at
the contact point. The interface then rolls onto the solid, similar to the rolling motion of a tank tread.

Influence of Soluble Surfactant on the Breakup of Two-Fluid Viscous Jets

Bubble and drop breakup is a fundamental process in fluid dynamics. At this FRG workshop, our investigation
was to determine the influence of surfactant on the breakup ofan extended bubble immersed in a much more
viscous fluid.

Earlier studies [7] have shown that insoluble surfactant can dramatically retard the pinch-off of the in-
terface. Instead, the interface develops a thin, quasi-stable cylindrical thread connected to nearly spherical
regions (i.e., a dumbbell shape). The local surfactant concentration in the thread is large, owing to the rela-
tively small surface area. We therefore expect that in the soluble case, there will be considerable surfactant
transport from the interface to the bulk, which will have a significant effect on the pinching dynamics.

A simple model was developed at the workshop to examine the transport of soluble surfactant for a cylin-
drical interface separating an inviscid inner fluid from a viscous surrounding fluid. The interface location
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r = R(t) and velocityṘ are prescribed functions of time. After a series of transformations, the bulk sur-
factant concentration was found to satisfy an initial/boundary value problem for the heat equation. This was
furthered transformed into a one-dimensional integral equation for the bulk surfactant concentration. The
solution of this equation was left for future work.

Drawing of Microstructured Optical Fibres
Microstructured optical fibres, consisting of a lattice of air holes in a glass fibre, have many desirable optical
properties and offer exciting possibilities for novel applications. The first step in their manufacture is the
production of a preform, a few centimetres in diameter, containing the desired distribution of holes. This may
be achieved, for example, by sintering together glass capillary tubes. The preform then is heated and drawn
down to a typical diameter of100µm. A drawn microstructured fibre is shown schematically in figure 36.2,
which is not to scale and has fewer holes than in practice (say200, not necessarily circular).

Figure 36.2: Schematic of a microstructured optical fibre.

Much empirical progress has been made in constructing fibreswith increasingly complex microstructure.
However, attempts to model the process mathematically havebeen limited to an axisymmetric fibre containing
a single circular hole [4, 5, 16], which discards some of its most important characteristic features. To improve
the flexibility and reliability of the process, several effects contributing to the evolution of the hole require
study, including the shrinking of the fibre cross-section during drawing and the flow exerted on each hole by
the other neighbouring holes. Surface tension may cause theholes to shrink, potentially closing altogether,
thus pressurising the holes may need to be considered mathematically.

hole

external
flow

Figure 36.3: Schematic of a single hole in an external flow.

At the FRG workshop, significant progress was made on formulating the problem in a mathematically
tractable way, yet retaining some physical reality. Using perturbation methods, we transform the slender
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three-dimensional geometry to a sequence of weakly-coupled two-dimensional problems for each fibre cross-
section. This was achieved previously for a simply-connected fibre [2] and for a single bubble in an infinite
fluid [8]. Further analysis is required to apply these methods to fibres containing many holes which may be
pressurised.

A numerical method was devised by Kropinski [11], who developed an integral-equation approach that
is spectrally accurate. However, it is necessary to discretise each fibre cross-section in this way, which is no
more efficient than a boundary-integral formulation of the full three-dimensional Stokes flow problem.

We have begun to formulate an alternative approach to the problem, similar to Crowdy’s [1] model for
two-dimensional elliptical pores. Each hole is consideredin isolation, subject to an external flow, as indicated
in figure 36.3. For linear and certain nonlinear external flows [13], exact solutions for the interface evolution
may be found in the form of a time-dependent conformal map from the unit disc. We propose to describe the
interface using a truncated polynomial conformal map.

This approach would allow each hole, and the fibre as a whole, to be characterised by a small number of
scalar coefficients in a conformal map. The asymptotic analysis of the slender geometry then would allow
us to construct a system of partial differential equations for all these parameters as functions of time and
axial position (as in [2]). Work has started on analysing thehole-scale and fibre-scale problems depicted in
figures 36.3 and 36.2. We anticipate that a working numericalcode will be completed and written up within
one year.

Thermal Instability in (Viscous) Glass Threads

Viscosity of glass varies rapidly with temperature. In the drawing of glass threads, heat transfer will play
an important role in the dynamics. A thread which cools too quickly will become viscous and require large
forces to stretch it, so it is natural to heat the thread as it is being pulled. An important factor in the design of
glass pulling devices is that they easily achieve stable androbust operating conditions.

The group has considered a thread that is heated while being pulled with a constant force, following a
model proposed in [9]. Physically relevant simplificationsthen lead to a set of coupled nonlinear hyperbolic
equations. Analytical solutions to the steady state equations for both uniformly and non-uniformly heated
threads are obtained. We show the surprising result that steady states exist in which an increase in the pulling
force actually causes a decrease in the exit speed of the thread at the end of the device. This situation can
occur if the viscosity varies very abruptly with temperature and the heating rate is large enough. Assuming
that the viscosity varies exponentially with temperature,if the heating is uniform, then such behavior does
not occur because changes in the viscosity are not fast enough. However, if the heating is non-uniform, then
the device can exhibit this behaviour. By considering an initial value problem, we show that these types of
solutions are unstable, and if one operates the device in this parameter regime, the thread will pinch.

We also show devices with fixed pulling speed can exhibit hysteretic behavior that leads to rapid changes
in the pulling force as the pulling speed is slowly varied.

Pulling Glass Microelectrodes

From an applied point of the view, the group studied a glass fibre drawing problem related to the pulling of
glass microelectrodes. Glass microelectrodes play an essential role in cell electrophysiology, where they are
used to inject electric current and dyes into cells and measure membrane electrical potentials. Laboratories
using these microelectrodes usually make them using commercially available glass tubes and pullers that use
coil heaters to soften the glass during pulling. In [9], a detailed mathematical model was developed to predict
the stretching and breakup of the glass tube using a verticalpuller. The model is highly nonlinear and was
solved numerically. Useful insights were given, e.g., the effect of heater temperature on the formation of
electrodes.

During the BIRS FRG, we simplified this model so that an analytical solution can be obtained for a
simple case. It is desirable to identify the main factors that have direct influence on the electrode shape,
which is of critical importance. We concluded that the source of radiation energy from the coil heater can be
approximated by a piecewise constant function. This simplifies the model and allows an analytical solution
under a constant pulling force, a feature of more advanced horizontal pullers. Even for the vertical puller, a
semi-analytical solution can be obtained.

For an arbitrary heater strength variation, the simplified model allows the implementation of a more effi-
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cient Lagrangian-based numerical method. After the BIRS workshop, we have carried out detailed parameter
studies on the break-up of the glass tubes to form glass microelectrodes. A paper [10] has been submitted for
publication.

One problem that we have not investigated is the detailed breakup mechanism. In the current work, we
used a phenomenological breaking stress formula. The breakup of the viscous thread here is different from
the surface tension induced instability. Instead, the breakup is most likely caused by spontaneous fracture
due to surface damage during the extension process.

Core-Annular Flows

Core-annular flows are two-fluid flows in circular tubes and consist of a core flow occupying the central region
of the vessel surrounded by a lubricating annular fluid. The ability of the annular fluid to ‘lubricate’ the core
fluid has potential applications in the oil and food industries, e.g., a highly viscous fluid can be made to flow
efficiently with a given pressure gradient due to the slippage that the annular fluid provides. In applications,
an interfacial instability can cause a breakup of the core fluid to produce drops or slugs of the higher viscosity
fluid suspended in the lower viscosity one, or an emulsion at high flow rates.

This problem involves modelling and mathematical analysisbased on the Navier-Stokes equations in a
three-dimensional axisymmetric geometry with a free boundary separating the two fluids. Some attempts
have been made to attack this formidable problem with directsimulations. When the annular fluid layer is
thin compared with the core fluid radius, rational asymptotic expansions lead to an evolution equation for
the interface, which includes long wave instability and nonlinearity. Of particular interest is the behaviour of
solutions with long wave periods and which become chaotic via a Feigenbaum period doubling cascade.

The group considered the problem when the core fluid has a small radius compared to the pipe radius and
has a viscosity that is small compared to that of the surrounding fluid. This fits nicely with the holey fiber
work considered by the group, since it has a finite geometry due to the presence of the walls. Pressure-driven
flow also is different and the two problems are complementary. The group considered the problem asymptoti-
cally in the case of a highly viscous annulus and an inviscid core. A nonlinear evolution equation was derived
and was studied for nonlinear features, e.g., travelling waves. The equations need to be solved numerically,
which should suggest some more analysis, in order to producea publication. All these aspects are currently
being investigated.

Surface-Tension-Driven Breakup of an Air Bubble in a Viscous Liquid

If you invert a nearly-full jar of maple syrup, you will see anair bubble form and rise upwards. If the air
bubble becomes sufficiently elongated during the rise, it will break up into smaller bubbles. Recently, it
has been shown that this phenomenon exhibits exceptional breakup dynamics [3], i.e., one which retains the
effects of boundary and initial conditions to the final pointof breakup. Previous examples of surface-tension
driven breakup have shown that the interface shape collapses onto a single, unique form after appropriate
dynamic rescaling of the coordinate axes. Such scale-invariant dynamics is obtained when the behavior is
governed solely by the proximity of the breakup, with no dependence on boundary and initial conditions.
The memory-preserving breakup dynamics was identified as a result of surface-tension driven breakup with
an essentially static interior, with evidence provided from experiments, simulations, and theory [3]. Recent
numerical simulations [15] of a surface-tension driven breakup of a cylindrical hollow inside a viscous jet
provided further confirmation of this unusual property associated with static-interior breakup.

A long-wavelength model for the time-evolution of the bubble surface [3] and static-interior breakup
process was derived to describe the breakup dynamics. Threecommon breakup scenarios are analysed: the
detachment of a large bubble from a nozzle, the breakup of an infinitely long cylinder (see [15]), and the
breakup of a finite-sized bubble. Exact expressions for the bubble shape and interior pressure are derived
for the simpler limiting situations of infinite cylinder breakup and nozzle detachment. Our analytical results
show that the shape at breakup retains an imprint of boundaryand initial conditions. They also show that
the long-wavelength dynamics associated with a static-interior breakup cannot give rise to new minima in the
bubble shape.

As bubble breakup is approached, the solution of the long-wavelength equation for surface evolution
approaches the same form regardless of initial and boundaryconditions. Since the collapse does not distort
the neck shape, this shape retains an imprint of initial and boundary conditions, as noted in [3].
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Figure 36.4: Geometry for the coating problem. The fluid coats a substrate moving to the right with speedU .

Figure 36.5: A bubble immersed in a viscous exterior liquid.

For an air bubble, the interior flow speed is always significantly larger than the exterior flow speed, and
therefore, the breakup corresponds to surface-tension driven breakup with a static interior. Near breakup, the
bubble neck simply collapses inward at a uniform rate, see Figure 36.5, in contrast to other situations where
the interior flow is significant and the breakup dynamics evolves towards a scale-invariant form. The analysis
shows, in the long-wavelength limit, that the static-interior breakup has the unusual property that all unstable
modes grow at the same rate, i.e., there is no fastest growingmode. As a consequence, the breakup dynamics
is highly sensitive to details of the initial shape.

In the long-wavelength limit, an initial shape with a minimum, however small, breaks up into two bub-
bles. An initial shape which is everywhere convex, however extended, rounds into a sphere.
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Local index theorem in noncommutative
geometry (05frg603)

April 16 – April 30, 2005

Organizer(s): John Phillips (University of Victoria, Canada), Alan Carey(Australian
National University), Nigel Higson (Penn State)
Adam Rennie (University of Newcastle, Australia), NurullaAzamov (Flinders University,
Australia)

There have been two new proofs of the Connes-Moscovici localindex theorem [2] produced by some
of the organisers and described in [H] and [3] [4]. The latterproof applies also to the situation where the
standard spectral triple [1] consisting of aC∗ algebraA acting on Hilbert spaceH and an unbounded self
adjoint operatorD with [D, a] bounded for alla in a dense subalgebra ofA is replaced by a semifinite
spectral triple. The latter meansD is affiliated to a semifinite von Neumann algebraN which containsA and
the resolvent ofD is in the compact operators inN .

The two week period was divided into three parts due to the fact that Alan Carey and Nigel Higson were
only able to come for one week each and only overlapped by three days. The organisers agreed that the main
focus of the fortnight would be on examples and applications.

For the first three to four days the emphasis was on checking the details of a preprint by Pask and Rennie
in which the semifinite local index theorem was applied to certain graphC∗-algebras. The algebras studied
admit a natural action of the circle group and were constrained by the requirement that the algebra should
admit a trace. There were problems with the construction of asuitable trace and so considerable effort
went into understanding whether the trace was continuous inan appropriate sense. After much effort, these
problems were satisfactorily resolved.

After Carey and Azamov arrived talks were organised on a preprint of Azamov, Dodds and Sukochev
in which the Krein spectral shift function was constructed in the semifinite von Neumann algebra setting.
The question of whether it is related to spectral flow was raised. For a certain path of unbounded operators
equality of the two was verified in the case of finite von Neumann algebras. It was conjectured that in general
they are not directly related but that there might be a way to use spectral flow to ‘subtract’ discontinuities in
the spectral shift function. Azamov promised to report backon the outcome of this idea after returning to
Adelaide.

Phillips contributed a number of missing results and proofsto a manuscript in preparation in which an
overview of the analytic approach to spectral flow in semifinite ven Neumann algebras is given. The principle
objective was to outline the analytic definition of spectralflow when one was in the situation of paths of
operators in a von Neumann algebra with non-trivial center.A secondary objective was to answer some
natural questions which had arisen in the 10 years since Phillips original paper on this subject. The ms also
contains many examples and the details of these were discussed. The ms is now nearing completion and will
be the first publication arising from the BIRS interaction.
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Upon Higson’s arrival there were informal lectures organised onKK theory. The object was to under-
stand how to useKK theory to understand extensions of the Pask-Rennie preprint to other settings. Higson
was able to clarify some of the constructions inKK theory that might be relevant in applications of the local
index theorem to graph algebras. Lectures were given by Rennie on the Cuntz algebra andSUq(2) as graph
algebras and conjectural applications of the semifinite local index theorem to them.

There were a number of small group research sessions investigating various questions related to these
potential applications. There were also informal discussions of applications of the local index theorem in
other settings such as subelliptic operators.

After the departure of Carey and Higson, Azamov pursued the relation of the spectral shift function to
spectral flow, while Phillips and Rennie made significant progress on the Cuntz algebra example and some
related problems. The progress centred around understanding theKK pairing being computed by the spectral
flow formula in the Cuntz algebra example. TheSUq(2) example was examined again in light of the progress
on the Cuntz example, but little headway was made.
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Influenza Dynamics: Models and Data
(05frg084)

May 28 – June 9, 2005

Organizer(s): Chris Bauch (University of Guelph), Jonathan Dushoff (Princeton Univer-
sity), David Earn (McMaster University), Junling Ma (McMaster University), Christina
Mills (Harvard University), Joshua Plotkin (Harvard University)

The recent workshop at BIRS offered us a fantastic opportunity for collaboration and focused, productive
research. The workshop exceeded our expectations in terms of the breadth of the academic subjects we
explored, and the collaborations we established.

A subset of our group has been collaborating for several years. We have used mathematical models to
study the spread and evolution of influenza viruses. The purpose of this workshop was to attempt reconcil-
iation of our models with empirical data on influenza epidemics; and to form a collaboration with Christina
Mills and Marc Lipsitch from the Harvard School of Public Health. We have progress to report on both
of these goals. Perhaps most important is the strong collaboration we have formed with the Mills/Lipsitch
group, resulting in two completed manuscripts already. Thesubstance of these studies, as well as others that
we initiated at Banff, are described below:

During our workshop at Banff, we completed a manuscript (MS #1) that uses empirical data from the
infamous 1918 “Spanish Flu” pandemic and highlights theoretical puzzle about influenza persistence. The
most basic, longstanding mathematical model of disease transmission divides the population into three classes
(Susceptibles, Infectious, and Recovered/Immune individuals) and describes flow between these classes with
a system of three ordinary differential equations. Given this standard model of disease, and given the empir-
ical influenza epidemic curve and infection rates observed in the United States in 1918, we have estimated
that a very large proportion of the population was infected (and thereafter immune) to the Spanish Flu of
1918. According to these estimates, only a very small proportion of the population remained susceptible to
influenza after the pandemic – too small to support the initiation of another epidemic the following season.
But the empirical data indicate that another influenza epidemic did indeed occur in 1919, which raises a the-
oretical puzzle. Our manuscript describes this enigma and offers several hypotheses for its resolution: the
virus may have evolved to such an extent in 1918 that could re-infect individuals in 1919; or the virus could
have persisted in 1919 due to heterogeneities in the host population and “pockets” of remaining susceptibles;
or (perhaps most intriguing) the virus may have evolved a greater ability to spread, allowing it to persist
despite the small number of susceptible hosts to support it.Our manuscript does not attempt to resolve this
enigma, but rather to describe how the puzzle arises from thecombination of standard mathematical models
and empirical data from the 1918 influenza pandemic.

We have also drafted a second manuscript (MS #2) that analyzes the effects of spatial aggregation of data
on the estimation of critical epidemiological parameters,such as the initial rate of disease spread, used in
mathematical models. Measures of disease transmissibility are often estimated using data aggregated at a
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large spatial scale (e.g. city, state, country). Using 1918influenza pandemic death data gathered at multiple
spatial scales, we have shown that aggregation in the context of asynchronous epidemics of variable size
tends to bias transmissibility estimates downward.

We also have begun a systematic analysis of methods used to estimate the initial rate of disease spread
(a parameter calledR0) on the basis of epidemiological data. Data available is typically either a time-series
of infected individuals, a time-series of mortality events, and/or data on the probability distribution of the
disease’s “serial interval” – that is the duration from infection to the end of infectiousness. Aside from several
standard curve-fitting methods, we developed a novel technique for estimating the rate of disease spread,
based on “serial interval” data. We are planning to write a detailed, more theoretical paper (MS #3) in which
we simulate standard stochastic models of disease spread, and then apply a variety of techniques to estimate
the parameterR0 used in those simulations. We expect that estimates ofR0 may, unfortunately, depend upon
which estimation techniques are employed. We plan to investigate and present these dependencies, thereby
informing the broader community of scientists and public health officials who seek to infer underlying disease
parameters from epidemiological data.

Finally, in light of the three manuscripts discussed above,we are planning a fourth paper (MS #4) focused
on the empirical data from the 1918 influenza pandemic in Philadelphia, which killed a staggering 12,162
people within two months. Our initial analyses of these dataindicate that the epidemic time-series does not
conform to the standard mathematical model of disease transmission, except during the initial few weeks
of expential growth. Instead, the Philadelphia data show a depression in the incidence rates after the first
several weeks – which may suggest that behavioral changes orquarantine regulations had an important effect
on curbing Philadelphia’s epidemic. We intend to analyze the Philadelphia epidemic curve in detail, using
methods described above, and to correlate our analysis withhistorical documents on the timing and extent of
quarantine measures implemented in Philadelphia during the 1918 epidemic.

List of Participants
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Chapter 39

Hyperplane Arrangements:
Cohomology and Rational Homotopy
(05frg090)

Jun 11 – Jun 18, 2005
Organizer(s): Graham Denham (University of Western Ontario), Alexandru Suciu (North-
eastern University)

The main focus was on the varieties of jumping loci for cohomology with coefficients in rank one local
systems, and the related resonance varieties, arising fromcomplex hyperplane arrangements. These varieties
have emerged as central objects of study, providing deep andvaried information about the topology of the
complement of an arrangement.

Briefly, the jumping loci of a spaceM are the sets of representationsA of the fundamental group of
M for which the rank ofHp(M,A) is larger than a fixed integer. The representation variety ofa complex
hyperplane complement is a complex torus; thus the jumping loci here are just certain subvarieties of the
torus. The resonance varieties are tangent to the jumping loci at the trivial representation, and have proven to
be somewhat easier to understand.

Given the multifaceted nature of the topic, the meeting brought together people with a variety of back-
grounds, including commutative algebra, topology, discrete geometry, and singularity theory.

The seven participants spent the week alternating between group discussion – mutual tutorials in recent
developments – and interrelated collaborations in groups of two or three.

Falk and Yuzvinsky continued their work on multinets, combining ideas from [?] with recent work of Falk
on resonance varieties. The result seems to be a complete, combinatorial characterization of these varieties
in H1 in terms of the existence of special pencils of curves, generalizing the classical Hesse pencil.

From [?] and recent work of Alexander Varchenko on the Bethe anzatz [?], there arose some intuition
that resonance varieties and the critical set of a function

Φλ =

n∏

i=1

αλi

i

may be related, where eachαi is a linear form (defining a complex hyperplane) and eachλi ∈ C∗. We may
think of λ as a point in the torus: i.e., as representation of the fundamental group of the complement. Then,
generically, the cohomology of the complement with respectto the local systemλ vanishes, except in middle
dimension, where it has some rankβ. Generically, the functionΦλ hasβ isolated critical points. The papers
[?, ?] relate the two explicitly. Cohen, Denham, and Falk continued their joint work with Varchenko on the
case of non-genericλ. Roughly, the critical set ofΦλ may be positive dimensional, in a way that corresponds
somewhat explicitly to nonvanishing cohomology. This project began in Fall 2004 when the authors were
together at MSRI.

305



306 Focused Research Group Reports

Srikanth Iyengar was able to join the group. He was new to arrangement theory and had not met the other
participants before. He was able to learn quite a bit about the area. At the same time, he was able to contribute
considerable technique in commutative algebra of a flavour motivated by rational homotopy theory. This was
extremely useful for Denham and Suciu, in view of their recently completed project [?]. This relationship
that began at BIRS continues fruitfully: Denham is due to visit Iyengar in March 2006, and these discussions
helped motivate Denham’s subsequent project with Suciu [?] (which began at BIRS).

In somewhat more detail, the rational homotopy theory of hyperplane complements has been shown to sit
in a position where commutative algebra and rational homotopy theory overlap, in the sense of the “looking
glass dictionary” of Avramov and Halperin in the 80’s. The reasons for this aren’t quite clear, but the precision
of what is generally a somewhat vague correspondence seems to be quite profitable.

Schenck was able to continue discussions with Yuzvinsky andDenham that also began at MSRI.
Several of the research themes developed in Banff were discussed and pursued at a PIMS workshop in

Vancouver in August. The idea of writing a book on arrangements to succeed [?] was discussed at length (on
a hike up to the Stanley Glacier.) This project has been pursued, and the book is now underway.

On behalf of the focussed research group, I would like to thank PIMS for a very productive and enjoyable
meeting.

List of Participants
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Chapter 40

Topological Methods for Aperiodic
Tilings (05frg069)

Jul 16 – Jul 30, 2005
Organizer(s): Johannes Kellendonk (Lyon I), Ian F. Putnam (Victoria), Lorenzo Sadun
(Texas, Austin)

In the 1960’s and 1970’s, mathematicians discovered geometric patterns which displayed a high degree of
regularity, and yet were not periodic [7]. The subject also gained enormous importance with the discovery of
physical materials (quasicrystals) with pure point x-ray diffraction spectrum, which indicates a highly ordered
atomic structure, and yet symmetry patterns in that spectrum which could not be produced by periodic atomic
structures [21, 8]. Since that time, the subject has grown substantially. In doing so, it has drawn on a highly
diverse collection of mathematical ideas.

One very productive idea is to regard a tiling as producing a dynamical system [14, 17, 16, 15, 20]. First,
all translates of the tiling are considered, Then a metric isplaced on such tilings. This arises from natural ideas
in symbolic dynamics for discrete patterns, but these must be adapted to handle the geometry of Euclidean
space. The translation action of the Euclidean space extends to the completion of this metric space. Under
fairly mild assumptions, the space obtained, called the hull of the tiling, is compact and so provides a natural
setting for using techniques from dynamics. Eventually, ithas been realized that this space actually contains
a great deal of interesting and computable (from standard topological techniques) information on the original
tiling.

The standard assumption through much of the literature is that of ‘finite local complexity’ or FLC: for
a fixedR, the number of different patterns in the tiling of diameter less thanR, is finite modulo translation
[13]. Moreover, it has been known for a long time that, under FLC the hull is locally the product of a
totally disconnected set andRd, whered is the dimension of the tiling [16, 1, 19]. Moreover, it can been
presented as inverse limit of fairly simple cell-complexes. The first natural generalization of FLC is to relax
the condition ‘modulo translation’ to allow more general groups of isometries. This leads toG-FLC, where
G is the appropriate group. This has already appeared in the work of many authors (for example, see [4, 18].
However, there are a number of interesting examples where this hypothesis fails, but this can happen in
several ways. Several of the participants, Natalie Priebe-Frank, Sadun and Kellendonk, in particular, had
been considering such examples, and through the course of the two weeks a unifying view of the metric was
achieved. In some cases, the approximation by cell complexes seemed possible. If successful, this could lead
to extending computations of cohomology invariants for newclasses of tilings. Under study by a fairly large
part of the FRG, including Priebe-Frank, Sadun, Kellendonk, Putnam, Hunton, Barge and Diamond, progress
was made in understanding them within a global framework. Papers on this subject should be forthcoming
shortly. Some other examples of non-FLC tilings were presented by Bellissard, arising from mathematical
models of amorphous materials. Here, it seems that new ideasare needed to provide a better understanding
of the hull.
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There was a general theme for the FRG of trying to understand the nature of the cohomology of the tiling
and its physical interpretations. This cohomology is closely linked witht the K-theory of theC∗-algebras
associated with the tiling, first constructed by Bellissardand investigated by Forrest, Hunton, Kellendonk,
Putnam and others [2, 5, 10, 11, 1, 6]. There were some interesting new interpretations made of how parts
of this K-theory could arise from lower dimensional phenomena in the tiling. At a physical level, these
could lead to measuring defects in physical materials. Several discussions elaborated links with groupoid
cohomology and other interpretations of the cohomology.

A lot of progress was also made in computational methods and results. The use of spectral sequences
for these calculations was studied intensely. Recently, tilings were discovered with a non-trivial torsion
component in the cohomology. This rather surprising phenomena was investigated and discussed by Gähler,
Hunton and Kellendonk. A great deal of progress was made on the calculation of several specific tilings of
interest. Most notable was the pinwheel. But there were other examples, where full rotational symmetry
was considered. This was the first time sufficient expertise and time had been brought to bear on these
computations. Kalugin presented some very novel approaches to the understanding of matching rules from a
topological view, leading to new methods for cohomology computation [9]. Recent work of Kellendonk and
Putnam on their notion of pattern equivariant cohomology was presented [12]. The group spent some time
developing this as an alternate view of cohomology for hulls, and indeed as a view of the hull itself, which
seems very useful.

In the special case of one dimensional tilings, Barge and Diamond have a number of quite strong in-
variants. Moreover, a number of rather precise statements of the hull can be made. These were discussed,
especially with an idea to trying to extend this program to higher dimensions.

One of the most popular features of the two weeks were the tutorials. It should be stressed that the com-
mon interest was in topological aspects of aperiodic materials, but the participants came from a remarkably
wide range of backgrounds: mathematical physics, algebraic topology, operator algebras, dynamical systems,
discrete geometry, ... . Each day, long tutorials were presented, essentially aimed at novices, of technical tools
from these different areas. For example, the use of spectralsequences for these cohomological calculations
is crucial, yet only an expert in algebraic topology has thisin his tool kit. All participants really gained a lot
from some exceptionally revealing presentations.

A large number of other related topics were covered in various presentations: the Aubrey-Mather theory
for quasi-crystals, relations with translation surfaces and orbit equivalence for Cantor minimal systems to
name a few.
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Chapter 41

Speciality of Malcev Algebras (05rit020)

April 30 – May 14, 2005

Organizer(s): Murray R. Bremner (University of Saskatchewan, Canada), Irvin R. Hentzel
(Iowa State University, U.S.A.), Luiz A. Peresi (Universidade de São Paulo, Brasil)

Lie algebras and the PBW theorem

The Poincaré-Birkhoff-Witt (PBW) theorem (Jacobson [2])implies that any Lie algebra is isomorphic to a
subalgebra of the commutator algebra of some associative algebra. This result is established by constructing
an associative universal enveloping algebraU(L) for an arbitrary Lie algebraL, together with an injective
Lie algebra homomorphism fromL to the commutator algebraU(L)−.

The speciality problem for Malcev algebras

The first step beyond Lie algebras leads to Malcev algebras. AMalcev algebra is a vector spaceM with a
bilinear product satisfying anticommutativity and the identity

[[w, y], [x, z]] = [[[w, x], y], z] + [[[x, y], z], w] + [[[y, z], w], x] + [[[z, w], x], y].

The commutator in any alternative algebra satisfies these identities, and so every Lie algebra is a Malcev
algebra. The speciality problem for Malcev algebras asks ifany Malcev algebra is isomorphic to a subalgebra
of the commutator algebra of some alternative algebra. Thisproblem has been open for 50 years since it was
first posed in Malcev’s paper on analytic loops [4] (where these algebras were called “Moufang-Lie algebras”;
they were given their present name by Sagle [6]).

Enveloping algebras for Malcev algebras

A solution to a different formulation of the speciality problem for Malcev algebras has recently been provided
by Pérez-Izquierdo and Shestakov [5]. They generalize thePBW theorem to Malcev algebras in the following
sense: for every Malcev algebraM they construct a universal nonassociative enveloping algebraU(M) and
an injective Malcev algebra homomorphism fromM to the commutator algebraU(M)− such that the image
of M lies in the generalized alternative nucleus ofU(M). The algebraU(M) is in general not alternative
nor even power-associative, but it inherits many of the goodproperties of universal enveloping algebras of
Lie algebras, such as the universal mapping property, a PBW-type basis, and a (nonassociative) Hopf algebra
structure. Furthermore, ifM is a Lie algebra, thenU(M) is isomorphic to the familiar (associative) universal
enveloping algebra ofM .
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The results we obtained at BIRS

The three of us met in Saskatoon on Friday, April 29, 2005 and drove together to Banff, arriving at BIRS
in time for dinner on Saturday, April 30, 2005. On the way fromSaskatoon to Banff, we agreed to start
by reading and discussing the paper by Pérez-Izquierdo andShestakov [5]. After doing that, we decided to
start with a specific non-Lie Malcev algebra and use the techniques of [5] to compute explicitly the structure
constants of the enveloping algebra. In the early paper by Sagle [6] there is an example of a 4-dimensional
solvable non-Lie Malcev algebraM (Example 3.1, page 433). ¿From the results of Filippov [1] and Kuzmin
[3] it follows that in dimension≤ 4, this is the only (up to isomorphism) non-Lie Malcev algebra, and that it
is solvable and special. We decided that our goals for our stay at BIRS would be:

1. To explicitly construct the enveloping algebraU(M) with PBW-type basis and structure constants.

2. To study the polynomial identities satisfied by the nonassociative algebraU(M).

3. To determine the quotientA(M) of U(M) by the alternator ideal, thereby obtaining an alternative
enveloping algebra forM .

4. To determine a finite-dimensional quotient ofA(M) containingM in its commutator algebra.

To achieve these goals, we computed (using Maple and Pascal)how to express an arbitrary product of basis
monomials ofU(M) as a linear combination of basis monomials. To do this we required various reduction
algorithms to perform arguments by induction; the essential ideas behind these algorithms appear in the proof
of Proposition 2.2 of Pérez-Izquierdo and Shestakov [5]. The techniques we developed at BIRS will allow us
to continue this research in the following directions:

1. To solve the same problems for the 5-dimensional non-Lie Malcev algebras (Kuzmin [3]).

2. To do the same for the 7-dimensional simple non-Lie Malcevalgebra (Sagle [6], Example 3.2, pages
433–435), and use this to obtain a new construction of the octonions.

3. To do the same for the free Malcev algebra, and use this to search for Malcev s-identities (identities
which are satisfied by special Malcev algebras but not by all Malcev algebras).

Our time at BIRS was very productive; we expect to get at leastone publication (possibly two or three) from
the methods we developed during our “Research in Teams” program.
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Random Matrices, multi-orthogonal
Polynomials and Riemann-Hilbert
Problems (05rit094)

April 30 – May 14, 2005

Organizer(s): John Harnad (Concordia University and Centre de recherchesmathématiques,
Université de Montréal )

The objective of this collaborative project was to further advance the computation of largeN asymp-
totics in multimatrix models by extending the previously known methods used in1-matrix models [8, 5] and
applying them to the Riemannn-Hilbert formulation of multi-orthogonal polynomials developed in [2, 9].

The specific objectives were;

1. To relate the “dual” formulations of the Riemann-Hilbertproblem characterizing biorthogonal polyno-
mials obtained by the different members of this group [1, 2, 3, 9].

2. To extend the asymptotic analysis, based on the Riemannn-Hilbert method, and variational equations, to
obtain rigorous largeN asymptotics for the partition function in2-matrix models [6, 7], the equilibrium
distributions for the eigenvalues, and correlation functions in terms of asymptotics of the associated
biorthogonal polynomials.

Considerable progress was already made on item 1 between theplanning of this meeting and the actual
event. The relation between the two different approaches tothe Riemann-Hilbert problem for biorthogonal
polynomials was in fact completely determined by M. Bertolaand J. Harnad, in colllaboration with A. Its, in
the months prior to the meeting, and these results were communicated to the other members of the group at
the beginning of the meeting. The full details are currentlybeing written up in final form, but a preliminary
version is now available in the preprint [4].

The essential difference between the two approaches was that, whereas the large argument asymptotics
in the formulation ref. [9] were fairly simple, involving only exponentials and power law dependence on the
arguments, the jump discontinuities across the integration contours on which the biorthogonality is defined
involves transcendental nonconstant dependence. In the approach of [2] however, the jump discontinuities
are piecewise constant, but the large argument asymptoticsinvolve fractional powers of the arguments and
have sectorial behaviour, with Stokes matrices relating the different sectors. Moreover, only the “dual” fun-
damental systems were given an explicit integral representation in [2], with the asymptotics of the “direct”
systems determined through the invariant bilinear pairing. The new approach, described in [4], gives an in-
tegral representation also for the “direct” fundamental systems, and these integral representations are used to
deduce the sectorial large argument asymptotics and jump discontinuities explicitly, as well as the differential
equations satisfied, without recourse to either the “folding” methods used previously, or further algebraic
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manipulations based on infinite recursions. Moreover, the integral representation in [4] is shown to factorize
into a product of: 1) an explicitly known matrix factor, which is constant in the arguments of the system,
though not in the degrees of the biorthogonal polynomials; 2) the integral representation of [9]; 3) a matrix
factor that is independent of the polynomial degreeN , consisting of the Wronskian matrix of an associated
higher degree constant coefficient equation whose coefficients are determined by the polynomial potential.
This factorization relation shows how the transcendental jump matrix in the system of [9] is transformed into
a constant one, while at the same time introducing theN -independent sectorial behaviour that is required.

Since this point was already resolved by the start of the meeting, the remaining time could be devoted
to addressing the set of problems listed under item 2. In fact, considerable progress in this direction had
also already been made prior to the meeting, so the actual time spent at BIRS could, in part, be devoted to
communicating this further progress, and to planning out the future steps needed for fully resolving these
problems. The progress regarding large N asymptotics was made, partly on a heuristic, and partly a rigorous
basis, by B. Eynard [6, 7].

He explained to the others in the group:

1. How the three different versions of the2-matrix models, the “Normal” model, the “symmetry broken”
normal model, and the “formal” model are related. The first ofthese, which is the one studied in
[1, 2, 3] is based on integration on homology classes of contours; the second is based on grouping
together multiple integrals by partitions of N in which the parts indicate the number of factors in the
multiple integrals along a given contour and the third, the “formal” model, is based on a combinatorial
definition of the partition function involving the multiplication of the weights of Feynmann graphs
associated with a perturbative development about a Gaussian measure and evaluation of the integrands
at the critical point contributions via gaussian integration.

2. How the existence of an “equilibrium” spectral curve may be deduced from a suitable definition of the
free energyF0, which coincides with 1

N2 times the logarithm of the partition function in the “formal”
model. This definition can be given on any “spectral curve” ofthe general form deduced from the “loop
equation” [6] (which follows from the reparametrization invariance of the partition function),

E(x, y) = −(V ′1(x) − y)(V ′2(y) − x) + P (x, y),

whereV1(x) andV2(y) are the polynomial potentials, of degreesd1 + 1 andd2 + 1, respectively,
defining the biorthogonality measure andP (x, y) is a polynomial of degree≤ d1−1 in x and≤ d2−1
in y. The free energy is given by residue formulæ involving the meromorphic differentialydx, which
determineF0 as a functional on the moduli space of algebraic curves of theabove the form. Its real
part may be shown to be a convex function. The extrema are therefore well-defined, and the variational
equations for these imply the vanishing of the real parts of the cycles of the abelian integral

∫
ydx on

the curve around any cycles.

3. Explicit forms - partly conjectural, partly proved, expressing the asymptotic forms of the fundamental
systems of refs. [2, 4] in terms of ratios of Riemann theta functions on the equilibrium curve. Since
these formulæ were deduced assuming the applicability of saddle point and WKB techniques which
require more rigorous justification, the Riemann-Hilbert method is required to complete the analysis.

During the remainder of the two week period of the meeting, preliminary calculations were undertaken
with a view to determining the branch cut structure for the Riemann surface of the spectral curve in the
case when the potentials are even quartic polynomials, and the genus of the curve is0. The purpose was to
determine a contour that is homologically equivalent to thecontour of integration on which the various trans-
formations may be applied to reduce the Riemann-Hilbert problem to factors that differ from the identity only
by terms that are exponentially decreasing. This is accomplished through the introduction of a generalization
of theg-function, as done for the1-matrix case in ref. [5]. The definition of thisg-function seems now to be
clear: it is the multivalued function defined by the abelian integral

∫
ydx on the spectral curve.

These preliminary calculations for the genus0 case appear to lead to the correct cut structure that should
arise. It also appears, from these preliminary discussionsand calculations, that the sequence of gauge trans-
formations and deformations of the contours along which thejump discontinuities arise can be correctly
defined by virtue of the analyticity and asymptotic properties of theg-function. Moreover, the presence of
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sectorial asymptotics in the Riemann-Hilbert problem appears to be consistent with the largeN asymptotic
properties of theg function, making this approach to the largeN asymptotics of the biorthogonal polynomials
very likely the correct one for implemention. In addition, these considerations potentially reveal a connection
between (i) a physically motivated existence and uniqueness theorem for the equilibrium spectral curve, and
(ii) nonlinear steepest descent analysis of the associatedRiemann-Hilbert problem.

Much further work will be needed, but the preliminary results, and the general method of approach laid
out at this BIRS meeting, seem to give very good promise for further development of an ongoing program
that should lead to the resolution of the main unresolved questions on the large N asymptotics of 2-matrix
models and biorthogonal polynomials.
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Chapter 43

Affinizations of Extended Affine Lie
Algebras (05rit024)

May 22 – June 4, 2005

Organizer(s): Bruce Allison (University of Alberta), Stephen Berman (University of Saskatchewan),
Arturo Pianzola (University of Alberta)

Extended affine Lie algebras, or EALA’s for short, were introduced by Hoegh-Krohn and Torresani in
1990 [9] as natural generalizations of finite dimensional simple Lie algebras and affine Kac-Moody Lie
algebras. Many of the basic facts about these algebras were proved in [1]. By definition EALA’s are complex
Lie algebras that possess Cartan subalgebras and invariantforms, and hence they possess root systems which
turn out to be extended affine root systems. Roots of length 0 are called isotropic roots, and they generate a
lattice whose rank is referred to as the nullity of the EALA. As has been shown in [3], EALA’s of nullity 0
and 1 precisely coincide with finite dimensional simple algebras and affine Kac-Moody algebras respectively.
Therefore there has been a lot of interest and activity in thelast decade on the study of EALA’s of higher
rank.

An EALA L possesses an idealLc, called the core ofL, which is defined to be the subalgebra ofL
generated by the root spaces ofL corresponding to nonisotropic roots. (Lc is the derived algebra ofL in
nullity 0 and 1.) The quotient algebraLcc := Lc/Z(Lc), is called the centreless core ofL. Y. Yoshii [14]
has recently given an internal characterization of the Lie algebras, called centreless Lie tori, that arise as
the centreless core of an EALA. Furthermore, the structure of an EALA is to a large extent governed by
the structure of its centreless core. In fact, E. Neher [11] has recently announced a procedure that, given a
centreless Lie torusK, describes all EALA’s with centreless coreK. For this reason, an important equivalence
relation for EALA’s is isomorphism of their centreless cores.

Many centreless Lie tori, and consequently EALA’s, can be constructed using various “matrix” construc-
tions, from coordinate algebras such as the noncommutativequantum tori that generalize Laurent polynomials
in several variables. This is a combination of the work of number of authors in the last few years beginning
with the paper of Berman, Gao and Krylyuk in [7].

Another approach to the construction of EALA’s makes use of loop algebras and affinizations of Lie
algebras relative to finite order automorphisms. IfG is a Lie algebra andσ is an automorphism ofG of
periodm, the loop algebra ofG relative toσ is the algebraL(G, σ) of fixed points of the automorphism
x ⊗ f(z) 7→ σ(x) ⊗ f(ζ−1

m z) of the untwisted loop algebraG ⊗ S, whereζm is a primitive mth root of unit
andS is the ring of Laurent polynomials in the variablez. Further, ifG possesses a nondegenerate invariant
symmetric bilinear form that is preserved byσ, one defines the affinization ofG relative toσ to be the Lie
algebraAff(G, σ) obtained fromL(G, σ) by first forming a 1-dimensional central extension (with cocycle
defined as usual using the invariant form) and then adding the1-dimensional algebra spanned by the degree
derivationz d

dz .
In his pioneering work on loop algebras in 1969, V. Kac showedthat ifG is finite dimensional simple and
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σ is a finite period automorphism ofG thenAff(G, σ) is an affine Kac-Moody Lie algebra and all such Lie
algebras arise in this way. In the language of EALA’s this reads as follows: IfG is a EALA of nullity zero
thenAff(G, σ) is a EALA of nullity one and moreover, all such algebras arisein this way. When phrased
this way it becomes quite natural to ask what happens in the case of EALA’s of higher nullity. In our work at
BIRS on this problem, we focused on the case of nullity 2 and weworked at the level of centreless cores.

It is remarkable fact, which follows from a theorem announced recently by Neher in [12] along with
the classification theorems for centreless cores of typeA [7, 8, 13], that with the exception of one well-
understood family, all centreless cores of EALA’s are finitely generated as modules over their centroids. (The
exceptional family consists of Lie algebras of the formslℓ+1(Cq), whereCq is the quantum torus determined
by a quantum matrixq with at least one entry that is not a root of unity.) For this reason, we concentrated in
our work on centreless cores with this additional finitenessproperty. While at BIRS we were able to complete
the proofs of a number of results on this topic.

We showed that every centreless core of an EALA of nullity 2 that is finitely generated over its centroid
is isomorphic to a Lie algebra of the form

L(Gcc, σ), (1)

whereG is an affine Kac-Moody Lie algebras andσ is a diagram automorphism ofG. Conversely, we showed
that any Lie algebra of the form (1) is isomorphic either to a centreless core of an EALA of nullity 2 (finitely

generated over its centroid) or to a Lie algebra of the form[Cq,Cq], whereq =
(

1 ζ

ζ−1 1

)
andζ is a root of

unity.
The class of Lie algebras of the form (1) is interesting in itsown right. We were able to characterize

algebras in this class in a number of different ways, including asZ2-graded-central-simple Lie algebras
whose central grading group has finite index inZ

2. We also gave a complete classification of the algebras
in this class up to isomorphism. That is, we precisely determined when two algebras of the form (1) are
isomorphic.

Precise statements and detailed proofs of the results just mentioned will appear elsewhere. Our proofs
make use of techniques and results that we developed recently in a series of papers on EALA’s and loop
algebras including [4], [5], [6] and our paper [2] with John Faulkner.

The Banff International Research Station provided an idealplace for the three of us to get together for
two weeks of uninterrupted research. We wish to thank BIRS very much for this opportunity.
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Chapter 44

Hamiltonian systems with symmetry
(05rit606)

August 21 – August 26, 2005

Organizer(s): G. W. Patrick (University of Saskatchewan)

The conservative, or Hamiltonian, dynamical systemsare finite or infinite dimensional dynamical sys-
tems that model physical phenomena on time scales over whichdissipation is not dominant. In the idealized
models, dissipation is absent, multiple time scales are usually present, and the long time dynamics is very del-
icate. The systems often exhibit temporal chaos. The subject has existed for centuries as celestial mechanics,
but the current application domains (such as underwater vehicle dynamics [5][8][9], molecular dynamics and
spectra [6][7][13], fluids and plasmas [1][4][10], and foundational physical field theories [2][3]) far exceed
its origins.

When symmetry is present in these systems, one can seek solutions which are generated by one parameter
subgroups of the symmetry group (i.e. of the formexp(ξet)pe whereξe is a Lie algebra element called the
generator andpe ∈ P ). These are therelative equilibria, and they correspond to equilibria in the reduced
spaces. The physical form of these solutions depends on the symmetry. For the three dimensional rotation
groupSO(3), they will be uniformly rotation solutions, such as the circular orbit of a satellite. In the case
of a neutrally buoyant underwater vehicle with coincident centers of mass and buoyancy, the symmetry is
the Euclidean groupSE (3) = SO(3) ⋉ R3, and the relative equilibria correspond to screw motions. When
the underwater vehicle has an additional axial material symmetry, the system symmetry isSE (3) × SO(2),
and the relative equilibria correspond to screw-spinning motions. When the symmetry group is not compact,
such as the Euclidean symmetry group, establishing the stability of relative equilibria is delicate. Generally,
in the noncompact case, a common criterion—formal stability—is insufficient to establish stability, and a
more restrictive criterion—T2 stability—must be used [12]. There is a gap betweenT2 and formal stability.
Stability inside the gap has been established using KAM theory, for certain relative equilibria of the system
of an underwater vehicle [11] with coincident centers of mass and buoyancy. TheT2 stability theory and the
KAM-desingularization technique, both due to workshop participants, are the state of the art in the area.

The workshop participants met to hammer out the details of anarticle that they are writing which consid-
ers an example where the gap actually occurs: the relative equilibria consisting of the falling, spinning motion
of an axially symmetric underwater ellipsoid with non-coincident centers of mass and buoyancy, where the
symmetry group isSO(2) ⋉ R

3 × SO(2). The target audience for this work consists not just of mathemati-
cians, but possibly also engineers and physicists, so it is important to find an exposition in the most basic
language. Also this is important because the target audience must be brought to accepting that there is a
subtle impact of this work on some highly regarded liturature, such as [5, 8, 9].

The stability problem, it was determined, can in the case of the symmetry in question, be generally
addressed using a widely known, venerable, technique whichreduces an abelian symmetry by eliminating
“cyclic coordinates”. After this reduction, one is reducedto a parameterized, two degree of freedom sys-
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tem. There is an additional circular symmetry at the parameter corresponding to the relative equilibrium in
question, and the stability is a symmetry-breaking phenomenon from a completely integrable system. The
general understanding of what typically occurs for any system that has the same symmetry group was estab-
lished. Suitable coordinates are required to prove KAM stability inside the gap. These should be accessible
to and recognizable by the target audience, and such coordinates were developed over the course of the work-
shop. A draft article was completed which the workshop participants anticipate will be rapidly completed
and disseminated.

Another reason for considering the falling, spinning relative equilibria, is that it has nontrivial isotropy. A
considerable amount of work on the isotropy problem has already been completed, but that was deliberately
excluded from the theory developed in [12]. The workshop provided an opportunity to work again on this
project. One of the base problems is to ensure that the presence of isotropy is fully taken advantage of in the
stability theory. This was not so clear because isotropy implies singularities in the reduced spaces, at which
methods which rely on a smooth structure are inapplicable, This problem was resolved over the course of the
workshop: the isotropy is usually compact, in which case a purely topological proof was found that shows
the presence the singularities in the reduced spaces will not affect the stability issue.

In this workshop, a team of three participants interacted very intensely. Progress was made on the isotropy
project, and priorities sorted and possibilities found forfurther collaboration. A stalled project (the axisym-
metric stability project) was reinvigorated, and work which would have taken many months, if it could have
been completed at all, was largely completed in one week, with a far superior outcome. Partly this was due
to an extensive preparation for the workshop, following an initial consultation a year earlier at the Bernoulli
Institute of EPFL Switzerland, but it was also due to the excellent BIRS environment. The team is scattered
across Canada and the UK, but the BIRS Research in Teams program enabled it to meet, concentrate on, and
in large part resolve, a difficult problem, and to prepare theway for future collaborations.
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Chapter 45

Cohomogeneity Three Actions on
Spheres (05rit047)

August 21 – September 3, 2005

Organizer(s): Jill McGowan (Howard University), Catherine Searle (IMATE-UNAM,
Cuernavaca)

During our stay at BIRS, Dr. McGowan and I were able to modify our original project of classifying
cohomogeneity 3 actions on spheres to the following problem: calculate the diameters andq-extents of
spherical quotients of irreducible polar actions of cohomgeneities 3 and higher. First let us make the following
definition: we call a cohomogeneityk actionclassical polar, when it is a polar action of cohomogeneityk
corresponding to a symmetric spaceG/H where eitherG orH is a product of classical groups only. Those
actions which admit products with classical groups and exceptional groups will be calledexceptional polar.
Note that there is a 1-1 correspondance between polar actions and symmetric spaces [D]. We are interested
in this problem given that we have found in joint work with W. Dunbar and S. Greenwald [DGMS], and our
own, [MS], when we allow for disconnected groupsG to act isometrically on spheres by cohomogeneity 1, 2
or 3 (in the case where the action is classical polar) we obtain the following lower bounds for the diameter:

min(diam(Sn(1)/G) =





π
12 for cohomogeneity 1
α
2 for cohomogeneity 2
β for cohomogeneity 3

whereα = arccos(
tan( 3π

10 )√
3

), andβ = arccos(1/
√

40 + 12
√

2 − 8
√

5 − 12
√

10).

We note that for these three cohomogeneities the diameter isstrictly increasing as the cohomogeneity
increases. The conjecture we are then currently trying to verify is: let G be an irreducible polar action of
cohomogeneityk onSn, then the diameter ofSn/G increases toπ2 ask → ∞. That is, as the cohomogeneity
of an irreducible action becomes large, the action “becomes” reducible. We would also like to understand
what is going on in terms of theq-extents for these spaces.

We have been able to confirm this conjecture for the classicalpolar actions of cohomogeneities 3 and
higher. The list includes the following groups:

Table 1: Classical Polar Actions of Cohomogeneityk − 1
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Nr. G dim(Sm) Corresponding Symmetric Space

1 SO(k) × SO(n) kn − 1 SO(k + n)/(SO(k) × SO(n)), k ≥ n
2 S(U(k) × U(n)) 2kn − 1 SU(k + n)/S(U(k) × U(n)), k ≥ n
3 Sp(k) × Sp(n) 4kn − 1 Sp(k + n)/(Sp(k) × Sp(n)), k ≥ n
4 U(2(k)) k(k − 1) − 1 SO(4(k))/U(2(k))
5 U(2(k) + 1) k(k − 1) − 1 SO(4(k) + 2)/U(2(k) + 1)
6 SO(k) 1

2
(k − 1)(k + 2) − 1 SU(k)/SO(k)

7 Sp(k) (k − 1)(2k + 1) − 1 SU(2(k)/Sp(k)
8 SO(2(k)) 1

2
2(k)(2k − 1) (SO(2k) × SO(2k))/SO(2k)

9 SO(2k + 1) k(2k + 1) (SO(2k + 1) × SO(2k + 1))/SO(2k + 1)
10 U(k) k2 − 1 (U(k) × U(k))/U(k)
11 Sp(k) 2k2 − k − 1 (Sp(k) × Sp(k))/Sp(k)
12 SU(k) k2 − 2 (SU(k) × SU(k))/SU(k)

Of the remaining groups, for those whose corresponding symmetric space is of the type(G × G)/G,
namely numbers 1, 6, 8 and 10 of Table 2, the result also holds true. During our stay at BIRS we were also
working on the remaining groups listed in the following table.

Table 2: Exceptional Polar Actions of Cohomogeneities Greater than ‘2

Nr. G dim(Sm) Corresponding Symmetric Space Cohomogeneity
1 F4 51 (F4 × F4)/F4 3
2 SU(6) × SU(2) 39 E6/(SU(6) × SU(2)) 3
3 SO(12) × SU(2) 63 E7/(SO(12) × SU(2) 3
4 E7 × SU(2) 111 E8/(E7 × SU(2)) 3
5 Sp(3)× SU(2) 27 F4/(Sp(3) × SU(2)) 3
6 E6 77 (E6 × E6)/E6 5
7 Sp(4) 41 E6/Sp(4) 5
8 E7 132 (E7 × E7)/E7 6
9 SU(8) 69 E7/SU(8) 6
10 E8 247 (E8 × E8)/E8 7
11 SO(16) 127 E8/SO(16) 7

Since these groups do not admit “easy” matrix expressions, we are using a technique of Hsiang outlined in
his book “Cohomology Theory of Topological TransformationGroups” [H] in order to calculate the principal
isotropy subgroups of these actions. Once we have computed these subgroups, we then need to find their
normalizers so that we may use the technique ofG-manifold reductions (cf. [GS]) to compute the quotient
space. That is, we must calculate thecore groupcG = N(H)/H , whereH is the principal isotropy subgroup,
and also find thecoreof the corresponding sphere,cSn. SincecM/cG ≃ M/G, we may then compute the
quotient space.

During our stay, we were able to calculate the connected component of the principal isotropy subgroup for
number 2 and we made a fair amount of progress for numbers 3 and4 (we are completing these calculations
now). The only other action with non-trivial principal isotropy is number 9. For the rest of the groups in
Table 2, we must use a different technique altogether, whichcan be found in Straume [S], namely extend the
action to a larger dimensional group which will have non-trivial principal isotropy.

We also plan to see how much of Straume’s paper can be extendedfor polar actions of cohomogeneity 3
and higher.

We would also like to add that while we modified our original proposal for our stay at BIRS, we have
by no means abandoned the idea of classifying spherical actions of cohomogeneity 3 and higher. Upon
conclusion of this current project, we hope to be able to tackle not only the classification problem, but also to
understand how the diameters of spherical quotients of non-polar actions behave in terms of our conjecture.

In conclusion, we would like to add that we feel that our stay at BIRS was incredibly productive for us.
This is the first time we have had an entire 2 weeks in which to just concentrate on our research. We are both
very happy to have been provided with this opportunity.
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Chapter 46

Symmetries of extremal conformal
mappings (05rit091)

Aug 25 – Sep 03, 2005

Organizer(s): Oliver Roth (University of Würzburg), Eric Schippers (University of Mani-
toba)

Overview of the Field

A central problem in geometric function theory is to describe the class of conformal mappings of the disc.
Two of the main reasons for the importance of this class are the Riemann mapping theorem, and the fact
that it provides a model for the universal Teichmueller space. Solving extremal problems over the class (or
developing methods for doing so) is one method of describingit, since the extremal function attaining the
maximum must lie on the boundary.

In two approaches to solving extremal problems, the variational method of Schiffer and the extremal
metric method of Teichmueller, the extremal functions are solutions of a differential equation given by a
quadratic differential. This partly determines the extremal function, but it is still not known how in general
to determine the function completely. In some cases furthersymmetries of the extremal function can be
identified from the functional, which appear in different forms in the Schiffer and Teichmueller approaches.

Recent Developments, Open Problems and Scientific ProgressMade

Work of Prokhorov [1] and recent work of Roth [3] and Schippers [6] indicates that a completely new ap-
proach to the above central problembased on optimal controlmight be possible.

Roth [3] has shown that Schiffer’s method of boundary variation is equivalent to Pontryagin’s maximum
principle when applied to the Löwner differential equation. His work has been extended by Schippers [6],
who exhibited a set of invariants under the Löwner flow. Moreover, a Lie–theoretic interpretation of the
adjoint vector in Pontryagin’s maximum principle in terms of the associated quadratic differential is obtained.
This approach makes it clear that the main open problem (how does the extremal problem determine the
extremal function) is closely linked with the question of uniqueness in Löwner’s differential equation: In
general there are many ways to generate a conformal map by means of the Löwner differential equation using
different control functions for the same conformal map.

The relation between the control function and the generatedconformal map in Löwner’s differential
equation is known to be a notoriously difficult one and there are many open questions and problems (see
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[2] for a very recent solution to one of these problems). In the course of our discussion at BIRS this relation
between the control and the conformal map in Löwner’s equation also turned out to be crucial for constructing
feedback controls in order to be able to apply the optimal control machinery to the study of extremal problems
for conformal maps. We have been able to design such a controlfeedback problem under the assumption that
every (extremal) conformal map can be generated via Löwnerdifferential equation by a “canonical” control
function. This led to a natural conjecture how this canonical Löwner equation will look like. We are currently
working on a proof of this conjecture.
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Chapter 47

PIMS Summer School: BREAD
Summer School in Development
Economics (05ss100)

June 25 – July 1, 2005

Organizer(s): Siwan Anderson (University of British Columbia), Esther Duflo (Mas-
sachusetts Institute of Technology), Sendhil Mullainathan (Harvard)

The first summer school in analytical development economicsorganized by the fellows of BREAD (Bu-
reau for Research and Economic Analysis of Development) washosted by the Banff International Research
Station between June 25 and July 1, 2005. BREAD is a non-profitorganization dedicated to encouraging re-
search and scholarship in development economics (http://www.cid.harvard.edu/bread/). Its members include
both leading senior researchers in development economics and younger researchers working on issues of
central importance for development. An important aim of BREAD is to foster academic interaction between
researchers from different institutions and at different stages of their career, to promote the use of mathemati-
cal tools in the analysis of the development process. The BREAD summer school was an extremely important
element of this process.

The problems addressed in the field of development economicsare some of the most pressing facing
researchers in economics today. The methods needed to analyze these problems in a rigorous manner have
become increasingly technical. These methods range from mathematical tools developed in contract theory
and positive political economy on the one hand to methods of statistical inference developed for evaluation
methods ranging from randomized field experiments to estimation of dynamic structural models on the other.

A range of methodological approaches characterizes development economics. The BREAD Summer
School is aimed at exposing students, in the formative periods of their research careers, to theoretical and
econometric techniques outside that which they are exposedto in their home institutions. This expands and
enriches their research capabilities and helps them break into new areas that may not have previously been
on their research horizons. Deepening and broadening technical skills is an integral objective of the BREAD
Summer School and is a key element of the formation of the students involved.

Over the course of five days, students attended three hours oflectures each morning and three hours of
lectures each afternoon. Each three-hour lecture was givenby a different BREAD fellow. Lectures covered
the most up to date theoretical modelling techniques and empirical methods applied to the central topics in
micro-economic development.

Specific lecturers included:

• Empirical Methods by Sendhil Mullainathan (Harvard University)

• Randomized Experiments by Esther Duflo (Massachusetts Institute of Technology)
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• Land and Credit Markets by Abhijit Banerjee (MassachusettsInstitute of Technology)

• Markets and Firms by Robin Burgess (London School of Economics)

• Education by Michael Kremer (Harvard University)

• Health and Nutrition by Duncan Thomas (University of California at Los Angeles)

• Technology Adoption and Technological Change by Andrew Foster (Brown University)

• Theories of Inequality by Dilip Mookherjee (Boston University) Political Economy

• Corruption by Rohini Pande (Yale University)

Students also presented their own work in progress and got feedback from faculty. Faculty held office
hours where students go the opportunity to discus their research on a one-on-one basis.

Students feedback where extremely positive. They were particularly interested by the emphasis on meth-
ods and tools. The summer school has contributed to reinforce students’ technical skills, and will hopefully
contribute to make them ready to apply these skills in their own research.
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Chapter 48

2005 Summer IMO Training Camp
(05ss006)

Jun 28 – Jul 09, 2005
Organizer(s): Bill Sands (University of Calgary)

The 2005 IMO Training Camp started on Saturday June 25 with the arrival in Calgary of four of the six
student Team members and two of the three adult Team members.Two of the Team members, Peng Shi and
Yufei Zhao, were permitted to show up at the Camp a few days late so that they could attend the awards
ceremony in Washington for the USAMO, in which they had tied for third place. One of the adult Team
members, Adrian Tang, is a graduate student at the University of Calgary and was already here. Also arriving
on June 25 were two students from Edmonton and one from Vancouver, chosen, along with three students
from the Calgary area, to participate in the Calgary portionof the Camp.

The participants were:
Team members: Lin Fei, Elyot Grant, Richard (Yang) Peng, David (Dong Uk) Rhee, Peng Shi, Yufei

Zhao;
Adult trainers: Felix Recio (Leader), Dorette Pronk (Deputy Leader), Adrian Tang (Deputy Observer),

Elena Braverman, Andy Liu, Paul Ottaway;
“Local” (Alberta and BC) students: Graham Hill and Brian Yu from Edmonton; Allen Zhang from Van-

couver; Sarah Sun from Okotoks; and Zheng Guo and Yiyi Yang from Calgary.
Everyone was housed in Cascade Hall, an apartment-style Residence on campus, two students to a room.

Meals were catered by the Students Union, at set times in a certain room.

Training began in the morning of June 26, with lectures and problem sets. The three adult Team members
were assisted by Paul Ottaway, a graduate student at Dalhousie, who had just finished attending a math meet-
ing at Banff and had volunteered to assist in part of the Camp.Another Calgary student, Boris Braverman,
was invited to take part in this training during the day. In the afternoon, all seven Team members present at
the Camp went with me to a nearby mall to purchase the Team uniforms (pants).

Graham Wright arrived in Calgary in the early afternoon of Monday June 27, to prepare for the Media
Event to take place the next day. That evening he treated the adult Team members and me to supper at a
nearby restaurant.

In the morning of Tuesday June 28 we were joined by three more (much younger) “local” students for the
day: Jaclyn Chang and Hunter Spink of Calgary, and Mariya Sardarli of Edmonton, along with their parents.
After some “fun” math activity in the morning, the “Media Event” took place from noon till 2:00 PM. Peng
Shi and Yufei Zhao arrived in Calgary just in time to take partin this event and be introduced to the media
and the guests along with the rest of the Team. The rest of the afternoon was spent in further “fun” training
activity, and at 4:00 the Calgary portion of the Camp ended with the departure of all the local students. The
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Team members and trainers were then driven to the BIRS facility in Banff for the remainder of the Training
Camp.

BIRS of course was again an unmatchable setting for the Camp,with the facilities, the food, and the
scenery all superb. (There were, however, noticeably fewerelk than in 2003.) Training continued, with an
increased emphasis on mock contests.

Besides the concentrated training that took place at BIRS, the Team was taken on some excursions. On
July 2 we drove to the Columbia Icefields with a stop at Lake Louise on the way back. That evening we went
to see “War of the Worlds” at the Banff movie theatre. In the evening of July 5 most of us attended a concert
at a Banff church. Then on July 6 we all walked up the Sulphur Mountain trail. The weather turned rainy
once we were at the top of the mountain, and we eventually decided to take the gondola down rather than
risk the slippery hike down the trail. Once at the bottom we visited the hot springs, where only two Team
members were prepared to go into the pool.

On July 3 Paul Ottaway left the Camp to return to Halifax. On July 6 both Elena Braverman and Andy
Liu arrived at the Camp to help out with the rest of the training, and Elena and her family took part in the
excursion that day to Sulphur Mountain. On July 7 Felix left the Camp to fly to Toronto, where the next day
he continued on to Merida, Mexico (the site of the IMO) to helpprepare the contest. The rest of the Team
stayed at Banff to continue training under the supervision of Dorette, and with the help of Elena and Andy.

The Team left Banff on July 9 and returned to Calgary. That afternoon everyone took in the Calgary
Stampede. The next morning the Team left for Toronto, where they stayed in a hotel near the airport, and in
the morning of July 11 they flew to Mexico.

Many thanks to:

• The staff and management at BIRS, especiallyBrenda Shakotko, the BIRS Station Manager, who
made our stay there so memorable; also,Gemai Chen, the Calgary representative of PIMS, andNassif
Ghoussoub, the BIRS head, were both very supportive of the idea that theIMO Camp should be at
BIRS.

• Paul Ottawayof the Department of Mathematics and Statistics of Dalhousie University,Elena Braver-
man of the Department of Mathematics and Statistics of the University of Calgary, andAndy Liu of
the Department of Mathematics of the University of Alberta,who were Trainers during the IMO Camp.

• Betty Teare, Budgets and Administration Manager of the Department of Mathematics and Statistics
of the University of Calgary, who helped to arrange the site of the Media Event, booked the food, and
took the pictures at the Media Event.

• Grady Semmens, of Media Relations at the University of Calgary, for assistance in setting up and
running our successful and enjoyable Media Event in the Learning Commons on campus.

• University of Calgary graduate studentGarth Boucher, who drove the van taking the Team to Banff
on June 28 and bringing them back on July 9.

• Anthony Fink , who helped meet the IMO Team at Calgary airport on June 25 anddrove them to the
University.

• Tong Yu of Edmonton, who drove Edmonton students Brian Yu (his son) and (Team member) David
Rhee to Calgary on June 25.

• Former IMO Team member (and now University of Calgary student) Alex Fink , who helped out during
the Calgary part of the IMO Camp.

• Hugh Williams of the Department of Mathematics and Statistics of the University of Calgary, who
met Graham Wright at the Calgary airport on June 27 and drove him to the university.

• Yanmei Fei, a secretary in the Department of Mathematics and Statistics of the University of Calgary,
who drove Graham Wright and Vancouver student Allen Zhang tothe Calgary airport on June 28.
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Computing the Continuous Discretely:
Integer-point enumeration in polyhedra
(05ss027)

Aug 06 - Aug 20, 2005

Organizer(s): Matthias Beck (San Francisco State University), Sinai Robins (Temple Uni-
versity)

This is the final report of the MSRI/Banff Summer Graduate School at the Banff International Research
Station, August 6–20, 2005. The theme was integer-point enumeration in rational polyhedra, which also goes
by the name of Ehrhart Theory.

The Location

We found the Banff International Research Station nothing short of ideal for an MSRI graduate summer
school. Lodging, meals, and lecture halls are all on the samesite, away from the distractions, say, of a
city. This setting results in an automatic networking amongthe students. The rapport among the students was
wonderful to witness and had, needless to say, much positiveinfluence on the mathematics that was discussed
among them. The beautiful scenic setting of the Banff Centeradded excitement among the participants and
fostered further interaction during free time. The staff onsite was always helpful, and the computer support
was very good. Brenda Shakotko, the BIRS Station Manager, deserves our sincere thanks for making sure
that every little detail of the summer school was running smoothly.

The Schedule

We settled on an 11-day schedule for the summer school, starting with lectures on Sunday morning, having the
middle weekend (Saturday and Sunday) off, and ending with the Friday afternoon session in the following
week. Each morning consisted of two hour lectures separatedby a half-hour coffee break. The afternoon
started with two hour TA sessions, also separated by a coffeebreak. We had two excellent TA’s, Kristin
Camenga and Kevin Woods, who alternated from one day to the next. The afternoon sessions were early
enough (starting at 1 p.m.) to allow ample time for the students to interact in smaller groups on their own
time. This schedule worked very well for us. We got through material equivalent to one semester of a
second-year graduate course. One has to keep in mind, though, that the students had a complete manuscript
of the lecture notes, so that we could leave certain details to them (often in form of afternoon exercises). The
middle weekend was intentionally left free, to allow the participants to explore the area around Banff. A few
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students volunteered to organize large group activities; we ended up having groups that went on a day hike,
water rafting, a horse ride, a trip to Lake Louise and a nearbyglacier, and a day bike ride. It is safe to say that
there was an activity for every participant.

The Program

We were pleased that we were able to cover all 12 chapters of our book in progressComputing the continuous
discretely, to be published in the Springer UTM series. The participants seemed excited about the material
that was covered. While it is natural that not everyone can follow every detail, especially in the more advanced
topics, the students showed 100% participation until the very last day. Similarly, the afternoon problem
sessions were always lively, and all of them were attended byall the students. We were very grateful for the
active involvement of our students and the TA’s, all of whom gave us invaluable feedback on our manuscript.

The Participants

There were 30 participating graduate students from 22 universities in Canada, Mexico, and the US. Among
them were 10 women and 8 under-represented minorities.

We conclude with some of the students’ comments. They are quoted from a short survey that we took at
the end of the first week.

“I think the lectures are great and I love their casual/informal style. ”
“Too many mosquitos, but the time seems to fly during the lectures and the problem sessions. I like having

a break every hour as well.”
“This is wonderful material and both of you are giving nice lectures. Keep up the great work! The book

is well-written, generally enjoyable to read. I would say the organization is a bit unorthodox. That makes the
reading more interesting.”

“I also very much enjoy the conversations and interacting with fellow math people.”
“The location is great and the material is fun. Awesome summer school.”
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