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Chapter 1

Interactions Between Model Theory and
Geometry (04w5534)

March 14–18, 2004
Organizer(s): Jan Denef (Katholieke Universität Leuven), Deirdre Haskell (McMaster
University), Ehud Hrushovski (Hebrew University), Angus Macintyre (University of Ed-
inburgh), Anand Pillay (University of Illinois, Urbana-Champaign), Patrick Speissegger
(McMaster University)

Model theory is in a period of rich activity. Advances in puremodel theory are finding immediate ap-
plications, in particular to the model theory of fields, while the applications are themselves motivating the
abstract developments. Applied model theory is using ideasand methods from other parts of mathematics,
ranging from homology theory to complex analytic geometry.These two strands of research were exhibited
at the BIRS workshop. The workshop was used as an opportunityto exhibit and elucidate two large pieces of
technical work which have been in the process of developmentfor several years. The first of these, “Homol-
ogy in o-minimal theories” is a prime example of the way in which a mathematical tool can be developed to
apply in a wider model-theoretic context. The second tutorial, “Imaginaries in valued fields” illustrates the
way in which an applied context (in this case, an algebraically closed valued field) has motivated a theoret-
ical development (the notion of stable domination). The three afternoon sessions presented recent research
developments in three different active areas of research inapplied model theory.

A. Berarducci: Tutorial on o-minimality

The principal aim of the tutorial was to describe the “transfer approach” in the study of definable groups and
definable manifolds in an o-minimal structure, where by “transfer approach” I essentially mean a reduction
to the classical (i.e. locally compact) case. The 5 talks of the tutorial focused in particular on work in
collaboration with M. Otero in this direction, as well as on related results and conjectures by other authors,
which I describe in the sequel.

The definable sets in any o-minimal structureM admit a cell decomposition analogous to the cylindric
cell decomposition for semialgebraic subsets ofRn with the difference that cells are bounded by graphs of de-
finable continuous functions rather than semialgebraic functions. The analogy with semialgebraic geometry
may however be misleading, since in general an o-minimal structures may not admit an easy description of its
definable continuous functions (hence of its definable sets). The problem is the lack of quantifier elimination
theorems or model completeness theorems.

We are interested in definable groups in an o-minimal structureM , namely groups whose underlying set
is definable and with a definable group operation. (We will assume in the sequel thatM expands a field,
although for many results this assumption is not necessary.) Such groups have been studied by many authors
and the results so far obtained suggest a close analogy between definable groups and classical Lie groups.
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In particular it follows from the results of A. Pillay [26] that if the underlying set of the o-minimal
structure is the real line, then every definable group is indeed a Lie group, while Y. Peterzil, A. Pillay and
S. Starchenko [24] obtained matrix representation theorems for definable groups which confirm the analogy
with Lie groups. Despite these results, many fundamental questions on definable groups remain open. The
difficulty is that many tools available in the study of classical Lie groups are not available in the o-minimal
context, mainly due to the fact that definable groups and definable manifolds may fail to be locally compact
(if the structureM is not locally compact).

This motivates the search for “transfer theorems” which allow, for various problems, a reduction to the
case when the underlying set ofM is the real line.

A considerable amount of work in this direction was motivated by the following problem. It is known that
every compact Lie group has torsion elements (namely elements of finite order) and Peterzil and Steinhorn
[25] asked whether the same holds for every “definably compact” group (such groups need not be compact in
the classical sense). It was known (Strzebonski [31]) that if a primep divides the “o-minimal Euler charac-
teristic” E(G) of a definable groupG, thenG has an element of orderp. (The o-minimal Euler characteristic
of a set is defined as the number of its even dimensional cells minus the number of its odd dimensional cells,
with respect to any given cell decomposition.) This and other results by the same author establish a beautiful
analogy between finite groups and definable groups, with the o-minimal Euler characteristic playing the role
of the cardinality. It follows in particular from the above mentioned result that ifE(G) = 0 thenG has
elements of any prime order. On the other hand the analogy with Lie groups suggests the conjecture (now
verified) that ifG is definably compact thenE(G) = 0.

After the development of o-minimal homology, initiated in the Ph.D. thesis of A. Woerheide [32], a new
notion of Euler characteristic became available in the o-minimal category, defined as the alternating sum of
the ranks of the o-minimal homology groups. The two notions of Euler characteristic are not equal in general,
but they do coincide for closed and bounded sets (any definably compact group admits an embedding as a
closed and bounded subset ofMn for somen). This opened the way for the homology approach in the study
of definable groups.

In a paper with M. Otero [1] we obtain some “transfer results”establishing natural isomorphisms which
connect the o-minimal versions of the homology groups and the fundamental group with the corresponding
classical notions, and we apply the result to show that everydefinable manifold of dimension not equal to
4 corresponds in a natural way to a classical topological manifold. (We could not eliminate the dimension
assumption, but it turned out to be harmless in the intended applications to groups.) Using these results we
then obtain [2] a proof that for every definable compact groupG we haveE(G) = 0 (henceG has torsion). A
different solution to the same problem had been obtained by M. Edmundo (our work is independent). Other
results by Edmundo allow to count the number of torsion elements of a given order and give information on
the o-minimal co-homology rings.

Recently Anand Pillay ([27] stated an insightful conjecture which, if solved positively, would greatly
clarify the relationship between Lie groups and definable groups. The conjecture states that one can associate
in a canonical way to every definable groupG a classical Lie groupG/G00. HereG00 is the smallest
“type definable subgroup of bounded index” (whose existenceis part of the conjecture) andG/G00 has a
suitable “logic topology” studied by Lascar and Pillay. Theconjecture states in addition that ifG is definably
compact thenG/G00 resemblesG very closely. In particular the o-minimal dimension ofG coincides with
the dimension ofG/G00 as a Lie group and these two groups have the same torsion. The results in[27]
establish the conjecture for every definable groups of dimension one and for every definably simple group.
Other partial results were obtained in our recent preprint with M. Otero [4]. Thanks to these results and the
exchange of ideas and collaborations made possible during the Banff meeting, we now know that the type
definable subgroups of bounded index satisfy the DCC (in analogy with the closed subgroups of a Lie group)
and thereforeG00 exists andG/G00 is a Lie groups. What remains open is the computation of the dimension
of G/G00.

The analogy between definable groups and Lie groups suggeststhe possibility of defining an analogue
of the Haar measure in any definably compact group. With this aim in mind in the preprint [3] we define
a finitely additive real valued measure in every o-minimal expansionM of a field and we show that the
definable subsets ofMn contained in the finite part ofMn are measurable (if the underlying set ofM is the
real line one obtains the Jordan measure). This entails thatwe can indeed define the analogue of the Haar
measure for certain definably compact groups, but the general problem remains open.
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D. Macpherson: Tutorial on imaginaries in valued fields

A tutorial was presented on recent work on elimination of imaginaries in algebraically closed valued fields,
together with extensions and applications. This consistedof 5 lectures, two by Dugald Macpherson, two
by Deirdre Haskell, and one by David Lippel. Material from [15], [16] and the survey [17] was presented,
together with work from a manuscript in preparation of E. Hrushovski and B. Martin.

A complete first order theoryT haselimination of imaginaries(e.i.) if, for everyM |= T , everyn ≥ 1,
and every∅-definable equivalence relationE onMn, there arem ≥ 1 and an∅-definable functionf = fE :
Mn → Mm such that, forx, y ∈ Mn, xEy holds if and only iff(x) = f(y). TheE-classes are called
imaginaries. Close model-theoretic study of a structure usually requires one to understand the imaginaries,
and e.i. ensures that each imaginary is coded by a tuple in thestructure. Elimination of imaginaries can always
be guaranteed by adjoining a new sortMn/E for eachn, E as above, to obtainM eq; in the process, however,
one can lose sight of definability. An intermediate step is toadjoin toM certain specific, well-understood,
sorts fromM eq, and prove elimination of imaginaries with these sorts.

Suppose thatK is an algebraically closed field equipped with a non-trivialvaluationv : K → Γ, where
Γ is an ordered group. LetR := {x ∈ K : v(x) ≥ 0} be the valuation ring ofM ,M its maximal ideal, and
k := R/M be the residue field. The model theory of(K, v, Γ) was investigated by Abraham Robinson in
[28]. From his work a quantifier elimination can also be obtained, and it can be shown thatΓ is o-minimal,k
is strongly minimal, and both are stably embedded. However,imaginaries are rather complicated. The main
theorem of [15] is that one obtains e.i. after adding, for each n ≥ 1, two sortsSn andTn. Here,Sn is the set
of all R-lattices inKn, that is, free rankn R-submodules ofKn. If A ∈ Sn thenMA is anR-submodule
of A, andTn is the union, over allA ∈ Sn, of thek-vector spacesred(A) := A/MA; in particular, there is
a mapπn : Tn → Sn whose fibres aren-dimensionalk-vector spaces. It is also possible to identifySn with
the coset spaceGLn(K)/GLn(R), and to treatTn similarly. It is known that if all but finitely many of the
Tn are omitted, then e.i. no longer holds.

The paper [16] consists of a close model-theoretic study of ACVF, the theory of algebraically closed
valued fields with the sortsSn andTn (in addition to the ‘home sort’K). This theory is certainly not stable
(it interpretsΓ). However, many ideas from stability theory are applicable. If C is a parameter set, there is
a many-sorted structureIntk,C with a sort forred(A) for eachC-definable latticeA, with all the induced
C-definable structure. This structure isω-stable with elimination of imaginaries, and the elements of any
C-definable stable and stably embedded set are coded by tuplesfrom Intk,C .

Certain types overC are ‘stable dominated’, meaning that their independent extensions are somehow
determined by their ‘trace’ inIntk,C . Some model theory of stable domination is developed in [16]in
complete generality, i.e. not specifically for ACVF. In ACVF, it is shown that a type is stably dominated
precisely if it is ‘orthogonal’ toΓ. Given sufficient orthogonality toΓ, all reasonable notions of independence
(of which there are several) coincide.

In a recent preprint, Hrushovski and Martin have shown that the p-adic field also has elimination of
imaginaries, again with the sortsSn (but theTn are not required). The proof uses both the elimination
of imaginaries for ACVF, and ideas from its proof, but the result is formulated in greater generality, with
many potential applications to further structures. As a consequence, they show that certain power series
associated with finitely generated nilpotent groups are rational. If G is such a group, then-dimensional
complex charactersχ1, χ2 of G are said to betwist-equivalentif there is a 1-dimensional complex character
φ of G such thatχ2 = χ1 ◦ φ. By work of Lubotzky and Magid it is known that the numberan(G) of twist-
equivalence classes ofn-dimensional irreducible complex characters ofG is finite. Hrushovski and Martin
show that ifp is a prime, the power seriesΣn≥0apnTn is rational. The proof uses some of the methods
developed in [14] and extended by du Sautoy, but appears to require an understanding of imaginaries inQp.

Many issues arise from the above work: elimination of imaginaries in other valued fields, and their
expansions by subanalytic functions or by generic automorphisms or derivations; the structure of defin-
able/interpretable groups and fields; uniformity inp for thep-adic e.i., and uniformity inp for group-theoretic
rationality results; further development of the model theory of stable domination. There has been progress
on some of these, for example in work by Hrushovski on groups with a stably dominated type, and work by
Mellor on imaginaries in real closed valued fields.

In the tutorial, an overview of ACVF was presented. Then aspects of the proof of e.i. were described,
with a slightly different treatment due to Lippel. The main ideas of stable domination were sketched, along



6 Five-day Workshop Reports

with some of the independence theory. Finally, it was shown how p-adic e.i. can yield rationality results for
finitely generated nilpotent groups.

L. Lipshitz: Session on Rigid Analytic Geometry andp–adic and Mo-
tivic Integration

1. Rigid subanalytic sets and rigid analytic quantifier elimination — Leonard Lipshitz
This talk surveyed the current state of knowledge on the subjects in the title. LetK be a complete,

algebraically closed valued field.K0 = {x ∈ K : |x| ≤ 1}. Let C be a class of analytic function(K0)n →
K, n ∈ N. D : K2 → K is restricted division.Lan(C) is the language ofK enriched with symbols for the
functions inC andLD

an(C) isLan(C) with D adjoined.
The corresponding (global) semi–analytic (resp.D–semianalytic) subsets of(K◦)m are those defined by

quantifier freeLan(C)-(resp.LD
an(C)-) formulae. The corresponding subanalytic subsets of(K◦)m are the

projections of semi–analytic subsets of(K◦)m+n.
If K has quantifier elimination inLD

an(C) (or quantifier simplification (model completeness) inLan(C))
then one obtains a natural theory of subanalytic sets in close analogy to the real andp–adic cases.

Natural classes to consider forC are

1. J the strictly convergent power series

2. O the overconvergent elements ofJ .

3. S the separated power series.

•K hasQE in LD
an(S), giving a natural theory of rigid subanalytic sets, including dimension theory and

Lojasiewicz inequalities. [18]
•K has quantifier simplification inLan(J ) giving the theorem on the complement for afinoid (i.e. based

onJ ) subanalytic sets. [19]
• K has quantifier elimination inLD

an(O) giving a natural theory of “strongly” subanalytic sets, which
are the images of analytic sets under affinoid proper maps. [29]
• In [12], [13] and [30] it is claimed thatK hasQE in LJD

an(J ). A key step (the global flattening
theorem) in the proof is incorrect. A counter example to global flattening is given in [21].

2. Henselian Fields with Analytic Structure, Denef-Pas Cell Decomposition, and its Extension to the
Analytic Category— Zachary Robinson– (joint work with Leonard Lipshitz and Raf Cluckers) Algebraic
cell decomposition for Henselian valued fields has been usedby Denef [6] in developingp-adic integration
techniques, and more recently by Denef and Loeser [8], and others, in developing the theory of motivic
integration. This talk has two parts. The first is an exposition of the algebraic cell decomposition techniques
of P. J. Cohen [5], J. Denef [7] and J. Pas [23]. The second parttreats the work in progress to extend these
methods to handle analytic functions. Here, one must first define carefully the notion of analytic structure
on a valued field that may not be complete in a rank one valuation, e.g., a non-standard model of a field
that is complete (cf. [9] and [22].) In this setting, Weierstrass Preparation techniques and the completeness
of the coefficient ring compensate for the lack of completeness of the domain to yield a suitably rich and
general analytic function theory (cf. [20].) One then uses this theory to obtain analogues of classical results
of Mittag-Leffler on functions analytic in an annulus over the complex numbers (cf. [10].) This permits a
reduction of the problem of analytic cell decomposition to the algebraic case.

3 and 4. A New Framework for Motivic Integration — Raf Cluckers and Francois Loeser In two talks
(by R. Cluckers and F. Loeser) a new framework for motivic integration is presented. This is joint work by
Cluckers and Loeser. In this new framework, several new concepts, new arguments, new results, and gen-
eralised results are introduced. A class of motivic constructible functions is defined, as well as the notion
of positive motivic constructible functions, by analogy toa class of p-adic functions one would like to in-
terpolate motivically. For these classes of functions a motivic integral is defined. Essential is that now the
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integrals may depend on parameters, in other words, given a constructible function, one can integrate some
variables out, and end up with a constructible function in the other variables. In the definition of the inte-
grals, no completion process is needed, i.e., no approximation process is used to define the integrals. Instead,
a parametrisation process is used where the parameters run over the residue field and the value group (the
integers) of the valued field of equicharacteristic 0. Hence, a notion of measure is needed not only on the
valued field, but also on the value group (the counting measure), and on the residue field. On the residue
field, one takes as measure just formally the class of the set under isomorphisms. When infinite sums occur,
we show that these can always be written as geometric power series and hence, their sum exists in certain
localisations without needing any completion. The notion of positivity is based on the observation that one
can work with semigroups instead of groups, and every element of a semigroup is understood to be positive.
We let the motivic measure and the positive constructible functions take values in the semi-Grothendieck
group G of isomorphism classes of a certain kind of subsets ofvector spaces over the residue field. After
inverting additively any element in these semigroups, one can go to Kontsevich’s notion of motivic integrals
by applying a “forgetful”-morphism from G to (a certain localisation of) the Grothendieck ring of varieties
and by completing this. One can also specialise to Denef-Loeser’s notion of arithmetic motivic integral by
applying the Denef-Loeser map from G to (a certain localisation of) the Grothendieck ring of Chow motives
(tensored with the rational numbers) and by completing this. Finally, one can interpolatep-adic integrals for
p big enough, i.e., our notion of motivic integrals gives a geometric understanding ofp-adic integrals forp big
enough. In this framework, a completely general change of variables is obtained. In this generality, a direct
image formalism is developed. In the first talk by Cluckers, ageneral introduction of the new concepts and
new framework is given. The notion of positivity, as well as the measures on the valued field, residue field
and value group are explained. The proof of change of variables is explained. In Loeser’s talk, more exact
definitions are given than in the general introduction by Cluckers, the proof of Fubini’s theorem is given, and
the direct image formalism is explained. The work presentedhere is available in resume form at the arxiv,
and a paper containing all the proofs will be available soon.

T. Scanlon: Session on jets

The portion of the program on jets was organized around the jet space construction and its applications to
problems in the model theory of difference and differentialfields. Talks in this session were presented by
Alexandru Buium, Zóe Chatzidakis, Rahim Moosa, Anand Pillay and Thomas Scanlon.

Alexandru Buium spoke aboutp-jet spaces of modular curves. A general construction attaches to any
smooth schemeX over ap-adic ring a tower of formal schemes called thep-jet spaces of X. When this
construction is applied to modular curves a theory emerges that generalizes the theory ofp-adic modular
forms. Structure theorems can be obtained for the resultingrings of “p-differential” modular forms.

Zoé Chatzidakis spoke about two results related to the jet space methods. First, she reported on work
of Bustamante showing that the methods and results of Pillay-Ziegler extend to finite dimensional sets de-
fined in difference-differential fields. Secondly, the jet space methods show that (in appropriate theories) if
SU(a/c) < ω andc = Cb(a/c), thentp(c/a) is internal to the non-locally modular minimal sets. Possible
extensions of the result to general supersimple theories were discussed.

Rahim Moosa discussed jet spaces from the point of view developed by Grothendieck in the 1950s. He
then discussed how the Campana-Fujiki theorems on complex analytic spaces, which served as precursors to
the Pillay-Ziegler theorem, could be understood in this geometric language.

Anand Pillay discussed the category of algebraicD-varieties and algebraicD-groups. Jet space results
were used (in joint work with Kowalski) to show that the category of algebraicD-groups has quantifier-
elimination. On the other hand, for trivial reasons the category of algebraicD-varieties does not have quan-
tifier elimination. He discussed the issue of finding new “complete” objects among algebraicD-varieties.
Some positive answers were given within the context of groups.

Thomas Scanlon spoke about joint work with Moosa and Pillay in which arc spaces are developed for
possibly infinite dimensional partial differential varieties to prove a dichotomy theorem for regular types in
partial differential fields. Namely, every regular type in apartial differential field is nonorthogonal to some
regular generic type of a definable additive group.



8 Five-day Workshop Reports

C. Steinhorn: Session on o-minimality

O-minimality has been one of the central areas of research inmodel theory for about twenty years. The
wealth of mathematically important examples of o-minimal structures now known combined with the pow-
erful model-theoretic tools that have been developed have led to applications in fields as diverse as repre-
sentation theory and statistics. The talks in this session were selected to represent a range of topics in and
around o-minimality. Starchenko’s contribution continues to advance the theme that abelian groups definable
in o-minimal structures resemble real Lie groups; Aschenbrenner’s and Miller’s talks concern new model-
theoretic contexts beyond o-minimality in which the definable sets of an ordered structure are still what might
be called “tame.” The abstracts follow.

Matthias Aschenbrenner, University of Illinois at Chicago. Title: Gaps inH-fields
Abstract: The class ofH-fields is a common algebraic abstraction of Hardy fields and of (certain) fields

of transseries. In a joint project, Lou van den Dries, Joris van der Hoeven and myself are trying to obtain a
model-theoretic understanding of this class. In my talk I will focus on a particularly troublesome phenomenon
(gaps) connected with the presence of transexponential elements in Hardy fields.

Chris Miller, Ohio State University Title. Expansions of o-minimal structures by trajectories of definable
planar vector fields.

Abstract. An expansion of the real field is said to be o-minimal if every definable set has finitely many
connected components. Such structures are a natural setting for studying “tame” objects of real-analytic
geometry such as non-oscillatory trajectories of real-analytic planar vector fields. It turns out that even
some infinitely spiralling trajectories of such vector fields have a reasonably well-behaved model theory; this
motivates the notion of d-minimality, a generalization of o-minimality that allows for some definable sets to
have infinitely many connected components. The following trichotomy illustrates why we are interested in
this notion. LetU ⊆ R2 be open andF : U → R2 be real analytic such that the origin0 is an elementary
singularity ofF (i.e.,F−1(0) = {0} and the Jacobian ofF at0 has a nonzero eigenvalue). Letg : (0, b)→ R2

be a solution toy′ = F (y) such thatg(t)→ 0 ast→ 0+. Then, after possibly shrinkingb, the expansion of
the real field by the curveg((0, b)) either is o-minimal, is d-minimal and not o-minimal, or definesZ.

Sergei Starchenko, University of Notre Dame Title: On torsion free groups definable in o-minimal struc-
tures.

Abstract: (Joint work with Y. Peterzil) We consider groups definable in the structureRan and certain
o-minimal expansions of it. We prove: IfG = 〈G, ∗〉 is a definable abelian torsion-free group thenG is
definably isomorphic to a direct sum of〈R, +〉k and 〈R>0, ·〉m, for somek, m ≥ 0. Furthermore, this
isomorphism is definable in the structure〈R, +, ·, G〉. In particular, if suchG is semialgebraic, then the
isomorphism is semialgebraic. We show how to use the above result to give an “o-minimal proof” to the
classical Chevalley theorem for abelian algebraic groups over algebraically closed fields of characteristic
zero.

List of Participants

Aschenbrenner, Matthias(University of Illinois, Chicago)
Belair, Luc (Universit́e du Qúebecà Montŕeal)
Ben Yaacov, Itay(Massachusetts Institute of Technology)
Berarducci, Alessandro(Universit̀a di Pisa)
Bouscaren, Elisabeth(Universite Denis-Diderot Paris 7)
Buium, Alexandru (University of New Mexico)
Chatzidakis, Zoé (CNRS - Universit́e Paris 7)
Cherlin, Gregory (Rutgers, The State University of New Jersey)
Cluckers, Raf (École Normale Suṕerieure)
Dolich, Alf (University of Wisconsin)
Ealy, Clifton (University of California, Berkeley)
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Chapter 2

Topology of Manifolds and Homotopy
Theory (04w5533)

March 20–25, 2004
Organizer(s): Gunnar Carlsson (Stanford University), Ian Hambleton (McMaster Univer-
sity), Erik K. Pedersen (SUNY Binghamton)

The announced purpose of this meeting was to bring together researchers in a wide variety of areas in
algebraic and geometric topology, to investigate problemsof current interest, and to make new connections.
In particular, we hoped for a productive exchange of ideas and viewpoints among mathematicians in active
areas of homotopy theory and the topology of manifolds, in order to enrich the future development of both
subjects.

There were 37 participants, mostly from universities in theUS and Canada, and including 20 young
mathematicians (age< 35). Their research interests covered many active areas of ourchosen subject, and
since the time of the meeting we have received many positive comments from the participants about the
breadth and interaction of the program.

The first talk was somewhat philosophical: Matthias Kreck advocated the study of ‘real’ manifolds oc-
curing ‘naturally’, such as those related to Lie groups or algebraic varieties. He proposed that simplicity and
concreteness should be the characteristics of good problems. This point of view provoked extensive comment
and debate throughout the meeting. The closing talk presented the opposite view. Frank Quinn vigorously
defended abstraction and the search for unity in complexity. In between of course we had theorems and con-
jectures of all kinds, as well as a very entertaining problemsession. The organizers felt that the most striking
feature of our meeting was the productive interaction between the mathematical generations. Two-thirds of
the talks were given by the younger researchers.

Here are some of the main topics discussed at the meeting:

1. “Structured homotopy theory”, meaning homotopy theory on the category of modules over a ring
spectrum (Dundas, Klein, Kitchloo, Mandell, Roendigs)

2. Controlled and equivariant topology, surgery (Crowley,Davis, Friedman, Hughes, Ranicki, Reich,
Quinn, Williams)

3. Conjectures of Baum-Connes and Novikov on assembly maps in K-theory and L-theory (Kreck, L̈uck,
Reich, Quinn, Connolly, Goldfarb, Rosenthal)

4. New product structures on the homology of the free loop space of a manifold, moduli spaces (Cohen,
Wahl, Ganter)

5. Smoothing of homotopy actions of finite groups on spheres,and free simplicial actions of finite groups
on products of spheres (Adem, Davis, Grodal)
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6. p-compact groups and the smoothing of finite H-spaces (Bauer, Grodal, Pedersen)

List of Participants

Adem, Alejandro (University of Wisconsini, Madison)
Anderson, Laura (Binghamton University)
Banagl, Markus (University of Cincinnati)
Bauer, Tilman (Westf̈alische Wilhelms-Universität Münster)
Carlsson, Gunnar (Stanford University)
Cohen, Ralph(Stanford University)
Connolly, Francis X. (University of Notre Dame)
Crowley, Dairmuid (Penn State University)
Davis, James F.(Indiana University)
Dundas, Bjoern (Norwegian University of Science and Technology)
Friedman, Greg (Yale University)
Ganter, Nora (Massachusetts Institute of Technology)
Godin, Veronique (Stanford University)
Goldfarb, Boris (University of Albany)
Grinberg, Anna (University of California, San Diego)
Grodal, Jesper(University of Chicago)
Hambleton, Ian (McMaster University)
Hughes, Bruce(Vanderbilt University)
Kitchloo, Nitu (Johns Hopkins University)
Klein, John (Wayne State University)
Korzeniewski, Andrew (University of Edinburgh)
Kreck, Matthias (University of Heidelberg)
Lawson, Tyler (Stanford University)
Lueck, Wolfgang (Universitat Muenster)
Mandell, Michael A. (University of Chicago)
Nicas, Andrew (McMaster University)
Noohi, Behrang(University of Western Ontario)
Paulo Santos, Joao(Massachusetts Institute of Technology)
Pedersen, Erik(SUNY Binghamton)
Quinn, Frank (Virginia Polytechnic Institute and State University)
Ranicki, Andrew (University of Edinburgh)
Reich, Holger ((Universitat Muenster)
Roendigs, Oliver(University of Western Ontario)
Rosenthal, David(McMaster University)
Scull, Laura (University of British Columbia)
Wahl, Nathalie (Aarhus Universitet)
Williams, Bruce (University of Notre Dame)



Chapter 3

Orthogonal Polynomials;
Interdisciplinary Aspects (04w5530)

March 27–April 1, 2004

Organizer(s): Percy Deift (Courant Institute of Mathematical Sciences),Lance Littlejohn
(Utah State University), David Sattinger (Yale University), Jacek Szmigielski (University
of Saskatchewan)

Introduction

Since 1984, the community of researchers in orthogonal polynomials and special functions have held regular
international symposia in Europe. Indeed, these meetings,their venues, and the year of the symposium:

1. First International Symposium on Orthogonal Polynomials, Special Functions and Applications, Bar-
Le-Duc, France; 1984.

2. Second International Symposium on Orthogonal Polynomials, Special Functions and Applications,
Segovia, Spain; 1986.

3. Third International Symposium on Orthogonal Polynomials, Special Functions and Applications, Evian,
France; 1992.

4. Fourth International Symposium on Orthogonal Polynomials, Special Functions and Applications,
Delft, The Netherlands, 1994.

5. Fifth International Symposium on Orthogonal Polynomials, Special Functions and Applications, Pa-
tras, Greece, 1999.

6. Sixth International Symposium on Orthogonal Polynomials, Special Functions and Applications, Rome,
Italy, 2001.

7. Seventh International Symposium on Orthogonal Polynomials, Special Functions and Applications,
Copenhagen, Denmark, 2003.

The Eighth International Symposium on Orthogonal Polynomials, Special Functions and Applications is
currently in the planning stage and will be held in Munich, Germany in July, 2005. In addition, there have
been several large Spanish national conferences that have attracted a large international audience, including
Laredo (1987, 1992), Gijon (1989), Vigo (1990), Granada (1991), and Sevilla (1997).
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In North America, there has been one large NATO-sponsored meeting on orthogonal polynomials (Colum-
bus, Ohio) and several smaller special sessions of nationaland regional AMS meetings dedicated to orthog-
onal polynomials and related topics. The organizers of the BIRS Workshop on Orthogonal Polynomials;
Interdisciplinary Aspects felt it was necessary to organize a mid-size conference in this area with a North
American venue to further invigorate North American interest as well as to bring the core of researchers in
integrable systems closer together to orthogonal polynomials and special functions.

Areas of Participation

The following areas of mathematics were represented at the BIRS Workshop on Orthogonal Polynomials;
Interdisciplinary Aspects together with the names of the people who gave seminars in these areas; there were
26 talks (each 50 minutes duration) given during the five daysof this workshop by participants from 17
different countries.

1. Lie algebras and Darboux transform theory (Luc Vinet, Francisco Marcellan)

2. Integrable Systems (John Harnad, Hans Lundmark, Mark Adler, Marco Bertola)

3. Moment theory (Christian Berg, Andreas Ruffing)

4. Classical theory of OPS’s and Special Functions (RichardAskey, Christian Berg, Lance Littlejohn,
Mourad Ismail)

5. Asymptotic theory of orthogonal polynomials (Alexei Borodin, Ken McLaughlin)

6. Spectral theory of Differential Operators (Lance Littlejohn)

7. The Bochner-Krall Classification Problem (Dong Won Lee)

8. Riemann-Hilbert Problems (Percy Deift, Arno Kuijlaars,Marteen Vanlessen, Ken McLaughlin, Jeff
Geronimo, Peter Miller)

9. Random Matrices (Percy Deift, Alexei Borodin, Arno Kuijlaars, Marco Bertola)

10. Multiple Orthogonality (Walter van Assche, Jorge Arvesu)

11. q-orthogonal polynomials (Andreas Ruffing, Sergei Suslov, Jorge Arvesu, Natig Atakishiyev)

12. Matrix orthogonal polynomials (Alberto Grunbaum)

13. Multivariate Discrete Orthogonal Polynomials (Yuan Xu)

14. Orthogonal Polynomials and Special Functions in Mathematical Physics (Mourad Ismail, Anatol Odz-
ijewicz, Mark Adler)

In addition to the participants listed above, Professor Madan Mehta (Service de Physique Theorique)
presented some interesting open problems in the area and there were three graduate students in attendance
at the workshop: Keivan Mohajer (University of Saskatchewan), Davut Tuncer (Utah State University), and
Tomohiro Takata (Kyoto University).

Orthogonal Polynomials: General Overview

The last thirty years has seen a remarkable rebirth of research in the theory of special functions and orthogonal
polynomials. Essentially invigorated by Richard Askey’s series of NSF lectures [1] at Virginia Tech in 1974,
research in various areas of orthogonal polynomials and their applications has kept a steady pace ever since.
As a result, key contributions in these subjects during thistime period have come from researchers in more
than thirty countries.



16 Five-day Workshop Reports

In the classical theory of orthogonal polynomials in the real variablex, a sequence{pn}∞n=0 of polyno-
mials, where the degree of eachpn is exactlyn, is said to be an orthogonal polynomial sequence with respect
to the Borel measureµ (possibly signed) if

∫ ∞

−∞
pnpmdµ = knδn,m (kn 6= 0; n, m ∈ N0).

If the measureµ is positive, this is the positive-definite case, then eachkn > 0; it is particularly this case that
several classical textbooks have been written, most notably by Szeg̈o [20] and Chihara [6]. Standard topics
in these books include a detailed and fundamental general theory of orthogonal polynomials with several
detailed examples ranging from discrete measures (e.g. Charlier, Krawtchuck), continuous measures (e.g.
the classical orthogonal polynomials of Jacobi, Laguerre,Hermite), and signed measures (Bessel polynomi-
als). Furthermore, topics in these books include an in depthdiscussion of the three-term recurrence relation
for orthogonal polynomials, connections to the theory of continued fractions and the theory of moments,
asymptotic properties of the classical orthogonal polynomials and their zeros, inequalities associated with the
classical orthogonal polynomials, various characterizations of the classical orthogonal polynomials, approx-
imation and expansion properties, and various classical applications of orthogonal polynomials to numerical
analysis and mechanical quadrature methods as well as to thetheory of electostatics. Moreover, complex
orthogonal polynomials are discussed in [19].

The past thirty years may, arguably, be called the golden years of orthogonal polynomials. Indeed, the
topics listed above have been greatly enriched and generalized and, furthermore, the subject has witnessed
the openings of several new avenues of research. Several keyresults and open problems have fallen during
this time period. Indeed, among many results, we mention that a key result leading to the solution of the
Bieberbach conjecture involved a new inequality involvingcertain Jacobi polynomials. Major developments
in asymptotic theory have been made during this period, including the solution of the Freud conjecture.
The long standing Bessel moment problem was also elegantly solved during this period. The electrostatic
interpretation of the roots of a large class of orthogonal polynomials has also been achieved in recent years.

This time period also saw the important development of the theory ofq-orthogonal polynomials and basis
hypergeometric series leading to the development of the Askey tableau in orthogonal polynomials and a new
meaning for ‘classical’ orthogonal polynomials. Theseq-orthogonal polynomials and new special functions
have proved useful in both theory and applications to mathematical physics and statistical mechanics.

Interpreting certain problems in terms of Riemann-Hilbertproblems has led to some impressive new
results, as well as some powerful new tools, in the asymptotic theory of orthogonal polynomials; further
remarks on this and connections to the theory of random matrices are described below in the next section.

Sobolev orthogonality, that is orthogonality with respectto bilinear forms of the type

(p, q)M :=
M∑

k=0

∫

R

p(k)q(k)dµk,

made significant strides during this period as has the theoryof matrix orthogonal polynomials. Key advances
have also been made in the past fifteen years to the characterization of orthogonal polynomial sequences to
differential equations, in particular to the so-calledBKS(N, M) classification problems, and to the spectral
theory of the associated operators. A sequence of polynomials{pn} belongs to theBKS(N, M) class if{pn}
is orthogonal with respect to a bilinear form of the type(·, ·)M above and eachpn is an eigenfunction of a fixed
differential equation of orderN. Left-definite spectral analysis, whose roots can be traced to fundamental
work of Hermann Weyl, has proved promising in establishing new orthogonality results for polynomials in
theBKS(N, M) sets as well as helped to obtain new characterization results for this class of polynomials.
Development of the theory of Darboux transforms has also shed considerable light on theBKS(N, M)
classification problem and given us a powerful tool for constructing new orthogonal polynomials in these
classes.

During the past few years, significant advances in the theoryof multiple orthogonal polynomials have
been made with some very interesting, and important applications including a new proof of the irrationality
of ζ(3); there is much hope that further classical results and new applications to number theory will be
found using the tools that have recently been developed in this area. The theory of multivariable orthogonal
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polynomials or orthogonal polynomials in several variables, with respect to discrete and continuous measures,
is a subject of much recent interest and significant developments.

The last few years has seen a new group of researchers, namelypeople in integrable systems, enter the
orthogonal polynomial scene. As further described below, several integrable systems can be solved using
orthogonal polynomials and moment theory. One of the central reasons for organizing this BIRS meeting
was to bring this group together with a core of researchers inorthogonal polynomials for an exchange of
ideas and for further collaboration. To this end, this meeting was hugely successful!

Riemann Hilbert Problems and Orthogonal Polynomials

The introduction of random matrices to theoretical physicsdates back to Wigner in the 1950’s, and was
motivated by the attempt to explain resonances in the scattering of slow neutrons off heavy nuclei. Physical
observations made it clear that a statistical theory was needed to explain the events. A particularly salient
feature of the data was the “repulsion of energies” – on average, the resonance energies stayed “far” apart.
In earlier work with von Neumann in 1927, Wigner had shown that the degeneracy of the eigenvalues of a
Hermitian matrix was a “rare” event (of co-dimension 2), andthis led Wigner to suggest the eigenvalues of
matrices distributed according to some probabilistic law as an appropriate statistical model for the resonance
energies. It was believed that the phenomenon of resonance scattering was universal, subject only to some
general symmetry restrictions, and so the statistics should be largely independent of the details of the theory.
Early work in the theoretical physics community on the theory of random matrices was due to Wigner, Dyson,
as well as Mehta and Gaudin.

The theory of random matrices is concerned with the distribution of the eigenvalues of ensembles of
matrices distributed according to some probability measure. The Unitary Ensembles (UE’s) consist ofN×N
Hermitian matrices with the measure

1

ZN
e−NTr V (M)dM, (3.1)

whereM is anN × N Hermitian matrix;dM denotes the Lebesgue product measure on the (algebraically
independent) entries ofM , andV is a real-valued function growing sufficiently rapidly at infinity. The
term “Unitary Ensembles” refers to the fact that the measurein (3.1) is invariant under unitary conjugation:
M → UMU∗. In the particular caseV (x) = x2 the ensemble is called the Gaussian Unitary Ensemble
(GUE). The functionZN is the partition function for the ensemble:

ZN =

∫
e−NTrV (M)dM.

The principal goal of random matrix theory is to calculate the basic statistical quantities for the eigenval-
ues of matrices distributed according to a given probability distribution and to evaluate these quantities in the
limit as N → ∞. A statement of the universality of the theory for largeN is as follows: Note first that for
anya < b,

lim
N→∞

1

N
Exp] { eigenvalues in(a, b)}

exists and equals
∫ b

a
ρ(x)dx for someρ(x) ≥ 0, the so-called density of states. We consider a pointx = x0 of

positive density,ρ(x0) > 0, and then rescale the matrices so that the expected number ofeigenvalues per unit
length atx0 is equal to 1. Then forθ > 0 and for “reasonable”V ’s (polynomialV ’s are certainly included!),

lim
N→∞

Pr

{
no eigenvalues in

(
x0 −

θ

Nρ(x0)
, x0 +

θ

Nρ(x0)

)}
= det(I − Sθ), (3.2)

whereSθ is the Fredholm integral operator onL2(−θ, θ) with kernel

Sθ(x, y) =
sin π(x− y)

π(x− y)
,

anddet(I−Sθ) denotes the Fredholm determinant. In other words, under appropriate scaling, the probability
that there are no eigenvalues in an appropriately scaled interval is universal, and in particular is independent
of the choice ofV .
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Orthogonal polynomials play a significant role in the theoryof Unitary Ensembles. By classical theory,
there is a sequence of polynomialspj,N = γjNxj + . . . , γjN > 0, j = 0, 1, 2, . . . , which are orthonormal
with respect to the measuree−NV (x)dx, that is,

∫ ∞

−∞
pj,Npk,Ne−NV (x)dx = δjk, j, k ≥ 0,

and it turns out that in the basic contributions [17], [16], Gaudin and Mehta computed the probability distri-
bution of the eigenvalues of matrices in UE’s directly in terms of these orthogonal polynomials. Set

φj,N (x) = e−
N
2 V (x)pj,N

and define

KN (x, y) =

N∑

j=0

φj,N (x)φj,N (y).

By the Christoffel-Darboux identity,

KN (x, y) = e−
N
2 (V (x)+V (y)) γN−1,N

γN,N

pN,N (x)pN−1,N (y)− pN,N (y)pN−1,N (x)

x− y
, (3.3)

whereγj,N is the leading coefficient ofpj,N as above. The basic statistical quantities for the eigenvalues in
the Unitary Ensemble can be computed in terms ofKN (x, y). For example, them-point correlation function
Rm,N is given by

Rm,N (x1, . . . xm) = det ||KN (xj , xk)||1≤j,k≤m; (3.4)

and the gap probability for anya < b by,

Pr {no eigenvalues in(a, b)} =
N∑

m=0

(−1)m

m!

∫ b

a

. . .

∫ b

a

Rm,N (x1, . . . , xm)dx1 · · · dxm. (3.5)

Also, for the density of states we have

ρ(x) = lim
N→∞

1

N
KN (x, x).

Universality for the (scaled) kernelKN takes the form (forρ(x0) > 0),

lim
N→∞

1

Nρ(x0)
KN

(
x0 +

u

Nρ(x0)
, x0 +

v

Nρ(x0)

)
=

sin π(u− v)

π(u− v)
,

which in turn leads to theV -independent limit (3.2) above, via (3.5).
From (3.3), (3.4), and (3.5) it is clear that the computationof the limiting eigenvalue statistics asN →∞

requires precise knowledge of the asymptotic behaviour of the associated orthogonal polynomialspj,N as
N →∞. Universality for random matrix theory is thus a direct consequence of the asymptotic properties of
the polynomials.

The discovery by Fokas, Its, and Kitaev [14] that the orthogonal polynomials can be obtained as the
solution of a Riemann-Hilbert problem, was a significant step toward this goal. The authors in [9], [12]
have shown the steepest descent method for Riemann-Hilbertproblems to be a powerful tool in obtaining
the asymptotic behaviour of orthogonal polynomials, and hence in proving universality (see also [5]). The
steepest descent method for Riemann Hilbert problems was introduced by Deift and Zhou in 1993 [11], and
further developed together with Venakides [13] to include fully nonlinear oscillations. Inverse scattering
problems in the theory of completely integrable systems areoften formulated as Riemann-Hilbert problems,
and the asymptotic behaviour of solutions to integrable equations has been obtained by the application of the
steepest descent method to the associated Riemann-Hilbertproblems. (cf. the bibliography in [10].)

The situation for unitary ensembles is now in a fairly satisfactory state, but the proof of universality
remains open for many other types of ensembles.



Orthogonal Polynomials; Interdisciplinary Aspects 19

Orthogonal Polynomials and Integrable Systems

A number of discrete integrable systems, such as the Toda flows, [18], [3], multipeakon flows [2], relativistic
Toda lattice, [7], [8], can be solved in terms of orthogonal polynomials or orthogonal rational functions. See
the bibliography in [4].

We illustrate this approach with a recent example from integrable systems. The Camassa-Holm equation,

ut −
1

4
uxxt +

3

2
(u2)x −

1

8
(u2

x)x −
1

4
(uuxx)x = 0,

is formally an isospectral deformation of the differentialoperatorD2− zm− 1, where2m = (4−D2)u. By
a Liouville transformation the eigenvalue problem for thisdifferential equation on the real line is carried into
the acoustic spectral problem [2]

D2ϕ = zg(y)ϕ(y, z), −1 ≤ y ≤ 1, ϕ(±1, z) = 0. (3.6)

The special case of multi-peakons (non-smooth solitons) isobtained wheng is a sum of Dirac delta functions:

g(y) =

n∑

j=1

gjδ(y − yj), −1 < y1 < · · · < yn < 1.

The discrete spectral problem associated with (3.6) was studied by Krein [15]. The inverse problem
recovers the masses and spacings between the mass points from the spectral data, and is realized succinctly
as a direct application of Stieltjes’ solution of the classical moment problem [2]. Stieltjes original solution
applies to positive masses, but the solution extends immediately to both positive and negative masses.

The solution of the inverse problem is directly related to the construction of a system of orthogonal
polynomials relative to a positive measure: Letϕ(y, z) be a solution of (3.6). The Weyl function is defined
by

W (z) =
ϕy(1, z)

ϕ(1, z)
.

The Weyl function can be constructed knowing the spectral data, that is the eigenvalues and coupling coeffi-
cients of the left and right wave functions of (3.6). These give respectively the location of the poles and the
associated residues of the Weyl function. The Weyl functioncan thus be represented as the Stieltjes transform

W (z)

z
=

∫ ∞

−∞

1

z − λ
dµ(λ),

wheredµ is a positive discrete measure. This positive measure has a sequence of orthogonal polynomials
∫ ∞

−∞
Pj(λ, t)Pk(λ, t)e−2t/λdµ(λ) = δjk.

For fixedt thePj(λ, t) satisfy a second order recursion relation

λPj(λ, t) = bjPj+1(λ, t) + djPj(λ, t) + bj−1Pj−1(λ, t), 1 ≤ j ≤ n− 1,

where the coefficientsbj are given. The multipeakon solutions may be expressed in terms of the orthogonal
polynomialsPj(0, t) as follows:

gj = − 1

bn−jPn−j+1(0) Pn−j(0)

yj = 1 + bn−j

(
P ′

n−j(0)Pn−j+1(0)− Pn−j(0)P ′
n−j+1(0)

)
,

where the primes denote differentiation with respect toλ. The impossibility of triple collisions follows
directly from the classical Christoffel-Darboux formula in orthogonal polynomials [2].

A bijective map from a discrete string problem to Jacobi matrices [3] gives a unified picture of the Toda,
Jacobi, and multipeakon flows, and leads to explicit solutions of the Jacobi flows in terms of orthogonal
polynomials.
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Exit Comments of Participants

M. Adler (Brandeis University): The work I discussed involved understanding the Dyson process, Airy
and Sine processes and deriving p.d.e.’e for correlation probabilities. Implicitly it involved deriving equa-
tions for the coupled 2-matrix modelling, which tied in withwork of Harnad and Bertola, discussed at the
conference. The Dyson process is an Ornstein–Uhlenbeck process on Hermitian matrices arranged so as to
be stationary, by taking the equilibrium measure at infinityfor initial data, and correlating probabilities at two
distinct times, which precisely corresponds to computing acoupled two-matrix integral and then deriving
PDE’s in the coupling constant and the endpoints of the 2 spectral intervals in question. Scaling according
to the edge or the bulk in the classical Hermite case then leads to PDE’s for the Airy and Sine processes.
Now the coupled two-matrix integral is the focal point for Harnad and Bertola’s work, where now they in-
tegrate over spectral sets which may even be curves in the complex plane, which of course leaves the realm
of Hermitian matrices. They however are interested in isomonodromy properties of the two-matrix integral,
so it is entirely permissible to make such deformations and study their properties. It turns out that all of
the isomonodromic data can be computed via residue calculations made on various differential forms on an
associated spectral curve, which is basically very good news, as that means all of the data can be effectively
computed in any example.

C. Berg (Copenhagen): My talk on ’Orthogonal Polynomials associated to positive definite matrices’ fo-
cused on several new characterizations of indeterminate moment problems in terms of Hankel matrices. This
raised the question of how this was related to Riemann-Hilbert problems and brought me in contact with Ken
McLaughlin. He had treated asymptotic questions for weights of the formw(x) = exp(−|x|a), which for
0 < a < 1 corresponds to indeterminate moment problems. He did not know about the problems of deter-
mining the order of the entire functions in the Nevanlinna matrices for these problems, and one can hope that
this can be done by Riemann-Hilbert methods.

In the talk by Natig Atakishiev was presented some duality results for certain systems of q-orthogonal
polynomials. To several people in the audience it was felt that one needed a precise notion of duality in this
area, and after several hours of discussions and thoughts I think that he and I have reached such a notion and
this could lead to a joint paper.

Jeff Geronimo, whom I did not meet since the Columbus meeting1989, is now interested in orthogonal
polynomials in two variables, a subject I had touched upon years back, so we gave fruitful exchange of
information.

I had opportunity to discuss my ongoing project with Mourad Ismail on Kibble-Slepian kind of formulas
- we came further ahead.

M. Ismail (University of Central Florida):

1. The presence of a mix of mathematicians from integrable systems and orthogonal polynomials was a
great idea. I hope in future people like Charles Dunkl, Dennis Stanton, Erik Koolink, Tom Koorn-
winder, H. Rosengren, who do special functions and orthogonal, will be invited.

2. I did get mathematical ideas from the meeting which will bepart of the paper I am writing on the tau
function. It was nice to listen and talk to others.

3. The BIRS environment is ideal for these meetings and workshops and the limitation on the size makes
it easy to interact with others.

4. I was impressed that two of the organizers did not give talks to provide space for others. This is a nice
touch.

J. Harnad (Concordia University):

1. Summary of my presentation: Biorthogonal Polynomials and 2-Matrix Models

A survey was given of results relating the spectral theory ofcoupled pairs of random matrices and the
theory of biorthogonal polynomials. This was largely basedon joint work with Marco Bertola and
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Bertrand Eynard, and included the following topics: 1) In the case of measures involving exponentials
of polynomial potentials, the associated Christroffel Darboux kernels, which are projectors onto spaces
spanned by the firstN biorthogonal polynomials, determine the spectral properties of coupled unitarily
dialgonalizable random matrices, with spectra supported on curves in the complex plain. All correla-
tion functions are given by determinantal formulae involving these kernels, and the gap probabilities
are given by Fredholm determinants of the associated integral operator, supported on the complement
of the region considered. 2) The associated systems of differential-deformation-difference equations
(obtained by “folding” the first order differential deformation equations satisfied by the biorthogonal
polynomial sequences through use of the recursion relations) satisfied on dual “windows” of con-
secutive biorthogonal polynomials of sizes equal to the degrees of the potentials are compatible as
overdetermined systems. These therefore admit joint fundamental systems, integral representations of
which were given, as well as their largex andy asymptotics. 3) By virtue of the compatibility of these
sequences of differential-deformation equations, the generalized monodromies of each of the dual se-
quences of differential equations with respect to the dual variables are invariant under deformations in
the polynomial potentials determining the measures, and independent of the integer determining the po-
sitions of the “window” . 4) A theorem of “spectral duality” was given, stating that the spectral curves
defined by the characteristic polynomials of the corresponding Lax matrices for the dual systems, as
well as those satisfied by the sequences of Fourier Laplace transforms of the biorthogonal polynomi-
als, were all identical. Due to lack of time, a new, simplifiedproof and generlization of a theorem of
Soshnikov concerning Janossy densities and their relationto gap probabilities in multi-matrix models
was not presented in the seminar, but was discussed in private sessions with other participants.

2. Comments on presentations by other participants.

The quality and level of interest of presentations by other participants was very high. The background
and specialized interests of the various participants included several different orientations. There were
those whose primary interest was in the classical theory of orthogonal polynomials, with measures
that are both continuous and discrete, and their placement within the general framework of special
functions - particularly, of hypergeometric and q-hypergeometric type, as well the classical moment
problem. There was also considerable interest in generalizations, such as biorthogonal systems or mul-
tiple orthogonal polynomials, as well as the applications of orthogonal polynomials, e.g. to random
matrices and other probabilistic and combinatorial systems, Thiere were those particularly interested
in the study of large N asymptotics, either in random matrices, or in the representation theory of Lie
groups, in relation to asymptotics of orthogonal polynomials. There were also many interested in
applications to integrable systems, or the use of methods developed in that area, such as the matrix
Riemann-Hilbert (inverse spectral) and dbar methods. The interactions between these various per-
spectives was particularly useful and stimulating. The talks having the greatest immediate interest in
relation to my own work were those on multiple orthogonal polynomials and their applications (by Van
Assche and Kuijlaars), those on large N asymptotics and universality (by Deift, McLaughlin and Van-
lessen) and on the dbar steepest descent method for Riemann-Hilbert problems (Miller). Of course,
the talk by Marco Bertola, which was based on joint work that we had done on the isomonodromic
deformation problems arising in the study of semi-classical orthogonal polynomials, and the relation
of the isomonodromic tau function, the spectral curve and the partition function for the correspond-
ing matrix models was of immediate interest. Other talks of considerable interest, where I felt that I
learnt something new, included those on the relation between the random matrix recursion relations
and various Markov processes (Askey and Grunbaum), the analysis of the indeterminancy problem in
reconstruction of measures from moments (Berg), the problem of Darboux and Christoffel transforma-
tions in terms of LU factorization of the recursion matrices, (Marcellan), the relation between matrix
model processes and Brownian motion (Adler )and the large N asymptotics for representations of the
unitary group (Borodin).

3. Interaction with other participants.

Perhaps the most important aspect of this meeting was the opportunity it provided for interacting with
others in the area - some of whom I had known before, but would not have otherwise had an opportunity
to interact with or discuss recent developments with at thistime, and others, whom I had only known
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through their published works, or indirectly, e.g. from lectures given by others. The most fruitful in-
teractions were with Arne Kuijlaars, whose work on applications of multiple orthogonal polynomials,
both to random matrices with external coupling (jointly with Pavel Bleher) and to 2-matrix models
and the Riemann-Hilbert problem for biorthogonal polynomials (joint work with Ken McLaughlin)
relates closely to my own work. Our group (Bertola, Eynard, Harnad) had previously developed a
version of the Riemann-Hilbart problem for biorthogonal polynomials based on the notion of duality
described above, but recently Kuijlaars and McLaughlin found another one, based on the relation to
multi-orthogonal polynomials. Through discussions initiated at this meeting, we seem to have clarified
the relation between these two approaches. This will very likely lead to new work developing this
link. There was also another possible joint project initiated, based on using the interpretation of KP tau
function as a determinant over an infinite Grassmannian, to obtain new tau functions from the defor-
mation theory of multiple orthogonal polynomials. The ongoing open question of large N asymptotics
for biorthogonal polynomials remains the most important objective, and this meeting gave a chance for
the two groups most actively involved in resolving this problem to interact, and develop new ideas for
its eventual solution. This included very helpful discussions with Ken McLaughlin, who is perhaps the
most experienced in application of Riemann-Hilbert methods to the asymptotic analysis of orthogonal
polynomials arising in matrix models, through his joint work with Deift, Krichebaur, Venakides and
Zhou, one of the main pioneering works in this direction. There were also useful discussions with
other workshop participants - in particular, with Alexei Borodin, who has also done some work on
multi-level determinantal ensembles (of which coupled chains of random matrices are an example) and
the computation of Janossy densities and gap distributionsthrough the use of multi-orthogonal func-
tions. Useful references and information on other developments relating more broadly to the theory of
isomonodromic deformations, which we are also working on, followed from these discussions. There
were also useful discussions with Mourad Ismail, on the relation of our work on recursion relations,
isomonodromic deformations, and tau functions to the general framework of orthogonal polynomials,
as well as many smaller discussions with other workshop participants, in which useful information was
exchanged.

A. Kuijlaars (Leuven): It was an excellent workshop and I thank the organizers for bringing together a
wonderful group of people, coming from a variety of different areas. What brought us together was our
interest in orthogonal polynomials and special functions,which in one way or another played a crucial role
in our research.

The interaction between people with different backgroundswas therefore an important goal of the work-
shop and it was achieved wonderfully well.

Having a background in approximation theory, I had inspiring discussions with people like Mark Adler,
Marco Bertola and John Harnad, who work in integrable systems. With Marco and John I talked at length
about a problem from random matrix theory that we are all interested in, but that we approach from different
backgrounds. The interaction with them was very fruitful.

There were excellent talks at the workshop. Personally I enjoyed the talks by Percy Deift and Alexei
Borodin very much, since they showed how orthogonal polynomials can play a role in seemingly unrelated
areas. There were many other great talks as well.

It was a good idea of the organizers to invite a number of graduate students and recent Ph.D.’s as well. I
am sure the workshop has been a great experience for them and will stimulate them in their future research
into orthogonal polynomials and their applications.

M. Vanlessen, (Leuven): At the workshop I presented a talk about universality questions for eigenvalue
correlations at the origin of the spectrum, which was joint work with Arno Kuijlaars. In this talk I focused on
unitary ensembles with a singularity at the origin of the spectrum. This singularity appears through a factor
|detM |2α in the ensemble. The aim of the talk was to show how the Riemann-Hilbert approach could be used
to get a universality class (in terms of Bessel functions) atthe origin of the spectrum for this ensemble.

The Riemann-Hilbert approach was first applied by Deift, Kriecherbauer, McLaughlin, Venakides and
Zhou. Therefore, for my point of interest, it was useful thatPercy Deift and Ken McLaughlin were present at
the workshop. Especially the talk of Percy was very interesting since he talked about universality questions
for orthogonal and symplectic ensembles, which was one of myproposed projects for my postdoc application.
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The presence of Alexei Borodin was also useful because of hisknowledge about discrete orthogonal
polynomial ensembles. This is because Ken McLaughlin and I are currently very interested in the Gamma
kernel (of Alexei) and we had some useful conversations withAlexei.

K. McLaughlin (University of North Carolina): A number of presentations pertained to the asymptotic
analysis of Riemann-Hilbert problems, and applications toa variety of different areas of mathematics.

The asymptotic analysis of orthogonal polynomials is directly connected to the statistical behaviour of
eigenvalues of random Hermitian matrices. In order to describe the limiting statistical behaviour of the
eigenvalues when the size of the matrices grow to infinity, itis required to understand the so-called “semi-
classical” asymptotic properties of orthogonal polynomials. In the late 90s, the problem of determining such
global asymptotic behaviour of orthogonal polynomials wasre-cast in terms of Riemann-Hilbert problems
[12], [9], and several of the presentations concerned new results for the asymptotic analysis of Riemann-
Hilbert problems. These results, in turn, yield new resultsfor random matrices.

Here are three examples: (1) Maarten Vanlessen described a new universality class for the local statistical
behaviour of eigenvalues of random Hermitian matrices (work with A. Kuijlaars). (2) Peter Miller described
an extension of the above results to the asymptotic analysisof Riemann-Hilbert (̄∂) problems, which estab-
lish asymptotic properties of orthogonal polynomials under much weaker assumptions on the orthogonality
weights (work with K. McLaughlin). (3) Arno Kuijlaars and Walter Van Assche gave presentations describ-
ing the asymptotic analysis of some3× 3 Riemann-Hilbert problems, multiple orthogonal polynomials, and
applications to random matrices with external sources.

In other directions, new universality results were stated (for the first time) concerning the limiting sta-
tistical behaviour of random symmetric matrices (rather than Hermitian) by P. Deift (with D. Gioev). Ken
McLaughlin presented joint work with V. Pierce and N. Ercolani in which continuum limits of the Toda
lattice are used to obtain explicit formulae for coefficients in a recently established expansion for the parti-
tion function of random matrices. Alexei Borodin spoke about the connection between discrete orthogonal
polynomials and asymptotic representation theory.

What links this subset of presentations is the interplay between the asymptotic behaviour of orthogonal
polynomials, and applications. Here are a few examples of the cross-fertilization that occurred during this
meeting:

1. Researchers investigating the asymptotic behaviour of Riemann-Hilbert problems associated to “mul-
tiple orthogonal polynomials” got together with researchers investigating biorthogonal polynomial
asymptotics, and discovered new connections between seemingly disparate Riemann-Hilbert problems
appearing in their respective work.

2. A new Gamma kernel, identified in asymptotic representation theory, is being investigated from the
point of view of universal behaviour of discrete orthogonalpolynomial ensembles, using recent results
from Riemann-Hilbert analysis and asymptotic representation theory.
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Chapter 4

Model Reduction Problems and Matrix
Methods (04w5513)

April 3–8, 2004

Organizer(s): Anne Greenbaum (University of Washington), Gene Golub (Stanford Uni-
versity), Jim Varah (University of British Columbia)

This workshop will focus on techniques from numerical linear algebra and ordinary differential equations
for model reduction problems in dynamical systems and control. A goal is to bring together people from
industry and other areas of academia working on problems involving model reduction and numerical analysts
studying applicable solution techniques. Of particular interest are very large nonsymmetric systems of linear
equations and eigenvalue problems. Preconditioners play an important part in such algorithms, and here
questions of inner/outer iterations must be addressed. Effects of finite precision arithmetic are similar to
those of inexact solution of a preconditioning matrix, and recent work in this area also will be included.
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Chapter 5

Analytic and Geometric Aspects of
Stochastic Processes (04w5023)

April 10–15, 2004

Organizer(s): Martin Barlow (University of British Columbia), AlexanderGrigoryan (Im-
perial College, London), Elton Hsu (Northwestern University)

The conference was attended by about 35 participants, including Ph.D. students, postdoctoral fellows,
young researchers and international leaders in stochasticanalysis and related fields. What follows is an
attempt to focus on some of the key topics discussed at the meeting both in the lectures and in the informal
meeting rooms.

Brownian Motion and Classical Analysis

The original development of this area arises from the link between Brownian motion, the heat equation, and
classical potential theory. One should see this link as acting in both directions – that is, both sets of objects
are of mathematical interest, and one can exploit these connections to (e.g.) use Brownian motion to study
harmonic functions on domains inPd, or properties of the heat equation to refine estimates on Brownian
motion. With the late P.A. Meyer, we rather regret the view (common in the USA at points in the last century)
that regards work on stochastic processes as only interesting if it leads to some result in analysis.

Chris Burdzy spoke on several problems inspired or related at the technical level to the “hot spots” con-
jecture of J. Rauch, which was made in 1974. This was that the second Neumann eigenfunction attains its
maximum at the boundary for every Euclidean domain. Progress on the conjecture was slow, but it is now
known (see [2], [1]) that while it is false in general, it is true for some classes of domains. To study this ques-
tion by probabilistic methods, one needs to construct reflecting Brownian motion in the domainD. There
are various possible constructions; Burdzy discussed a ‘strong’ construction via the Skorohod equation, and
stated a theorem which shows that strong existence and uniqueness hold if the domain is Lipschitz with the
Lipschitz constant less than 1.

He then discussed the question of when the second Neumann eigenvalue is simple: this holds in long
and thin domains, in domains with bottlenecks, and in lip domains. Next, he considered the location of the
nodal line (zero line) of the second Neumann eigenfunction.Coupling methods give some information about
the location of this line: for example, in obtuse triangles.Finally he presented an explicit formula for the
Lyapunov exponent for the flow of reflected Brownian motions in a smooth domain.

M. van den Berg spoke on properties of the Wiener sausageW (t) in R3. This is the random setB(s) + k
,whereB(.) is a Brownian motion ,s ∈ [0, t] ,and wherek runs over a fixed compact setK. This volume
of this set is of fundamental importance in physics e.g. in the modelling of polymers, diffusion of matter.
In probability theory it provides a simple, non trivial example of a non Markovian process. Moreover its
expectation shows up in the calculation of the amount of heatwhich has emanated from the compactK (kept
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at temperature 1) into its complement (initial temperature0). F. Spitzer [11], J.F.Le Gall [10], S. Port and
others have obtained the first few terms in the asymptotic series for this expectation ast→∞. Donsker and
Varadhan [7] studied the large deviation properties of the volume and van den Berg , Bolthausen and den
Hollander [3] studied the moderate deviations of the volume. The results in [3] were then used to obtain the
moderate deviations for the intersection volume of two and three independent Wiener sausages.

In his talk he summarised some properties for the expected volume ofn Wiener sausages in Euclidean
spaceRm. The case wheren = 2 can be reduced to the case of a single sausage. The planar casefor any
n has been studied extensively by J. F. Le Gall in his St. Flour lecture notes [10]. The cases wheren > 2
andm > 3 gives finite expectation ast → ∞. His main result was for the casen = m = 3: the first three
terms in the asymptotic series, of orderlog t, order 1, and order(log t)/t1/2 were obtained together with a
remainderO(t−1/2) (which is sharp for the ball). The proof relies on repeated use of the strong Markov
property together with a last exit time decomposition .

Diffusions, Stochastic Differential Equations and Calculus on
Manifolds

The connection between Markov processes, potential theoryand differential equations is much broader than
just that between Brownian motion and classical analysis. In this section we describe connections between
diffusions and various geometric objects.

Thierry Coulhon talked on “Riesz transform on manifolds, and heat kernel regularity”: this is joint work
with Pascal Auscher, Xuan Thinh Duong, and Steve Hofmann. The aim was to give a necessary and sufficient
condition for the two natural definitions of homogeneous first orderLp Sobolev spaces to coincide on a large
class of Riemannian manifolds, forp in an interval(q0, p0), where2 < p0 ≤ ∞ andq0 is the conjugate
exponent top0. On closed manifolds, these definitions are well-known to coincide for all1 < p < ∞. For
non-compact manifolds, and again forp0 = ∞, a sufficient condition was asked for by Robert Strichartz in
1983 and many partial answers have been given since. The condition proposed was in terms of regularity
of the heat kernel: more precisely in terms of integral estimates of its gradient. This allowed him to treat
manifolds which satisfy the doubling property and natural heat kernel bounds, as well as one with locally
bounded geometry where the bottom of the spectrum of the Laplacian is positive.

Bruce K. Driver talked on joint work with his student Tai Melcher (who also attended the meeting),
on “Hypoelliptic heat kernel inequalities”. In the last twenty years or more, a fairly complete and very
beautiful theory has been developed applying to elliptic operators on Riemannian manifolds. This theory
relates properties of the solutions of elliptic and parabolic equations to properties of the Riemannian geometry.
These geometric properties are determined by the principalsymbol of the underlying elliptic operator. The
following is a typical example of this type of result:

Theorem 1 (Bakry, Ledoux, Emery,...) Suppose(M, g) is a complete Riemannian manifold, and∇ and∆
are the gradient and Laplace-Beltrami operators acting onC∞(M). Let |v| :=

√
g (v, v) for all v ∈ TM,

Ric denote the Ricci curvature tensor, andk denote a constant. Then the following are equivalent:

1. Ric(∇f,∇f) ≥ −2k|∇f |2 (or equivalentlyΓ2(f, f) ≥ −2kΓ1(f, f) for all f ∈ C∞
c (M)),

2.
∣∣∇et∆/2f

∣∣ ≤ ektet∆/2 |∇f | , for all f ∈ C∞
c (M) andt > 0,

3.
∣∣∇et∆/2f

∣∣2 ≤ e2ktet∆/2 |∇f |2, for all f ∈ C∞
c (M) andt > 0, and

4. there is a functionK(t) > 0 such thatK(0) = 1, K̇(0) =: 2k exists, and

|∇et∆/2f |2 ≤ K(t)et∆/2 |∇f |2 , (5.1)

for all f ∈ C∞
c (M) andt > 0.

In his talk, we explored the possible of extension of Theorem1 to hypoelliptic operators of the form

L =

n∑

i=1

X2
i , (5.2)
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where{Xi}ni=1 is a collection of smooth vector fields onM satisfying the Ḧormander bracket condition.
WhenL is not elliptic, Theorem 1 can no longer hold because, roughly speaking, the “Ricci curvature” is no
longer bounded from below. Nevertheless it is reasonable toask if inequalities of the form (5.1) might still
hold. To be more precise, let∇ := (X1, . . . , Xn) , p ∈ [1,∞) andt > 0 and letKp (t) be the best constant
such that

|∇etL/2f |p ≤ Kp(t)e
tL/2 |∇f |p for all f ∈ C∞

c (M). (5.3)

The question then becomes; when isKp (t) <∞? In this regard the following theorem was demonstrated in
the talk.

Theorem 2 (T. Melcher and B. Driver) LetG beR3 (equipped with the Heisenberg group multiplication),

X := ∂x −
1

2
y∂z, Y := ∂y +

1

2
x∂z andL := X2 + Y 2.

Then for allp ∈ (1,∞),

1. Kp(t) is independent oft,

2. Kp(t) = Kp <∞,

3. Kp > 1 and in particular,K2 ≥ 2.

Results analogous to Theorem 2 will (in Tai Melcher’s thesis) be generalized to any nilpotent Lie group
with a collection of left invariant vector fields satisfyingHörmander’s condition. The casep = 1 is still open.

Yves Le-jan talked on research motivated by physics. There have been very few studies of stochastic
processes done in a relativistic framework up to now, at least by mathematicians. The idea was to show that
some techniques used to define and study stochastic processes on Riemannian manifolds can be transferred
to the framework of general relativity.

He recalled the definition, due to Dudley, of a relativistic diffusion. He then formulated an SDE represen-
tation of the solution using the trivial frame bundle on the Minkowski space. This SDE can then be extended
to the general relativistic setting in a canonical way. The example of the Swatzschild space was studied in
more detail, using several barrier functions to show the transience of the process.

Takashi Kumagai talked on “Characterization of sub-Gaussian heat kernel estimates on graphs and mea-
sure metric spaces”, based on joint work with M.T. Barlow, R.F. Bass, and T. Coulhon. The motivation of
the study of sub-Gaussian heat kernel estimates is from analysis on fractals. It is known that the heat ker-
nels for Brownian motions on various “regular” fractals (such as the Sierpinski gasket) enjoy sub-Gaussian
estimates. From the estimates, many properties of the processes can be deduced; for instance, law of iterated
logarithms, Green kernel estimates etc. So, it is natural and important to ask whether such estimates are stable
under perturbations.

He discussed various conditions which are necessary and sufficient for sub-Gaussian heat kernel estimates
to hold:

1. A generalized parabolic Harnack inequality,

2. volume doubling + an elliptic Harnack inequality + some hitting time estimate (or some resistance
estimate) (due to Grigor’yan-Telcs, [9])

3. volume doubling + a Poincaré inequality + cut-off Sobolev inequality.

It can be proved that (3) is stable under a bounded perturbation of the operator, and under a rough isometry.
Under a stronger volume growth condition, a simpler equivalent condition can be given in terms of electrical
resistance. As an application, he described quenched heat kernel estimates for simple random walks on the
incipient infinite clusters on Galton-Watson branching processes.
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Jump Processes

From an analytic viewpoint, non-local operators arise whenone looks at−(−∆)α for α ∈ (0, 1). These
correspond to jump processes, the most familiar being the class of stable processes.

Zhen-Qing Chen talked on “SDEs Driven by Stable Processes”;joint work with R. Bass and K. Burdzy.
Stochastic differential equation (SDE) driven by Brownianmotion plays a central role in the theory of modern
probability and its applications. In the last few years there has been intensive interest in the study of processes
with jumps. Much of the motivation has come from mathematical physics and from financial mathematics: in
many applications jump processes (such as stable processes) provide more realistic models than continuous
processes do. So it is quite natural to study SDE system driven by stable processes.

Given this, it is somewhat surprising that SDE systems with continuous coefficients driven by stable pro-
cesses have not previously been studied in a systematic fashion. In the first part of his talk, Chen reported on
recent progress on the existence of a strong solution, and pathwise uniqueness for 1-dimensional SDEs driven
by a symmetric stable processes. In the second part of the talk, he discussed the existence of weak solution
and weak uniqueness for systems of SDEs driven by either byn-independent copies of a 1-dimensional sym-
metric stable processes, or by a symmetric stable processesin Rn. The approach uses the martingale problem
method, and requires estimates for pseudodifferential operators with singular state-dependent symbols.

Renming Song discussed “Potential Theory of Special Subordinators and Subordinate Killed Brownian
motions”. The technique of ‘subordination’ was introducedby Bochner [4], and allows the construction of
stable processes from a Brownian motion and an independent increasing Ĺevy process (called a ‘subordina-
tor’). However, subordination of processes in a domainD have only been studied fairly recently.

Let D be a bounded open set inRd, d ≥ 3, and let∆|D be the Dirichlet Laplacian inD. This operator is
the infinitesimal generator of the semigroup(PD

t : t ≥ 0) corresponding to the processXD = (XD
t : t ≥

0), Brownian motion killed upon exitingD. LetS = (St : t ≥ 0) be anα/2-stable subordinator independent
of XD, where0 < α < 2, and letZD

α = (ZD
α (t) : t ≥ 0) be the processXD subordinated byS: so that

ZD
α (t) := XD(St). The infinitesimal generator of the semigroup ofZD

α is the fractional power−(−∆|D)α/2

of the negative Dirichlet Laplacian.
The study of the processZD

α was initiated in [17]. In [18] the domain of the Dirichlet form of ZD
α

was identified whenD is a bounded smooth domain andα 6= 1. In [20] and [19], the processZD
α was

studied in detail and sharp upper and lower bounds on the jumping function and the Green function ofZD
α

were established whenD is a boundedC1,1 domain. One of the most intriguing aspects of the potential
theory ofZD

α was discovered in [17], and completely described in [16]. Let us introduce another subordinate
process,ZD

2−α, obtained by subordinating killed Brownian motionXD by an independent(1 − α/2)-stable
subordinator. LetGD, GD

α andGD
2−α denote the potential operators ofXD, ZD

α andZD
2−α, respectively.

Then the following factorization identity holds true:

GD = GD
α GD

2−α = GD
2−αGD

α . (5.4)

Song discussed applications of this identity to a Harnack inequality, and to the identification of the Martin
boundary forZD

α .
The Laplace exponent of theα/2-stable subordinator isφ(λ) = λα/2, λ > 0. Clearly,λ/λα/2 = λ1−α/2

is the Laplace exponent of the(1− α/2)-stable subordinator. The existence of a “dual” subordinator of this
type is the key for the factorization (5.4). Song then described a more general family of ‘special subordinators’
for which this kind of duality holds, and showed that the mainresults of [17] and [16] remain valid whenS
is only assumed to be a special subordinator.

Masayoshi Takeda talked on “Gaugeability for Symmetricα-Stable processes and and it’s Applications”.
Let Mα = (Px, Xt) be a symmetricα-stable process onRd. Assume thatMα is transient, and denote by
G(x, y) the Green function ofMα. Let µ be a smooth measure andAµ

t the continuous additive functional
corresponding toµ. (If µ has a densityf thenAµ

t =∈t
0 f(Xs)ds.) The measureµ is said to begaugeableif

sup
x∈Rd

Ex [exp(Aµ(∞))] <∞. (5.5)

For Brownian motion onRd, Zhao [15] introduced the class of Green-tight measures andChen [5] gen-
eralized this to jump processes. LetK∞

d,α denote this class for the stable processMα. In [14] and [5] an
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analytic condition for a measureµ ∈ K∞
d,α to be gaugeable was obtained. Let

λ(µ) = inf

{
E(α)(u, u) : u ∈ F (α),

∫

Rd

u2(x)µ(dx) = 1

}
.

Then the gaugeability ofµ is equivalent toλ(µ) > 1.
Takeda gave three applications of this fact: to the differentiability of spectral functions, the ultracontrac-

tivity of Schrödinger semigroups, and the behaviour of branching symmetric α-stable processes.

Infinite Dimensional Analysis

Maria Gordina talk used stochastic differential equations(SDEs) in infinite-dimensional spaces to construct
and study heat kernel measures (a noncommutative analogue of Gaussian or Wiener measure) on the infinite-
dimensional manifolds. In general these infinite-dimensional groups are not locally compact, and therefore
do not have an analogue of the Lebesgue (volume) measure. Themotivation comes from several fields.
Infinite-dimensional spaces such as loop groups and path spaces appear in physics, for example, in quantum
field theory and string theory. One goal is to formalize some of the notions used in physics, such as Gaussian
measures on certain infinite-dimensional spaces.

Her talk described the construction of the Gaussian measures on certain groups of infinite matrices, and
gave some analytical properties of these measures. In addition, she presented new results on Riemannian
geometry of these groups, which show that these groups are drastically different from their finite-dimensional
analogs.

Shigeki Aida’s interest is in analysis in infinite dimensional spaces and the interplay between the analysis
and the geometry on such infinite dimensional spaces. In particular, the analysis on loop spaces is natural
object but the basic property of the differential operator on the spaces are not well understood. For example,
it is not clear when the Dirichlet forms on loop spaces satisfies a Poincaré’s inequality, or when the Dirichlet
forms satisfy log-Sobolev inequalities. As the terminology suggests, ‘weak Poincaré inequalities’ (WPIs) are
weaker than Poincaré’s inequalities, but nevertheless this property is stronger than irreducibility. WPIs hold
on the loop spaces over simply connected compact manifolds in general. These inequalities contain a function
which describes the degree of the ergodicity of the diffusion semi-group. However, explicit estimates on this
function are not known in general.

In his talk, he proved WPIs on domains in Wiener spaces which are inverse images of open sets inR by
continuous functions of Brownian rough paths. First, WPIs are established for ball like sets in the sense of
rough paths and next the results are extended to ”connected domains”. This result is applicable to Dirichlet
forms on loop spaces and connected open subsets of path spaces over compact Riemannian manifolds by
using Lyons’ continuity theorem of the solution of SDE. We still need more to obtain the estimate on the
function in WPI in the case of loop spaces.

Xuemei Li talked on ‘Asymptotics of Exponential Barycentres of mass transported by a random flow on
Cartan Hadamard manifold.’ This is joint work with M. Arnaudon. They considered the motion of a mass
moving according to the law of a random flow. This can be used tomodel the motion of passive tracers
in a fluid, e.g. the spread of oil spilt in an ocean. Such motioncan be assumed to obey a stochastic flow
where particles at nearby points are correlated. The evolution of pollution clouds in the atmosphere or a gas
of independent particles, on the other hand, can be described as blocks of masses moving according to the
laws of independent stochastic flows. We study the dynamics of masses transported by stochastic flows by
investigating the motion of its centre of mass. As the media in which the liquid travels is not necessarily
homogeneous or flat it makes sense to work on a non linear space, e.g. on a manifold diffeomorphic to the
flat space but with different geometric structure.

The talk considered the mass pushed forward by a random flow inthe sense of Kunita. The state spaces
under consideration are Cartan Hadamard manifolds. Under suitable conditions on the flow and on the initial
measure, the Barycentre can be shown to be a semi-martingaleand is described by a stochastic differential
equation. They showed that under suitable conditions an unstable flow satisfying the law of large numbers
pushes the exponential barycentre of a discrete mass to the Busemann Barycentre of the limiting measure on
the visibility boundary.
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Chapter 6

Celestial Mechanics (04w5012)

April 17–22, 2004

Organizer(s): Florin Diacu (University of Victoria), Donald Saari (University of Califor-
nia, Irvine)

There were 22 participants to the First BIRS Celestial Mechanics Workshop, organized by Florin Diacu
(Canada) and Donald Saari (USA).

The programme of the workshop consisted of 45-minute talks followed by 15 minutes of discussions.
Often those discussions were continued in the evening in smaller groups.

The workshop was opened on Sunday by Alain Chenciner of Paris. During the past few years, Alain has
focused on studying the existence of choreographic solutions using variational methods. His proof of the
existence of the Figure Eight solution together with Richard Montgomery [1] has revolutionized the field.
Many researchers have adopted their methodology, seeking new periodic solutions in then-body problem
and for related systems of differential equations.

In his talk, Alain presented some recent work written with Jacques F́ejoz and Richard Montgomery. He
showed the existence of three families of relative periodicsolutions which bifurcate out of the Figure Eight
solution of the equal-mass three-body problem : the planar Hénon family, the spatial MarchalP12 family and
a new spatial family. Each family corresponds to a differentbreaking of theD6 × Z2 symmetry of the Eight
solution in 3-space. Alain described this result as well as some of its developments.

The end-of-the-talk discussions revolved around questions related to the nature of the symmetries. For
example, Jeff Xia pointed out that he had already obtained some more general results relative to one type of
symmetry, but admitted that they did not contain the other rotation types. Alain’s talk was very well received
and imposed a very high standard for the entire workshop. A preliminary version of the paper, [2], is available
at:

http://www.imcce.fr/Equipes/ASD/person/chenciner/chen preprint.html

The second talk of the morning was given by Ernesto Lacomba. He talked about symbolic dynamics in
the rectilinear restricted 3-body problem. This joint workwith Sam Kaplan extended some ideas Sam had
developed in his doctoral thesis in connection with a 2-bodyproblem with a bumper.

They generalized these results to a symmetric rectilinear restricted 3-body problem for which the equal
mass primaries perform elliptic collisions, while the infinitesimal body moves in the line between the pri-
maries. Symbolic dynamics could be applied to mark the time between two consecutive elliptic collisions.
Since any nonhomothetic solution performs binary collisions, the basic behaviour of the solution can be stud-
ied through its successive intersections with 2 two-dimensional strips, corresponding to regularized binary
collisions. Thus Ernesto and Sam obtained a singular globalPoincaŕe section. In this way, they were able to
describe all possible itineraries an orbit may have.

The last talk of the morning was that of Montserrat (Montse) Corbera of the Vic University near Barcelona.
She presented several new results on the global existence ofsubharmonic orbits in the Sitnikov Problem. This

37
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consists of the motion of 3 bodies, two of them of equal mass, moving in a plane on circular or elliptic or-
bits of eccentricitye, and the third of infinitesimal mass, moving on thez axis perpendicular to the plane
of the other two that passes through their centre of mass. A solution is said to be an(m, n)-orbit if it is
2mπ-periodic and there are exactly2n zeroes ofz in the time interval[0, 2mπ).

Montse wrote this paper in collaboration with Jaume Llibre (present at the meeting) and Pedro Torres.
The main result of the talk was that for allm natural numbers, there exist at least two(m, 1)-orbits for any
value of the eccentricity0 < e < 1. Moreover, for allm, n natural numbers, there is a positive numberem,n

such that the problem has at least an(m, n)-orbit for any value of the eccentricitye < em,n. The proof used
a version of the Poincaré-Birkhoff theorem proved in [3]. The discussions focused on the central theorem
and on possible generalizations.

The first talk of the afternoon session was that of Richard Montgomery of the University of California
in Santa Cruz. The title of his talk was “Fitting hyperbolic pants to a three-body problem,” and his results
were inspired by the the Figure Eight solution he and Chenciner had discovered a few years earlier [1].
He considered bounded zero-angular momentum solutions to the 1/r2 potential (not Newton’s1/r) three-
body problem. He showed that upon modding out by the symmetries of scaling, translation and rotation,
this problem is equivalent to the geodesic flow for a certain metric on the pair of pants, namely the thrice-
punctured two-sphere. The sphere is the shape sphere. The punctures are collisions. The metric is the
Jacobi-Maupertuis metric at zero energy. It is complete andnoncompact. His main result was that if all
masses are equal, then the Gaussian curvature of the metric is everywhere negative, except at two points, the
Lagrange points. A number of dynamical consequences directly follow, such as the uniqueness of the1/r2

figure-eight solution, and the existence of a complete symbolic dynamics description (symbols are syzygies
[4]) for the non-collision bounded solutions. Other papersrelevant to his talk are [5], [6], [7].

It is interesting to note that the excellent internet connection in Room 159 at BIRS was of great help during
Richard’s talk. He pointed at his website (which anyone witha laptop could access) and at several papers,
including the preprint of the present talk. These were greatadditions to the talk and helped deepening the
understanding of his results. The discussions that followed showed the clear necessity of an ad-hoc session
on the Figure Eight solution. This took place with 6 participants on Tuesday night, after dinner.

The last talk of the day was that of Dan Offin of Queens University. He talked about the variational-
stability method for someN -body problems. He showed showed how the variational methodcan be extended
to the variational-stability method for existence and stability type of periodic solutions in certain subsystems
of the N -body problem. These include, the isosceles 3-body problem, and the equal mass symmetric 4-
body problem. Then he showed that the instability of absolutely minimizing periodic orbits in these systems
has implications for the existence of mountain pass critical orbit sand orbits homoclinic to minimizing-type
orbits.

The variational method has long traditions in celestial mechanics since Poincaré introduced it in 1896 to
obtain periodic orbits in what we call today Manev-type potentials (1/r + 1/r2). The proof of the existence
of the Figure Eight solution, of a few more choreographic solutions as well as the numerical discovery of
hundreds of periodic orbits in the last few years, have led tosome intense research, and several of the re-
searchers present at this meeting work in this direction. Therefore the discussions that followed after Dan’s
talk focused on technical aspects related to the variational method.

It was a fortunate decision to have Dan talk on Sunday since the same night his wife gave birth to healthy
son in Kingston, Ontario, and Dan had to leave on the first flight he could book in Calgary. We missed him,
but such circumstances need no further comment.

Monday, the second day of the meeting, had several talks on central configurations. The subject is ex-
tremely important in celestial mechanics, it showed up in almost every talk, and two more presentations in
different days were dedicated to it.

The first talk of the day was that of Ernesto Pérez-Chavela of Departamento de Matemáticas UAM-
Iztapalapa, Mexico City, now on sabbatical leave at the University of Victoria. He talked about symmetrical
central configurations in 4-body problems. More precisely,he studied planar central configurations with
an axis of symmetry containing two of the particles. The central configurations can be concave or convex,
depending if one mass is in the interior of the convex hull of the other three or not. If three of the masses
are equal (of unit mass), the axis of symmetry contains the massm, and we find the total number of central
configurations. If two of the masses are equal, and not takinginto account the permutations between the equal
masses, then there is exactly one convex central configuration. Ernesto also proved the existence of several
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concave central configurations. The references relevant tohis talk are [8], [9] and [10].
The discussions focused on the question of existence of infinitely many central configurations forN given

masses. This is an open problem left about 60 years ago. Ernesto as well as Gareth Roberts have shown that
for certain types of potentials and/or for negative masses,there exists a continuous set of solutions, but in the
Newtonian case the problem is open for more than 4 masses. However, recently important progress was done
in this direction, as will become clear from other talks.

The second talk of the day was that of Ken Meyer of the University of Cincinnati. He talked about elliptic
central configuration solutions of theN -body problem. This was a paper written in collaboration with Dieter
Schmidt and Klaatu. At the beginning of the talk, Ken presented a few scenes from a science-fiction movie:
“The Day the Sun Stood Still,” released in 1951. The movie is about an alien who comes to the Earth and
tries to save the earthlings from a collision with a comet. One of the scenes shows the alien (as a middle-
aged man) with a boy, knocking at the door of a famous professor. On the blackboard in the professor’s
study are written the equations of motion of the 3-body problem. It was amusing to listen to the dialogue
and see that it was not totally nonsensical relative to mathematics, as it usually is in such movies.Then Ken
got into the real mathematics and showed how a planar centralconfiguration of theN -body problem gives
rise to a solution where each particle moves on a specific Keplarian orbit while the totality of the particles
move on a homothety motion. The totality of such solutions forms a 4-dimensional symplectic subspace. He
gave a symplectic coordinate system which is adapted to thissubspace and its symplectic complement. If
the Keplerian orbit is elliptic, the solution of theN -body problem is called an elliptic central configuration
solution. In his coordinate system, the linear variationalequations of such a solution decouple into three
subsystems. One subsystem simply gives the motion of the centre of mass, another is Kepler’s problem and
the third determines the non-trivial characteristic multipliers. Using these coordinates, Ken studied the linear
stability of for several cases whenN = 3, 4, 5. The discussions focused on the stability question, which
is fundamental in celestial mechanics. More about this whendiscussing Gareth Robert’s talk. The last talk
of the morning session was given by Patricia Yanguas of Pamplona, Spain. She had obtained the results
she presented together with her husband, Jésus Palacián (also present at the meeting) as well as with the
colleagues M. Ĩnarrea, V. Lanchares, A. I. Pascual and J. P. Salas. The titleof the talk was “Dynamics of
Charged Particles in Planetary Magnetospheres: Periodic Orbits, Two-Dimensional Tori and Bifurcations,”
and it presented a study of the dynamics of a charged particleorbiting around a rotating magnetic planet.
The system is modelled by the Hamiltonian of the two-body problem perturbed by an axially-symmetric
function which goes to infinity as soon as the particle approaches the planet. The perturbation consists in
a magnetic dipole field and a corotational electric field. When the perturbation is weak compared to the
Keplerian part of the Hamiltonian, the authors averaged thesystem with respect to the mean anomaly up
to first order in terms of a small parameter defined by the ratiobetween the magnetic and the Keplerian
interactions. After truncating higher-order terms, they used invariant theory to reduce the averaged system
by virtue of its continuous and discrete symmetries, determining also the successive reduced phase spaces.
Once the original system is reduced, they studied the flow of the resulting system in the most reduced phase
space describing all equilibria and their stability, as well as the different classes of bifurcations. Finally, they
connected the analysis of the flow on these reduced phase spaces with the one corresponding to the original
system. More details about this work can be found in [11]. Other relevant references are: [12], [13] and
[14]. Since Richard Cushman had done some work in this direction, an interesting discussion about the main
results took place at the end of the talk.

The first talk of the afternoon session was that of Alain Albouy, who presented his results about Alain
Albouy some (possibly) new “hidden symmetries” in the Kepler problem and Lambert’s theorem. The so-
called SO(4) symmetry of the Kepler problem is usually associated to the Gyorgyi-Moser correspondence of
this problem with the geodesic flow on the sphere. This correspondence is not time-preserving.Alain showed
that there is another symmetry which does not change the time, and discussed the relation with the classical
Lambert theorem. Alain pointed at the study [15], which inspired his research. Several questions occurred
during the talk and the end-of-the-talk discussions tried to find answers to some of those questions.

The last talk of the day was that of Gareth Roberts of the College of the Holy Cross, near Boston. He
talked about some work in progress about the linear stability of the Figure-Eight orbit [1]. This is an inter-
esting topic, which has preoccupied him since Carles Simó came up with numerical evidence that the Figure
Eight solution has a very small zone of stability [17]. Gareth had done previous work on the linear stability
of the elliptic Lagrangean triangle solutions of the 3-bodyproblem, so he wanted to use this experience in
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this new case [16]. At the time of his presentation he had no definite results, but he was able to point out the
directions and the plan of his research as well as directionshe had tried and which seemed to lead nowhere.
The discussions focused on the evaluation of the chances of the possible directions of attack.

The first talk of Tuesday morning was that of Jaume Llibre of Barcelona, Spain. He presented some new
results he had obtained on certain families of periodic orbits of the Sitnikov problem. This was a continuation
of previous work he had done with Montse Corbera and P.J. Torres, [19], [18]. The main goal of this talk was
to present a study of the families of symmetric periodic orbits of the elliptic Sitnikov problem for all values
of the eccentricity in the interval [0,1). The basic tool forproving our results was the global continuation
method of the zeros of a function depending on one-parameterprovided by Leray and Schauder and based in
the Brouwer degree.

Since the 1960s, when Sitnikov came up with his problem in order to prove the existence of oscillatory
solutions in the 3-body problem, the equations of motions have been studied intensively. Jaume’s work
presented the latest in this direction. The end-of-the-talk discussions were related to technical details in
proving the main result.

The second talk of the day was that of Chris McCord of Cincinnati, who presented his latest results on
collinear blow-ups and the integral manifolds of the spatial n-body problem. For the past decade, Chris and
Ken Meyer had been exploring the dependence of the topology of the integral manifolds (as measured by their
homology groups) on the energy and angular momentum. They had analyzed various special cases: spatial
3-body for all energies; planarn-body for all energies; spatialn-body for positive energy. In addition to
whatever intrinsic interest these studies may have had, they had also served to isolate the obstacles to solving
the general problem: the spatialn-body problem for all energies. It has emerged that all of theobstacles centre
around the collinear configurations. By introducing a blow-up of the configuration space at the collinear
configurations, Chris was able to understand how the discontinuities at the collinear configurations change
the behaviour of the integral manifolds. This in turn allowed him to develop Morse-theoretic formulae for the
homology of the spatial integral manifolds. The discussions focused on the perspectives these results open to
the understanding of the global dynamics of then-body problem.

The last talk of the morning was that of Joe Gerver from Rutgers University. He talked about infinite
spin and noncollision singularities. It is well known that as n bodies approach a collision in a system with
Newtonian potential, they must approach the central configuration manifold. It is not known whether they
must approach a single point on this manifold. In particular, a central configuration remains central if it
is rotated, and it is an open question whether a set of bodies can revolve an infinite number of times as it
approaches a collision in a Newtonian system. (This can of course occur with an inverse squared potential.)
Joe presented a possible model for a Newtonian infinite spin collision in the case when the collision is not
isolated; instead other bodies, which are involved in a noncollision singularity which occurs simultaneously
with the collision, approach the colliding bodies arbitrarily closely, but keeping moving away again. Joe’s
results in this direction follow his previous work on noncollision singularities [20] and [21]. The discussions
focused on other possibilities of achieving such a scenario.

The first talk of the afternoon was that of Manuele Santopreteof the University of California at Irvine,
who presented his results as well as some he obtained with Florin Diacu and Ernesto Ṕerez-Chavela on
the qualitative properties of the anisotropic Manev problem. Manuele had just received his Ph.D. degree at
the University of Victoria under the supervision of Florin Diacu and the day before the meeting started he
learned that he had been awarded the Governor General’s GoldMedal at the University of Victoria, for the
best dissertation presented in 2003. Anisotropic problems, describing the interaction of two bodies, started
to arouse a good deal of interest in the 1970s, when Martin Gutzwiller proposed the Anisotropic Kepler
Problem to study connections between classical and quantummechanics. In recent years other anisotropic
potentials have been introduced, as for example the anisotropic Manev problem and the Kepler problem
with anisotropic perturbations. In this talk Manuele described some qualitative properties of the anisotropic
Manev problem and of the Kepler problem with anisotropic perturbations.In particular he studied collisions,
near collision solutions, and the mechanisms responsible for the appearance of chaos. His techniques are a
nice combination of dynamical and variational techniques.Papers relevant to his talk are [22] and [23]. The
discussions focused on the differences and similarities ofthe anisotropic and nonisotropic cases as well as on
the unusual case of a disconnected infinity manifold

The last talk of the day was that of Ilias Kotsireas of the Wilfried Laurier University, who presented
his results about symmetries of polynomial and differential equations. Many systems of polynomial and
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differential equations arising in celestial mechanics, exhibit various kinds of symmetries that can best be
described group theoretically by finite and Lie group actions. Computational approaches to solving systems
with symmetries are available for both the polynomial and the differential case. The eigenvalue method for
solving polynomial systems is an ideal paradigm to study theeffect of the symmetries on the complexity of
the method. The eigenvalue method is simplified considerably in the presence of symmetries, in the sense
that the sizes of the matrices involved are diminished considerably. Certain aspects of the interplay between
methods for solving polynomial and differential systems can be exploited effectively via a well-known poly-
nomial/differential morphism. Ilias’s talk was a tour-de-force on how very complicated computations can be
performed in celestial mechanics using a computer. The essential references to his talk are [24], [25] and
[26].

On Wednesday the first talk was that of Jeff Xia of Northwestern University. He presented his latest results
on action-minimizing periodic and quasi-periodic solutions of then-body problem. These solutions extend
the classic Euler and Moulton relative equilibria. This interesting new development can be found in detail in
[27] and [28]. The discussions focused on the perspectives this research opens for further investigations.The
second talk of the day was that of Richard Cushman of Utrecht,Holland and University of Calgary. He
presented his latest results on monodromy in the swing spring. Richard discussed the three degree of freedom
classical mechanical system of an elastic pendulum which istuned to be in 1:1:2 resonance. This explains the
following motion: start the pendulum springing in the vertical direction. After a while it begins to swing in
a plane and then returns to the springing motion. During successive cycles the swing planes make the same
angle with the vertical direction. Richard’s explanation used of the concept of monodromy for a Liouville
integrable system. The references relevant to his talk are:[29], [30], [31], [32] and [32].

The last talk of the morning and of the day (since the afternoon was dedicated to trips and relaxation)
was that of Marshall Hampton of the University of Minnesota at Minneapolis. He presented his latest results
on new central configurations in the 5-body problem. Marshall showed the existence of a class of planar
5-body central configuration which contradict an assertionof W. L. Williams in his 1938 paper, “Permanent
configurations in the problem of five bodies”, in which he claims that there are no central configurations with
positive masses and which have 2 masses in the interior of a triangle. His methodology combined ingenious
geometrical, algebraic and analytical techniques, see [33], citeSma and [35]. The discussions focused on
these results as well as on the recent proof of Rick Moeckel ofMinneapolis on the finiteness of the central
configurations in the 4-body problem with positive masses.

Thursday, the last day of the meeting, started with Don Saari’s talk on analysing central configurations.
Don, who is now at the University of California at Irvine, haswritten a few decades ago a famous paper on
the role and properties of central configurations, and in histalk he used a geometric approach to see how
central configurations are described. Many traditional results followed from his approach, and it appeared
that several new results are forthcoming. The discussions focused on the potential of this new approach.

The meeting was closed by Ed Belbruno of Princeton, who showed how the theoretical results most of
the members of this group have obtained can be used in space science. Ed’s talk was about the existence
of chaos associated with weak ballistic capture and about low energy lunar transfer. A theory to achieve
low energy transfers using ballistic capture (with no fuel required), called weak stability boundary theory,
was successfully used in 1991 to resurrect a Japanese lunar mission and successfully bring the spacecraft,
Hiten, to the Moon using a new type of lunar transfer. This wasone of the more spectacular applications
of celestial mechanics, and although well known in the aerospace community, was not as known in the
dynamical systems/celestial mechanics community, until much more recently.This is because the underlying
mathematics of the dynamics of the capture and the transfer itself were not really understood and were
understood more from a numerical point of view. A proof has recently been obtained which explains, in
part, the capture process. This is accomplished by two ingredients: one is to estimate a special region near
the secondary mass point (Moon) in the restricted three-body problem where ”weak capture” occurs, and the
other is to prove that there exists a hyperbolic invariant set within this region, instrumental in the capture
process. This result solves a problem investigated by Alekseev in 1981 in his last published paper.Ed also
mentioned a number of applications in astrodynamics and dynamical astronomy. The relevant references to
his talk are: [36], [37] and [38].

Overall this was a highly stimulating meeting of which all participants benefited greatly. Everybody has
been impressed with the facilities at BIRS, the efficiency ofthe staff and with the way the meeting was run.
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Chapter 7

BIRS Workshop on Mathematics and
Creative Writing (04w5555)

April 17–22, 2004

Organizer(s): Marjorie Senechal (Smith College), Chandler Davis (University of Toronto)

In the spring of 2004, tucked in between workshops on mathematical logic and foundations, manifolds and
cell complexes, Fourier analysis, numerical analysis, probability theory and stochastic processes, mechanics
of particles and systems, game theory, economics, social and behavioural sciences, dynamical systems and
ergodic theory, and quantum theory, BIRS held its second fiveday experimental workshop on creative scien-
tific writing. The first took place in September, 2003. Curious colleagues have asked us, and continue to ask,
what these workshop were like and what they accomplished. Inthe self-interview that follows, we address
these and other questions.

An Interview with and by the Organizers: Marjorie Senechal (Smith College) and
Chandler Davis (University of Toronto)

Why hold workshops on creative scientific writing at BIRS or anywhere else? Mathematics is an art
form, so isn’t mathematical writing creative? Alas, the population that recognizes the creativity in a
mathematical or scientific paper is smaller by many orders ofmagnitude than the number who remember
their Latin. By creative scientific writingwe mean something else: mathematical and scientific ideas as
subjects for poetry, drama, short stories, novels, nonfiction, comic books, essays, and film.

Why would anyone write about science and mathematics in thisway? Does anyone do it? Mathematics
is part of world culture, part of the human spirit. It’s as fit asubject for art, music, and literature as any
other. As for who, some mathematicians write poetry, fiction, nonfiction, or drama. And there are non-
mathematician poets, fiction writers, nonfiction writers and dramatists whose work engages mathematicians
and mathematical ideas. Our first workshop had fifteen participants, all highly accomplished, and the second
had twenty, ditto.

But aren’t you mixing apples and eggs? Talk about mixing! But, with garlic and salt, apples and eggs
make an excellent omelet. We assumed from the start—and now we firmly believe—that non-mathematicians
who write creatively about mathematics and mathematicians, and mathematicians engaged in creative writing,
have a lot to teach and learn from one another.

Okay, but isn’t it confusing to mix all those literary genres? On the contrary! Creative writing is often
sparked by cross-genre insights. For example, in our workshops a poet helped a fiction writer find a better
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way to tell the end of his story. A mathematician nonfiction writer helped a dramatist extend the ideas of
her play, ideas a filmmaker sitting in on their discussions recast in doggerel form. A novelist had insightful
comments on poetry. Of course, it helped a lot that we pressedeveryone to circulate his or her work in
advance. By the time we arrived in Banff, we’d read it all, thought about it, and were eager to comment.

Why should BIRS take the lead in encouraging this? Call it “outreach” if you like, part of the larger
effort of mathematicians everywhere in these days of dwindling funds to explain who we are and what we do
— and why it matters. Or, if you prefer, an effort to engage scientists and mathematicians in a wider world of
discourse. The need to create a body of literature around mathematics and science is widely acknowledged
by mathematicians and non-mathematicians alike.

But is there an audience for creative scientific writing, as you describe it? The popularity of plays like
Proof and biographies likeA Beautiful MindandThe Man Who Loved Only Numbersshow that there’s a
large and growing public eager to share in the great ideas of mathematics and science. The creative writer’s
job is not to coerce them to eating these things like medicinehidden in jam, but to convey these ideas through
literature instead of formalism.

Yet except for obvious examples, like those you cited, creative writing about the content of mathematics
is extremely rare and creative writing about the activity of mathematical creation is even rarer. That’s
why we organised the workshops: to encourage practitionerswho engage this content in their work. To give
them opportunities to discuss important issues, to learn what others are doing, to encourage each other, to
critique current work, to welcome young writers into the field, to spark collaborations, to forge networks and
build community.

Then the creative writing workshops’ goals are the same as any other BIRS workshop! Yes, but as we
noted in our report to BIRS after the first workshop, our program is, of necessity, highly experimental. In the
first workshop we followed the standard practice of assigning each participant an hour lecture slot. But that
didn’t always give people the detailed, line-by-line, feedback some hoped for. And a few people read work
they’d already published, so feedback was moot. We found we needed to set aside time for other things too.
So, for the second workshop we modified the format in various ways.

How did you organise the time? Well, a typical day went like this:
8–9: Breakfast in Corbett Hall, BIRS’s headquarters
9–10: Reflections: the full group meets to discuss, orally orin writing, issues raised or works presented the
previous day; further ideas and inspirations.
10–11 and 11–12: Two presentations of works-in-progress tothe full group, followed by discussion.
12–1:30: Lunch
1:30–4:30: Time free for writing
4:30–6: Parallel sessions — as many as anyone wished — on works-in-progress in small groups, two to ten,
for line-by-line comments and editing
6–7:30: Dinner in the Banff Centre dining hall
7:30–9: Discussions of general issues, or public readings with participants in the Banff Centre’s workshop
Writing With Style.

Tell us about the evening discussions.The first was called, “What, Why, and For Whom?” It covered
a lot of ground, from lamenting math phobia and emphasizing the need for better science and mathematics
education, to considering the many forms that outreach can take. And we lamented the worm in the apple:
Proof, A Beautiful Mind and other popular works wouldn’t have been so successful had the mathematician
character been sane.
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Audiences always prefer demented geniuses, or flawed ones. Not only scientists and mathematicians.
Think of Amadeus, about Mozart, and all those films about van Gogh. It’s true, it’s very difficult to
portray intellectual creativity of any kind. But the scientific/mathematical nut is tougher to crack — sorry,
wrong metaphor. I mean, the mad composer or painter or writercan be shown composing or painting or
writing madly, furiously, but in the end he or she produces something the public can hear or see or read. While
a mathematician, mad or sane, produces a mystifying theorem. But on the other hand, the play Copenhagen
was a great success and the novel Einstein’s Dreams conveys the scientific creative process in a beautiful way.
And Arcadia, a funny and chaotic play whose leitmotif is chaos theory, is a modern classic. The mathematical
formalism is symbolized in its structure.

Using a mathematical structure to talk about math — that reminds me of a sonnet by Edna St. Vincent
Millay, “Euclid alone has looked on Beauty bare.” The poem’sstrict form mirrors deductive geometry’s
austere beauty. “Fortunate they Who, though once only and then but far away, Have heard her massive
sandal set on stone.” Would you say the sonnet form has mathematical affinities? One of us would,
the other wouldn’t. But that’s a discussion topic for a future workshop. Back to your earlier question: our
discussion the last night was, “Where Do We Go From Here?”

The last night? Then tell us first about the public readings. Well, as you know, BIRS is located in the
world-renowned Banff Centre. With studios nestled in the woods, outstanding mentors, excellent perfor-
mance spaces and a fine library, the Banff Centre nurtures aspiring, mid-career, and established musicians,
painters, photographers, writers, and actors. Artists love Banff. And Banff loves the artists: the centre’s
world-class exhibitions, public readings, and performances enhance Banff’s appeal to tourists year-round.
The BIRS leadership hopes BIRS will interact with the Centre. So in organising our workshops, we worked
closely with Carol Holmes and Edna Alford of the Banff Centre’s Writing and Publishing Program. Their
“Writing in Style” workshop and our second workshop took place the same week. On two evenings, we
merged the two groups for informal public readings. A few participants in other BIRS and Banff Centre pro-
grammes attended too. We hosted an evening of poetry, with eleven readers from both groups. They hosted
a prose reading evening, with fewer readers of course, but again from both groups.

And were these readings successful?Very. Participants in the two groups met one another and some
of their conversations continued at meals the next day. Another important benefit was the opportunity for
writers, in both groups, to read their work to and get responses from audiences outside their usual orbits.

So where do we go from here? In many directions! Workshop participants plan to stay in touch, and
to keep each other informed of the progress of their work. We will share information about publishers
and agents. Someone suggested we ask BIRS to link our publications to its website. The Mathematical
Intelligencer already encourages creative writing in mathematics, but we want it to do even more. We hope
to hold another workshop at BIRS in the future, in close association with Banff Centre writing programs, and
to publish an anthology under their auspices.

I can see it now: a hefty tome, the year’s Best Creative Writing in Mathematics. Yes, the hottest item
in the bookstore, its sales topping the year’s best short stories, best essays, best mystery stories, best political
fiction, best non-required reading, best recipes, best science and nature writing, best spiritual writing, best
sports writing, best travel writing, and best erotica.

Hors de doute. Merci.
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Microeconometrics of Spatial and
Grouped Data (04w5036)

April 24–29, 2004

Organizer(s): Thomas Lemieux (University of British Columbia), David Card (University
of California, Berkeley)

The objective of the workshop is to bring together a group of applied economists and econometricians
who share a common interest for economic problems in which the group or spatial dimension play an im-
portant role. Each of the two groups will bring a unique expertise on these issues. The contribution of the
applied researchers will be to present the economic models and the complex data sets they need to use to
estimate these models. The econometricians will present innovative research showing how standard estima-
tion and inference procedures can be adapted to settings where group or spatial effects are important. The
presentations will be concentrated in the morning to leave enough time for intensive but free exchanges in
the afternoon. The hope is that applied researchers will come out of the workshop with a much better sense
of which econometric tools can be used in their research given the complex nature of the underlying data. By
contrast, econometricians will have a unique opportunity to see the types of models and data being used in
cutting-edge empirical research. This should suggest interesting avenues for their future research. One final
objective of the workshop is to encourage new joint researchprojects between participants, and in particular
between applied researchers and econometricians.

The model for this particular workshop is a Summer Symposiumthat David Card and Daniel McFadden
organized on quasi-experimental methods at Berkeley in August 1999. This particular symposium brought
together a group of applied economists and econometriciansinterested in this particular topic. The Banff In-
ternational Research Station provides a unique opportunity to apply this successful model to new econometric
and applied issues that have emerged since 1999.

List of Participants

Anderson, Siwan(University of British Columbia)
Battistin, Erich (Institute for Fiscal Studies)
Boozer, Michael(Yale University)
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Singular Cardinal Combinatorics
(04w5523)

May 1–6, 2004

Organizer(s): Matt Foreman (University of California, Irvine), Claude Laflamme (Univer-
sity of Calgary), Stevo Todorcevic (University of Toronto and CNRS Paris)

From May 1 to May 6, 2004 24 set theorists met at the Banff International Research Station to discuss Sin-
gular Cardinal Combinatorics. Descriptions of the contents of their talks will be published in a Proceedings
that will appear in the Notre Dame Journal of Symbolic Logic.

During the workshop, several important new results were announced and explained, and there were prob-
lem sessions held (some with significant amounts of prize money attached to particular problems, see the last
section for details). To summarize the direction of the conference we will present here an annotated collection
of representative problems with some references. Where theproblems were novel, attribution is attempted
and it is noted where there is money attached to particular problems.

Three closely related themes dominated the discussion: stationary sets and stationary set reflection, varia-
tions of square and approachability and the singular cardinals hypothesis. Underlying most of the discussion
were ideas from Shelah’s PCF theory. Important subthemes were mutual stationarity, Aronszajn trees and
superatomic Boolean Algebras.

The Singular Cardinals Hypothesis and Hilbert’s First Problem

In 1871, Cantor showed that for every cardinalκ the cardinality of the collection of subsets ofκ (which we
call 2κ) is at least the cardinal successor ofκ (which we callκ+). For infinite cardinals, it is independent
of the usual assumptions of mathematics (the axioms “ZFC”) whether2κ = κ+. Indeed the question of
whether cardinality of all subsets of the natural numbers isequal to the first uncountable cardinal was the
first problem on the famous list of problems presented by Hilbert at the 1900 International Congress of
Mathematics. Partial information on this question is givenby Konig’s Theoremwhich says that the cofinality
of 2κ is at leastκ+.

Godel showed that in the Constructible UniverseL, theGeneralized Continuum Hypothesisholds; namely
for all infinite cardinalsκ, 2κ = κ+. For regular cardinals Konig’s theorem is all one can say: itis a theorem
of Easton that ifV |= GCH then for all monotone functionsf : OR → OR such thatf(α) ≥ α and
cf(ℵf(α)) > ℵα there is a generic extension ofV where2ℵα = ℵf(α) for all α whereℵα is regular.

At singular cardinals the situation turns out to be quite different. Silver proved that ifλ is a singular car-
dinal of uncountable cofinality and for a stationary collection of κ < λ, 2κ = κ+ then2λ = λ+. ([13]) This
was improved by Galvin and Hajnal to get general bounds on thepower of a singular cardinal of uncountable
cofinality in terms of the behaviour of the power of smaller singular cardinals ([7]). At the conference, Gitik
announced recent results along this line, that are summarized in his paper for the proceedings.
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This left the problem of cardinals with countable cofinalityquite open. Magidor ([9]) showed that Silver’s
theorem is false for cardinals of countable cofinality: assuming large cardinals it is consistent for2ℵω > ℵω+1

with the GCH holding belowℵω. After this result it was generally thought that the behaviour of the power of
singular cardinals of cofinalityω was as arbitrary as that of regular cardinals.

However in the late 1980’s S. Shelah proved a series of results getting cardinal bounds on the behaviour
of the power function at singular cardinals by studying reduced products of cardinals below the singular
cardinal. This ultimately led to a powerful general tool, known as PCF theory ([12]). This theory has had
many applications outside the study of cardinal arithmetic, constructing examples of Jonnson algebras on
successor of singular cardinals, and providing interesting examples in set theoretic topology and algebra.

PCF Theory Problems

We will say that a setA is aninterval of regular cardinalsif it is the intersection of an interval of cardinals
with the regular cardinals.A will be calledprogressiveiff |A| < min(A). If A is a set of regular cardinals
thenPCF (A) is defined to be:

{cof(
∏

A/D) : D is an ultrafilter on A}.

Shelah showed that ifA is a progressive interval of regular cardinals with supremum λ then

cf(〈[λ]|A|+ ,⊂〉) = max PCF (A).

In particularmaxPCF (A) always exists. As an immediate corollary one sees that if|A| < κ < λ andκ is
regular then

[λ]κ = 2κ ×max PCF (A).

In particular, ifλ is a singular strong limit cardinal of cofinalityκ that is not a cardinal fixed point then
2λ = 2κ ×max PCF (A).

It remains to bound the cardinality ofPCF (A). Shelah did this by proving the remarkable theorem that
if A is a progressive interval of cardinals then

(†) |PCF (A) ≤ |A|+3.

Putting these results together we get the following corollary:

Theorem(Shelah) Suppose thatλ is a singular cardinal of cofinalityκ and is not a cardinal fixed point. Then

2λ < max((2κ)+,ℵκ+4(λ)).

In particular ifℵω is a strong limit then2ℵω < ℵω4
.

Despite significant progress by Gitik, Shelah, Woodin and others, it is not known if these bounds are
optimal. Our first questions relate to this:

Question 1 Is it consistent to have a progressive setA such that|PCF (A)| > |A|?
Question 2 Is it consistent that

maxPCF{ℵn : 1 ≤ n < ω} > ℵω1
?

Question 3 Is it possible that
{κ < λ : maxPCF (κ) ≥ λ}

be uncountable?

Question 4 Is it possible that
{κ : cf(κ) > ω and max PCF (κ) ≥ λ}

be infinite?

The assumption that the answers to questions 3 and 4 are “no” is known as the Shelahweak hypothesis.
(These questions are well known, but relayed to the author byM. Gitik.)
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PCF Structures

There are several collections of axioms that have been proposed to capture the essence of PCF theory. Indeed
Shelah’s original bound(†) was proved by summarizing results about the behaviour of real PCF structures
and showing that any structure satisfying his summary had tohave small cardinality.

Jech ([8]) found a very weak collection of axioms that sufficeto prove Shelah’s bound. Here our intention
is different. We want to find as strong a collection of axioms as possible and see if they can prove a better
bound.

This project then has two directions: the first is to establish whether a better bound on the size of PCF
structures can be proved. The second is to find a “complete” axiomatization of PCF structures. We will use
here an axiomatization due to Magidor (with aid from Foreman). It appeared in print in the Ph.D. thesis of
John Ruyle (1998).

The PCF Topology

Inherent in the axiomatization is the PCF topology. The operationA 7→ PCF (A) is a closure operator and
hence there is a natural topology associated with the PCF operation. For simplicity we will restrict ourselves
to progressive setsA of regular cardinals that have no limit points that are cardinal fixed points.

Explicity: A ⊂ PCF (A) and for allB, C ⊂ PCF (A),

1. If B ⊂ C thenPCF (B) ⊂ PCF (C)

2. PCF (B ∪ C) = PCF (B) ∪ PCF (C).

3. PCF (PCF (B)) = PCF (B).

The PCF topology is compact Hausdorff, 0-dimensional and scattered. Via Stone duality there is a direct
connection between locally compact Hausdorff, 0-dimensional, scattered spaces and superatomic Boolean
Algebras. Namely given such a spaceX, the regular open sets form a superatomic Boolean algebra whose
Stone space is the original spaceX.

To review:
Let B be a Boolean Algebra. Define a transfinite sequence of ideals in B by setting:

• J0 to be the ideal generated by the atoms ofB

• Jα+1 the ideal generated by the atoms ofB/Jα andJα

• for limit α, Jα =
⋃

β<α Jβ .

B is superatomiciff wheneverJα is a proper ideal,B/Jα is atomic. (We will use the jargon “SBA” for
superatomic Boolean algebra.)

If one traces through the proof of Stone duality, it is immediate that the atoms ofB/Jα correspond
canonically with the isolated points in theαth Cantor-Bendixson derivative of the Stone space ofB.

We now give some more definitions necessary to formulate the PCF axioms:

1. Theheightof B is the leastα, Jα = B.

2. Therank of b ∈ B is the leastα, b ∈ Jα.

3. cα is defined to be the cardinality of{b ∈ B : rank ofb = α}.

4. Thecardinal sequenceof B is 〈cα : α < height ofB〉.

There is a standard mechanism for building SBA’s involving well-founded partial orderings. Let<∗ be a
well-founded partial ordering on a setT . Fort ∈ T , let bt = {s : s <∗ t}.

An SBA orderingwill be a pair(<∗, i) such that<∗ is a well-founded ordering on a setT and

i : [θ]2 → [θ]<ω

is such that
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1. for all s, t, i(s, t) is a minimal set such that;

bs ∩ bt =
⋃

u∈i(s,t)

bu

(so if i(s, t) = {u0, . . . un} then
bs ∩ bt = bu0

∪ · · · ∪ bun
.)

2. For allt ∈ T , α less than the<∗-rank oft,

bt ∩ {s : rank(s) = α}

is infinite.

Other authors call SBA orderings“selectors” or “admissible partial orderings”. Given an SBA ordering
on a setT we can topologizeT by taking basic open sets to be of the form:

bt\(bu0
∪ bu1

∪ . . . bun
).

The following proposition is standard:

Proposition Let (<∗, i) be an SBA ordering on a setT and endowT with the topology above. Then:

1. T is locally compact, Hausdorf,0-dimensional and scattered.

2. T ⊂ bu0
∪ bu1

· · · ∪ bun
, for someui’s thenT is compact.

3. Theαth Cantor-Bendixson derivative ofT is {t : the<∗-rank oft is at leastα}.

4. The algebra of clopen subsets ofT is an SBA with cardinal sequence

cα = |{t : the rank oft = α}|.

We are now in a position to give the PCF axioms:

Definition An δ-PCF structureis an SBA partial ordering<∗ on a successor ordinalθ satisfying:

PCF1 ν <∗ µ impliesν ∈ µ.

PCF2 δ = θ.

PCF3 If I ⊂ θ is an interval, theI is also an interval.

PCF4 For eachν < θ of uncountable cofinality, there is a closed unboundedCν ⊂ ν such thatCν ⊂ ν + 1.

PCF5 θ is compact with the<∗ topology.

The main point of the axioms is that the work of Shelah shows that the PCF axioms are true:

Theorem (Shelah, [12])LetA be a progressive interval of regular cardinals of order typeδ. Then there is an
ordering<∗ onPCF (A) which makesPCF (A) into a PCF structure.

(Hint: To define<∗, find a “transitive” collection of generators〈bα : α < max PCF (A)〉 for the PCF
ideals onPCF (A) and defineβ <∗ α iff β ∈ bα.)

We now are in a position to state the main open questions involving PCF structures.

Question 5 Do the PCF axioms capture ALL of PCF theory? (PCF completeness)

Question 6 What PCF structures consistently exist?
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We need some more background to make these questions explicit:
Let (θ, <∗) be aδ-PCF structure. Let〈cα : α < ht(<∗)〉 be the cardinal sequence of(θ, <∗). Then:

1. (|δ|-tightness/localization) IfA ⊂ θ andα ∈ A then there is aB ∈ [A]|δ| such thatα ∈ B. (In fact,
using results of Todorcevic, ifδ = ω the topology is “sequential”.)

2. If X is closed thensup X ∈ X.

3. Forξ < ht(<∗), cξ ≤ |ξ|.

4. If θ = κ + 1, then there is a closed unbounded set ofξ < κ such thatcξ ≤ |δ|.
These facts show a close connection between PCF structures and the literature about cardinal sequences

for SBA’s, especially those that have eachcα = ω. Using the work of Baumgartner and Shelah ([1]) and
extending work of Velickovic, Ruyle proved that if〈cα : α < ω2〉 is a cardinal sequence withcα = ω on
a closed unbounded set, then there is a cardinal preserving forcing for adding an SBA onω2 + 1 with this
cardinals sequence (and a little further). Moreover, if〈cα : α < γ < ω2〉 is a cardinal sequence where
cα = ω for α < ω1 and|cα| ≤ ω1, then there is a PCF algebra of heightγ + 1 with this cardinal sequence.

Question 7 Is it consistent that there is anω-PCF algebra of sizeω3? (If not, there is a better bound on2ℵω .)

This requires some new SBA techniques as there are no known examples of SBA’s of heightω3+1 which have
each countable level countable, and in which there are a closed unbounded collection of levels of cardinality
ω2 that are countable.

Question 8 Is it consistent that there areω-PCF algebras of heightδ for all δ < ω3? What aboutδ = ι + 1
whereι is the first indecomposible ordinal aboveω2?

Question 8 may not require new SBA techniques, as Martinez, in work exposited at the workshop, has showed
it consistent that there are thin SBA algebras of all heightsless thanω3.

The question of “PCF completeness” is a little vaguer, and may involve all of the difficulties of the SCH
itself. However here is a concrete version of the question that may be somewhat easier:

Question 9Assuming large cardinals, is it true that ifA is a PCF structure then there is a forcing extension
which produces aκ such thatA is isomorphic to a closed subset ofPCF (κ) ∩ {regular cardinals}?

This subset should be of the formPCF (A) whereA is a progressive subset of the regular cardinals ofκ.

We conclude with a problem of Todorcevic about PCF structures. Topological results of Todorcevic can
be used to show that PCF structures aresequential. This leads to the question:

Question 10 What is thesequential rankof PCF ({ℵn : n > 1})?
In his talk, Martinez gave a collection of problems about thestructure of SBA’s that are not necessarily

PCF algebras. These problems will appear in the proceedingsof the conference.

Stationary Set Reflection, Variations of Square, Scales andAronszajn
Trees

In 1989 Woodin and others asked whether the failure of the Singular Cardinals hypothesis at a cardinalκ
of cofinality ω implied the existence of an Aronszajn tree onκ+. The existence of special Aronszajn trees
was proved by Jensen in the 1970’s to be equivalent to the existence of a weak square sequence, so Woodin’s
question seems closely related to questions about square sequences of various types. Investigations of square
properties in inner models for large cardinals led to the isolation of certain square properties weaker than
conventional square. ([11]) These turned out to have directrelations to previously known combinatorial
properties such as weak square and very weak square ([5].) Inthis section we present some background and
state some problems that remain open.
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We begin first by motivating Woodin’s question: As noted in the previous paragraph, Jensen showed that
there is a special Aronszajn tree onκ+ iff �∗

κ holds. Shelah showed that there are no Aronszajn trees onκ+

if κ is a limit of countably many strongly compact cardinals. Using this work, Magidor and Shelah ([10])
showed that if it is consistent that there is a 2-huge cardinal then it is consistent that there is no Aronszahn
tree onℵω+1.

Lacking any evidence to the contrary these results suggest that the failure of existence of Aronszahn trees
on successors of cofinalityω cardinals is tied to being a limit of strongly compact cardinals. Since results of
Solovay ([14]) show that the SCH holds above a strongly compact cardinal Woodin’s question seems quite
natural. We list it in the following form:

Question 11 If there are no Aronszajn trees onℵω+1 andℵω is a strong limit, is it true that2ℵω = ℵω+1?

Cummings, Foreman and Magidor initiated a program of givingan affirmative answer to Woodin’s ques-
tion. The philosophy was to try to use PCF theory to constructAronszajn trees. It has the following compo-
nents:

1. Isolate PCF properties that are consequences of square.

2. Show that they imply the existence of A-trees

3. Show that they follow from the failure of SCH

Figure 9.1 is a summary of the results of this program. This diagram includes results from ([5],[4],[2],[3]).
Some of the arrows and non-arrows in the diagram were the maincontents of the series of talks given by
Cummings and Magidor at the workshop.

Recent results of Gitik and Sharon deal a major blow to this program when they showed:

Theorem (Gitik, Sharon) From appropriate large cardinals follows the relative consistency of:

1. λ is singular strong limit of cofinalityω, 2λ > λ+ and the approachability property fails.

2. There is a singular strong limit cardinalλ, and〈λi : i ∈ ω〉 cofinal inλ with PCF (λi : i ∈ ω) = {λi :
i ∈ ω} ∪ {λ+} but no very good scale on〈λi〉 of lengthλ+.

3. λ is a singular strong limit cardinal,2λ > λ+ and every stationary subset ofλ+ reflects.

In particular these results show that one cannot hope to prove (for example) that the failure of the SCH
implies the approachability property or that there is a verygood scale. Both of these latter propositions
were viewed as candidates for a property intermediate between the failure of the SCH and the existence of
Aronszajn trees.

There are some potential loopholes in the Gitik/Sharon results though. Their arguments can be improved
to makeλ intoℵω2 , but are not yet known to apply toℵω. Thus, they may not be directly relevant to Question
11. There are examples of properties (such as the equivalence between the approachability property and Very
Weak Square) that hold atℵω, but not atℵω2 . A very strong conjecture might be that the following question
has an affirmative answer:

Question 12If 2ℵω > ℵω+1, then�∗
ℵω

holds.

Moreover, in the second result, the sequence〈λi : i ∈ ω〉 is not the generatorbλ+ . In particular, the
following remains open:

Question 13If λ has cofinalityω, is it true that there is some sequence〈λi : i ∈ ω〉 cofinal inλ which has a
very good scale of lengthλ+.

The problem of the relation between scale properties and Aronszajn trees seems interesting on its own
merits. A typical question here might be:
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Figure 9.1: Squarelike consequences of PFA

Question 14If λ has cofinalityω and there is some sequence〈λi : i ∈ ω〉 cofinal inλ which has a very good
scale of lengthλ+ is it necessarily true that there is an Aronszajn tree onλ+?

Affirmative answers to both questions 13 and 14 yield a solution to Woodin’s question.
A variation of questions 13 and 14 is:

Question 15If λ+ has cofinalityω and the approachability property holds atλ+, is it necessarily true that
there is an Aronszajn tree onλ+? If the SCH fails atλ does the approachability property hold?

We note that the diagram leaves many problems open (and thereare “obvious” arrows that we have not
included in the diagram).

I[λ] and Partial Squares

Shelah’s idealI[λ] was an important topic in the workshop. This ideal can be defined as follows:

Definition Let λ be a regular cardinal. Let~X = 〈aα : α < λ〉 be a sequence of bounded subsets ofλ. Define
A( ~X) (the ordinalsapproachable with respect to X) as the collection of allβ < λ such that there is a set
C ⊂ β such that:

1. C is unbounded inβ and the order type ofC is the cofinality ofβ.



58 Five-day Workshop Reports

2. For allγ < β there is anα < β such thatC ∩ γ = aα.

This ideal is normal andλ-complete and turns out to have close connections to forcing, especially for
arguments that show(λ,∞)-distributivity.

If λ = κ+ and [κ+]<κ+

has cardinalityκ+, thenI[κ+] contains a stationary setS such thatI[κ+] is
generated by the non-stationary ideal restricted toκ\S. Without the cardinal arithmetic assumption, it was a
longstanding open problem whetherI[κ+] contained a stationary subset ofκ+ ∩ cof(κ). This was recently
settled by Mitchell who showed that atω2 this need not be the case. His techniques also show that it is
consistent thatI[ω2] is not generated by a single set over the non-stationary ideal. Mitchell’s results will
appear in the proceedings of this conference. While it appears promising it is not completely clear that
Mitchell’s techniques generalize toω3. Thus we ask the following question which might not remain open for
long:

Question 16For regularκ ≥ ω2 mustI[κ+] contain a stationary subset ofκ+ ∩ cof(κ)?

Because of its close connection to forcing it would be very useful to know the answers to the following
questions:

Question 17CanI[ω2] beω3-saturated? CanI[ω2] ⊂ J for someω3-saturated idealJ onω2?

Theapproachability propertymentioned above is the statement thatI[λ] is not a proper ideal. If square
holds, then the square sequence itself is a witness toλ ∈ I[λ]. In general,I[λ] can be viewed as those sets on
which there is a defective square sequence, with its timing out of order.

We now define a closely related notion. IfS ⊂ λ then apartial square sequenceon S is a sequence of
sets〈Cα : α ∈ S〉 such that

1. Cα is an unbounded subset ofα of order type the cofinality ofα.

2. If β is a limit point of bothCα andCγ (α, γ ∈ S) thenCα ∩ β = Cγ ∩ β.

Shelah showed that ifµ < κ are regular thenκ+ ∩ cof(µ) =
⋃

δ∈κ Sδ where eachSδ carries a partial
square sequence. In particular,κ+ ∩ cof(µ) ∈ I[κ+].

At successors of singular cardinals, this type of question appears quite open. In particular we would like
to know the following:

Question 18Is it provable in ZFC that there is a partial square sequence on a stationary subset ofℵω+1 ∩
cof(ω1)? On other cofinalities?

In contrast to the successors of regular cardinals, it is always the case thatI[κ+] contains a stationary
set: if κ is singular andµ < κ is regular, thenI[κ+] contains a stationary subset ofcof(µ). Indeed in most
cofinalities it not known ifI[κ+] can be a proper ideal. Atℵω+1 it is consistent that there is a stationary
subset ofℵω+1 ∩ cof(ω1) that does not belong toI[ℵω+1], but this is not known at other cofinalities. This is
our next question:

Question 19DoesI[ℵω+1] contain a closed unbounded set relative to cofinalityω2?

A related question is:

Question 20At successors of singular cardinals, isI[λ] generated by a single set over the non-stationary
ideal?

In the same vein, it would be interesting to understand the relationship between the collection of ap-
proachable points in successors of singular cardinals and other natural stationary sets. A typical question



Singular Cardinal Combinatorics 59

here might be described as follows. Ifbℵω+1
is the generator forPCF ({ℵn : n ∈ ω}) atℵω+1, then relative

to a closed unbounded set any two continuous scales agree on the collection of good points. Hence the col-
lection of “good points” form a well-defined stationary set (modulo the closed unbounded filter). An extreme
form of a question relating canonical structure would be:

Question 21Is I[ℵω+1] = NS � {Good Points}?

We note that it is known thatI[ℵω+1] ([12], [2], [3]) includesNS � {Good Points} and that if square
holds belowℵω, then the two ideals coincide.

At the workshop Eisworth gave a collection of problems involving a “recipe” for generating ideals from
square like principles and his contribution to the proceedings will list these questions.

Stationary Sets

In [6] Foreman and Magidor began to develop a theory of stationary sets for singular cardinals of countable
cofinality. We work on theℵn’s for simplicity. Since a subsetA ⊂ ℵω naturally gives rise to a sequence of
subsetsSn = A ∩ ωn we deal with sequences of subsets of theωn’s directly.

Let θ be a large regular cardinal andS ⊂ PP (θ). Let 〈Sn : m ≤ n ∈ ω〉 be a sequence of sets with
Sn ⊂ ωn. Then the sequenceSn is S-stationaryiff

{N : for all n ≥ m, sup N ∩ ωn ∈ Sn} ∈ S

DefineχN (n) = sup N ∩ ωn. Then we can restate this as saying thatχN ∈
∏

m≤n Sn. To illustrate the
definition we give two important examples:

Example 1 S = {A ⊂ θ : A is stationary}. For this example we call the sequencemutually stationary.

Example 2 S = {A ⊂ θ : A is stationary and consists of tight structures}, whereN is tight iff N ∩∏
ωn is

cofinal in
∏

(N ∩ ωn) (i.e. N ∩∏
ωn is cofinal belowχN .) This is calledtight stationarity.

We note that there are many other interesting examples takenby varyingS. One is obtained by takingS to
be the internally approachable structures.

The theory of mutual stationarity and its variants is still in its infancy despite some success. In particular
there are a large number of embarrassing problems still completely open. (Welch, in his proceedings article,
gives another collection.)

Question 22Is there a ZFC example of a sequence of stationary sets〈Sn ⊂ ωn : n ∈ ω〉 such that〈Sn〉 is not
mutually stationary? For concreteness we may demand thatSn ⊂ cof(ω1). Find acombinatorialproperty
that implies the existence of such a set.

Foreman and Magidor showed that such a sequence exists inL and Welch, Schindler and others have
extended their results to certain inner models for large cardinals. The question of the existence of such
sequences is open even in many well-studied inner models.

Solovay showed that every stationary subset of a regular cardinal κ can be slit intoκ many disjoint
stationary subsets. Foreman and Magidor showed that a tightly stationary sequence of sets consisting of
ordinals of a fixed cofinalityµ can be split intoµ many disjoint tightly stationary sequences. For mutual
stationarity we do not know if we can split a sequence into even two disjoint mutually stationary sequences:

Question 23Suppose that〈Sn : n ∈ ω〉 is mutually stationary. Are there〈S0
n, S1

n : n ∈ ω〉 such that

• Sn is the disjoint union ofS0
n, S1

n

• 〈Si
n〉 is mutually stationary fori = 0, 1.
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A subproblem for Question 23 would be to isolate the appropriate Fodor’s Theorem. We note that the
natural conjecture would be that if〈Sn : m ≤ n ∈ ω〉 is mutually stationary, then eachSn can be partitioned
into ωn disjoint subsets〈Sα

n : α < ωn〉 such that for every functionf ∈ ∏
m≤n∈ω ωn the sequence〈Sf(n)

n :
m ≤ n〉 is mutually stationary.

There are a whole host of related problems. We note the following definitions, which we give for sets of
cardinalityω1, again for concreteness. LetN ≺ H(λ) have cardinalityω1. ThenN is:

1. N is internally unboundediff N ∩ [N ]ℵ0 is unbounded in[N ]ℵ0 .

2. N is internally stationaryiff N ∩ [N ]ℵ0 is stationary in[N ]ℵ0 .

3. N is internally clubiff N ∩ [N ]ℵ0 contains a closed unbounded set in[N ]ℵ0 .

4. N is internally approachableiff N =
⋃

α<ω1
Nα where eachNα is countable and forβ ∈ ω1, 〈Nα :

α < β〉 ∈ N .

Under certain circumstances, such as the CH, these properties are all equivalent. It is not clear in general
what the relation is.

Question 24Give examples separating the properties 1)-4).

Many properties in set theory propagate through successor cardinals, but require special hypothesis to
pass through limit cardinals. (This is one of the main reasons for the workshop.) There are however some
properties where the propogation is not clear. We give one example that would seem to require useful new
ideas:

Question 25Suppose thatκ is regular,N ≺ H(θ) andN ∩ [N ∩ κ]ℵ0 is stationary. IsN ∩ [N ∩ κ+]ℵ0

stationary?

General Combinatorial Problems

We list here several problems that were asked at the conference. The first is due to Hajnal who announced a
$250 (US) prize forany significant progresson the problem.

Question 26Doesω2 → (α)2ω for ω1 + 1 < α < ω2?

We note that it is also and interesting problem to determine what happens at successors of singular cardi-
nals.

Cummings reminded the audience of the following 2 closely related questions:

Question 27Is it consistent that there is a forcing that makesℵω+1 into ω2?

Question 28Is it consistent that(ℵω+1,ℵω)→→ (ω2, ω1)?

In the presence of Woodin cardinals a positive answer to question 28 yields a positive answer to question
27.

Schimmerling (as explicated in his contribution to the Proceedings) noted the following question:

Question 29Is it consistent to have the GCH, weak square and no Suslin trees onℵω+1? What about�ω
ℵω

?

Question 30(Steel) Let M be the canonical minimal iterable extender model with a Woodin limit of Woodin
cardinalsλ. Let N be a derived determinacy model obtained by forcing over M with the Levy collapse making
λ = ωN

1 . (Thus N satisfiesADR.) Prove or refute:Θ is regular in N.

Reward:$200
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The next two questions were asked with significant cash prizes:

Question 31(Steel) Prove or refute (in Peano Arithmetic): if ZFC + “there is a singular strong limit cardinal
κ such that�κ fails” is consistent, then ZFC + “there is a superstrong cardinal” is consistent.

Reward:$300 for a refutation. For a proof, $4000 - $500x, where x is the time in years from May 1, 2004 to
the date of submission of a correct, complete manuscript. UCBerkeley faculty are not eligible for the reward.

Question 32 (Woodin) Suppose that there is an extendible cardinal. MustHOD compute the successor
correctly for some (uncountable) cardinal?

Prize:
$1000[max(min(n, 10− n), 1)]

where
n = (calender year of submission)− 2004.

Terms:Collect if a correct proof is given for either “yes”, or if a correct proof is given that the failure implies
the consistency with ZFC of the large cardinal I0 of Kanamori’s book. (Details: Clay rules)
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Asperó, David (University of Bristol)
Bagaria, Joan(University of Barcelona)
Cummings, James(Carnegie-Mellon University)
Dzamonja, Mirna (University of East Anglia)
Eisworth, Todd (University of Northern Iowa, Cedar Falls)
Foreman, Matthew (University of California, Irvine)
Gitik, Moti (Tel-Aviv University)
Hajnal, Andras (Rutgers, The State University of New Jersey)
Ishiu, Tetsuya (University of Kansas)
Kojman, Menachem (Ben Gurion University of the Negev, Israel)
Larson, Jean(University of Florida)
Liu, Andreas (University of California, Berkeley)
Magidor, Menachem (Einstein Institute of Mathematics)
Martinez, Juan Carlos (University of Barcelona)
Mitchell, William (University of Florida)
Schimmerling, Ernest (Carnegie Mellon University)
Shioya, Masahiro(University of Tsukuba)
Steel, John(University of California, Berkeley)
Thompson, Katherine (Carnegie Mellon University)
Todorcevic, Stevo(University of Toronto and CNRS Paris)
Welch, Philip (University of Bristol)
Woodin, W. Hugh (University of California, Berkeley)



Bibliography

[1] J. E. Baumgartner and S. Shelah. Remarks on superatomic Boolean algebras.Ann. Pure Appl. Logic
33(2)(1987), 109–129.

[2] J. Cummings, M. Foreman, and M. Magidor. Canonical structure in the universe of set theory: Part one.
Ann. Pure and Appl. Logic, To Appear.

[3] J. Cummings, M. Foreman, and M. Magidor. Canonical structure in the universe of set theory: Part two.
Ann. Pure and Appl. Logic, To Appear.

[4] J. Cummings, M. Foreman, and M. Magidor. Squares, scalesand stationary reflection.J. Math. Log.1(1)
(2001), 35–98.

[5] M. Foreman and M. Magidor. A very weak square principle.J. Symbolic Logic62(1)(1997), 175–196.

[6] M. Foreman and M. Magidor. Mutually stationary sequences of sets and the non-saturation of the non-
stationary ideal onPκ(λ). Acta Math.186(2)(2001), 271–300.

[7] F. Galvin and A. Hajnal. Inequalities for cardinal powers. Ann. of Math. (2)101(1975), 491–498.

[8] T. Jech. Singular cardinals and the pcf theory.Bull. Symbolic Logic1(4) (1995), 408–424.

[9] M. Magidor. On the singular cardinals problem. II.Ann. Math. (2)106(3)(1977), 517–547.

[10] M. Magidor and S. Shelah. The tree property at successors of singular cardinals.Arch. Math. Logic
35(5-6)(1996), 385–404.

[11] E. Schimmerling. A finite family weak square principle.J. Symbolic Logic64(3)(1999), 1087–1110.

[12] S. Shelah. Cardinal arithmetic, volume 29 ofOxford Logic Guides. The Clarendon Press Oxford
University Press, New York, 1994. Oxford Science Publications.

[13] J. Silver. On the singular cardinals problem. InProceedings of the International Congress of Math-
ematicians (Vancouver, B. C., 1974), Vol. 1, pages 265–268. Canad. Math. Congress, Montreal, Que.,
1975.

[14] R. M. Solovay. Strongly compact cardinals and the GCH. InProceedings of the Tarski Symposium (Proc.
Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971), pages 365–372, Providence, R.I.,
1974. Amer. Math. Soc.

62



Chapter 10
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Organizer(s): Ivar Ekeland (University of British Columbia), Pierre-Andre Chiappori
(University of Chicago)

In the past years, progress in economic theory and econometrics has relied on increasingly sophisticated
mathematical tools. Some current problems we aim to discussin this workshop are:

Principal-agent problems

Such problems are typical of optimization under asymmetricinformation. The principal submits a contract,
which the agent may accept or refuse. There are several typesof agents, and agents of different types have
different tastes. The principal does not know the type of theagents (it knows only the distribution of types),
and must therefore deal with the fact that agents may lie to her about their type. In other words, contracts
must be drawn in such a way that no agent has an incentive to lieabout his type.

Such incentive-compatible contracts are well understood in the case where the type is one-dimensional.
When there are several parameters describing the type, the mathematical situation is much more complicated.
In fact, one runs into problems in the calculus of variationswith global convexity constraints: instead of
minimizing an integral criterion over all functions satisfying some boundary condition, one minimizes over
convex functions only.

After a seminal paper by Rochet and Chone, such problems havebeen investigated by others, and striking
results have been obtained by Carlier and Lachand-Robert. It is now clear that there is an intimate relation
between this problem and others, of a more mathematical type, namely the optimal transportation problem
and the problem of approximating numerically convex functions.

Economic geography

There has been much literature on the economics of transportation, but very little where the location of pro-
duction and distribution centres appeared endogeneously,as a result of the model. In a recent paper, Lucas
and Rossi-Hansberg made a breakthrough. They constructed amathematical model for the structure of cities
where the distribution of business districts and residential areas where explained by purely economic argu-
ments, either as an equilibrium problem, or of a planning problem. To do this, they modelled transportation
costs as “iceberg” costs, in the time-honoured fashion of Samuelson. Carlier and Ekeland changed the model,
expressing transportation costs as monetary costs, which brought the whole problem into the general mathe-
matical framework of optimal transportation.
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There is clearly a great potential for economic modelling: not only the structure of cities, but also inter-
national trade, are domains of potential applications.

Hedonic models in econometrics

Hedonic models were first started by Rosen, but their impact was limited for a long time by they were seen
as fundamentally indeterminate: the underlying parameters were thought to be difficult, or impossible, to
extract from the data. Recent work by Heckman and Nesheim hasshown that this indeterminacy, far from
being a general property of hedonic models, is an artefact oflinearity. In other words, hedonic models will
be identifiable provided they incorporate some nonlinearity.

This opens several mathematical doors. One the one hand, transversality theory: the concept of genericity
is new to econometrics, and a systematic exploration of generic properties of various models seems quite
promising. On the other, optimal transportation (again): as a central feature of hedonic models, there is
a continuum of products, and for each quality the market mustclear. Mathematically, this means that the
distribution of buyers and the distribution of sellers havethe same image in the space of product qualities.
In the case where the matching is one-to-one, we recover the classical mass transportation framework: the
distribution of sellers then is the image of the distribution of buyers. In most economics situations, however,
the matching is not one-to-one (bunching), and interestingmathematical problems appear.

Analysis of demand functions

It is an old question whether economic theory is testable, and if so, whether one can recover the individual
utilities from the data. The question of course branches into several subquestions, depending on what kind
of data is used, individual or collective. It is now apparentthat the answer to such questions goes through
the exterior differential calculus developed by Elie Cartan at the beginning of the 19th century. Indeed, they
translate into systems of nonlinear PDEs which are quite different from the ones which appear in physics.
One of the main (and very difficult) questions which appear inthis connection is whether these systems,
which can be shown to have solutions in the analytic framework, using the Cartan-Kahler theorem, also have
solution in the indefinitely differentiable framework.

Collective behaviour in economics

The formation of prices in financial markets is a typical example of collective behaviour. The precise un-
derstanding of such behaviour is still far away, but there are interesting clues. First, the theory of rational
anticipations, where the criterion for anticipations to beheld collectively is that they should be self-fulfilling.
Second, neighbourhood models, coming from statistical physics (spin glasse) also have been used to explain
collective behaviour of investors. Finally, recent work bySchuman shows how speculative bubbles can evolve
from the fact that investors pay attention to different sources of information and speculate on the possibility
of reselling their assets to other with different (and, fromtheir point of view, information). These models
involve a variety of techniques, the most basic one being stochastic optimal control.
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Knots and Their Manifold Stories
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A confluence of several strong currents in mathematics has invigorated knot theory and ancillary areas of
3 and 4-dimensional manifolds.

This workshop will bring together a multidisciplinary community to investigate the connections between
what at one time seemed disparate areas of mathematical research. The underlying root and impetus has
been knot theory. Numerous questions, both classical and modern have arisen. Among these are the four-
dimensional topological surgery conjecture, which has been long connected to classical knot theory, the knot
concordance problem, the classification of classical knot groups, classification of four dimensional homology
cobordism, computation of localization and completion in homotopy theory, the L-theory of localized rings,
the classification of knots and three manifolds via finite type and quantum invariants, classical interpretations
of these modern invariants, and numerous other classical problems in knots and manifold theory, high and
low dimensional.

The first (and oldest) such current is that of knots and Higher-dimensional manifolds, including surgery
and homotopy theory and especially localization and completion of groups, rings and modules. The second
current is that of topological 4-manifolds, specifically including the topological techniques of M. Freedman
and A. Casson that distinguish this field from higher-dimensional manifolds. The third current is that of
combinatorial (quantum) knot theory which began with work of V. Jones, E. Witten, M. Konsevitch and
V. Vassiliev. The fourth current is that of von Neumann algebras andL2 homology. Some of the earliest
and most exciting applications of surgery theory were classification results for higher-dimensional knots
and links in the work of A. Haefliger, J. Levine and M. Kervaire. S. Cappell and J. Shaneson developed
surgery with coefficients to approach codimension-two placement, tangential structures with coefficients were
classified in part by Taylor and Williams, and localization was introduced by Vogel and Le Dimet. Their
work on a theoretical classification of concordance classesof links underscored the necessity of considering
noncommutative localization. But to a great extent the difficulty of the algebra of noncommutative rings
and localizations of modules has, until recently, obstructed the transfer of these algebraic techniques to low-
dimensional situations.

When applied to 4-manifolds and classical knot concordancethis new toolbox was found to be inadequate.
The inability to obtain the embedded 2-disks whose existence were predicted by homotopy theory presented
seemingly insurmountable barriers. Moreover, in low-dimensions the fundamental groups of the relevant
spaces were usually large and nonabelian and demanded closer attention. A. Casson and C. Gordon first
proved the inadequacy of the higher-dimensional tools in the context of classical knot concordance. They
introduced new tools, including the Atiyah-Singer G-signature theorem, and showed that it was necessary
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and profitable to consider nonabelian covering spaces. The appearance of the G-signature theorem hinted
at possible further use of analytic invariants. This was underscored in more recent work of M. Farber and
J. Levine on homology cobordism of manifolds using eta invariants associated to finite-dimensional unitary
representations of the fundamental group.

In topological 4-manifolds, the higher-dimensional techniques were augmented by remarkable techniques
of M. Freedman, A. Casson and F. Quinn, involving infinite (but convergent) topological constructions called
Casson towers. They also approximated embedded 2-disks with towers of iterated embedded surfaces called
gropes. These topological constructions have, until recently, remained largely outside the scope of algebraic
or analytical understanding, (although gropes were seen from the outset to be a topological reflection of the
algebra of commutator series of the fundamental group). Although both the Casson-Gordon invariants and
the Casson-Freedman towers were intrinsic to topological four-manifolds the connections between these two
phenomena remained obscure. On the other hand, the field of combinatorial/quantum knot theory began
with work of V. Jones on von Neumann algebras. Moreover noncommutative algebra underlay the work
of Drinfeld that in turn suggested the primary invariant of quantum knot theory, the Kontsevitch integral.
Together with ideas of E. Witten from physics and analysis, these suggested the primary invariants of quantum
3-manifolds, those of N. Reshitikin and V. Turaev. The field seemed to turn increasingly combinatorial and 2-
dimensional, with major advances by many researchers in understanding the algebra of knots and 3-manifolds
via planar projections of links, and through the algebra of trivalent (Feynman) diagrams. Connections with 4-
manifolds and with higher-dimensional techniques seemed particularly elusive. Moreover the field struggled
to find topological interpretations of these powerful new invariants. It remains open whether or not these
represent complete invariants for knots.

Recently the merging of these currents accelerated in exciting ways.
In the recent work of T. Cochran, K. Orr and P. Teichner on classical knot concordance, the high-

dimensional, 4-dimensional and von Neumann currents come together. They defined new invariants using
noncommutative localization of modules andL2 techniques - specifically the von Neumann rho invariants
of Atiyah-Cheeger-Gromov. Moreover the relationship between the topology of gropes and the algebra of
the derived series of the fundamental group is underscored,and a connection is established between the
algebraic/homotopy-theoretic techniques (including those of Casson-Gordon) and the grope and tower con-
structions. Recent work of L. Rozansky, S. Garoufalidis andA. Kricker has combined quantum knot theory
with several of these other currents. They have shown that the Konsevitch integral for knots and for boundary
links (which is defined over the rationals) satisfies a certain hidden “integrality” property, only described
through the use of the language of surgery and of noncommutative localization of group rings. This has
enabled them to ?lift? the Kontsevitch integral to a potentially more powerful invariant. This invariant has
already been shown by Rozansky, Garoufalidis and Teichner to give strong new results about Alexander
polynomial one knots (for example) and to suggest an organization of the Kontsevitch invariant (and hence
of all Vassiliev finite type invariants) that better reflectsthe topology of knots. Finally, using ideas of K.
Habiro, J. Conant and P. Teichner show that filtering knots bythe size of the gropes they bound in 3-space
provides a possible connection between the 3- and 4-dimensional worlds. Specifically they show one version
of this filtration is respected by the Kontsevich integral and captures much of its topological content; whereas
another version yields a filtration consistent with recent tower filtrations of the classical knot concordance
group. Several other provocative connections remain unexplored. First, many of the above constructions can
be indexed by families of trivalent (Feynman) diagrams. Work of R. Schneiderman shows that these diagrams
also parametrize certain higher-order intersection data among 2-spheres in 4-manifolds, refining the classical
intersection theory of higher-dimensional manifolds to a more subtle theory, more effective in dimension
four. Second, earlier researchers such as Culler-Shalen, Casson, Levine and Farber were able to address non-
commutativity through studying finite dimensional complexrepresentations of the fundamental group. Some
techniques of algebraic geometry were then used profitably.Is there a possible interaction between these
techniques and the regular representations into unitary operators on (infinite-dimensional) Hilbert space used
to obstruct slicing knots? Lastly, the families of higher-order Alexander polynomials for 3-manifolds M, de-
fined by S. Harvey using noncommutative algebra, surprisingly obstruct the existence of symplectic structures
onMxS1 even when Seiberg-Witten invariants fail. This hints at a hierarchy of higher-order Seiberg-Witten
invariants. Can the methods of Osvath and Zabo be refined (perhaps by looking at equivariant intersection
theory) to a nonabelian world that will reflect the above algebraic invariants?

The common source is knot theory. In its broadest context, this workshop seeks insights across fields.
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Homotopy theory and localization, surgery theory, functional analysis, topological four manifolds, classical
knot theory in high and low dimensions, combinatorial and geometric three manifold theory, representation
theory, physics and quantum topology are all finding a commonarea for shared discourse rooted in knot theory
and illustrated in the discussion above. Such connections demand deeper exploration only available through
the collaborative enterprise and through the dissolution of the artificial barriers between fields. The workshop
will reinforce this interdisciplinary emphasis and will encourage the interaction of researchers across these
fields. We anticipate only five talks a day, with the first day ofthe workshop consisting of expository talks on
each of the four topics mentioned above - higher dimensionalmanifolds and knots, topological four manifolds
and tower constructions, quantum invariants of knots and three manifolds, and analytic invariants.

This workshop proposal is timed to benefit and complement thePIMS thematic program in knot theory
and 3-manifolds at UBC in the summer of 2004, sponsored by PIMS and organized by Dale Rolfsen, who is
a coorganizer of this proposed workshop. This benefit may prove especially effective if the workshop occurs
either the week before or after the Vancouver program.
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Introduction

The calculus of variations has repeatedly proved itself to be a powerful and far-reaching tool for advancing our
understanding of mathematics and its applications. This isno doubt due to the fact that variational methods
are not merely techniques for solving individual, albeit very important, problems but are often “variational
principles”, i.e. they are manifestations of very general laws of nature which are valid in diverse branches of
science and engineering.

Modern variational approaches to non-linear problems wereinitiated by mathematicians like H. Poincare,
G. Birkhoff and his student M. Morse. E.g. Morse revealed thedeep relationship between the number and
types of critical points of functions and the topology of their level sets. Around the same time, variational
approaches were also being developed and used by Ljusternikand Schnirelmann to establish the existence
of 3 distinct closed geodesics on any compact surface of genus zero. These methods and results –which also
mark the beginning of global analysis– were finite dimensional in nature. The development of tools to deal
with infinite dimensional problems of nonlinear partial differential equations and geometry accelerated in the
1960’s. The type of compactness required, often embodied inthe Palais-Smale condition, was much studied
and considerable progress was made. Subsequently in the mid1980’s and afterwards an understanding of
how the the Palais-Smale condition can breakdown in less compact situations (like unbounded domains, limit
exponent problems, etc.) emerged and now one can use this understanding to get existence results in such
settings. Novel minimization arguments have also been developed and there is considerable current activity in
refining and extending them so as to overcome the limitationsto their applicability to present-day variational
problems, ranging from geometry to pattern recognition andfrom superconductivity to phase transitions, etc.
The subject has come of age in the last forty years, and a number of surveys and monographs have described
much of the progress.

The goal of our workshop was to discuss some of the recent developments while emphasizing new ap-
plications to nonlinear problems. More often than not, progress is driven by specific applications. Novel
variational techniques developed by groups or individualsconcerned with these applications often do not
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make their way to others who may be using similar variationalmethods but on different types of problems.
This workshop brought together senior experts such as Ivar Ekeland, Maria Esteban, Louise Nirenberg, Paul
Rabinowitz, etc. and leading young researchers working in different areas of variational methods such as
Yanyan Li, Yiming Long, Eric Śeŕe, Peter Sternberg, etc. These areas include abstract variational methods
such as Novikov Morse theory and nonsmooth critical point theory, geometric PDEs, and nonlinear problems
from applied fields such as superconductivity and phase transitions. Participants with different areas and
background had an opportunity to exchange ideas on topics ranging from abstract theories to applications so
that novel variational methods can find more applications and new theories can be developed. Below are the
main themes of the workshop:

Phase Transitions and Superconductivity

There are many problems in these applied areas that can be studied by variational methods. Indeed recently
several new ideas such as the renormalized energy method, new reduction methods, new perturbation methods
have been developed through the study of individual problems in these areas. Variational methods give a very
good understanding of physical phenomena such as concentration, vortex formation and their dynamics. In
this workshop, many participants spoke about their new results and ideas in this area.

One such topic is gamma-convergence in Ginzburg-Landau models of superconductivity and Allen-Cahn
models of phase transition. Sylvia Serfaty presented a method to prove convergence of gradient-flows of
families of energies which gamma-converge to a limiting energy. It provides lower bound criteria to obtain
the convergence, which correspond to a sort ofC1-order gamma-convergence of functionals. They then
apply this method to establish the limiting dynamical law ofa finite number of vortices for the heat-flow of
the Ginzburg-Landau energy in dimension 2. In this case, thelimiting objects whose dynamics they study
are the limiting vortices of the mapsuε, and the limiting energy is a “renormalized energy”, definedon the
finite-dimensional space of possible vortex-locations. They prove that the conditions above are satisfied and
thus re-obtain with a different method the result of Lin and Jerrard-Soner, that the limiting vortices follow the
gradient-flow of the renormalized energy. They also obtain the analogous new result for the full Ginzburg-
Landau model with magnetic effects. One extension of this method is to push it to “second order” to compare
the C2 structures of the energy-landscapes andF near critical points. This gives necessary conditions for
stable/unstable critical points of the Ginzburg-Landau energy functional to converge to stable/unstable critical
points ofF . This is again applied in the case of Ginzburg-Landau to obtain stability results on the limiting
vortex-configurations, and a nonexistence result of nontrivial stable

critical points when there are Neumann boundary condition and no magnetic field . Another extension
is to apply it to Ginzburg-Landau vortex-dynamics with suitable space-time rescalings, which allow one to
continue studying dynamics at times of collisions of vortices. This, coupled with a new estimate (in the case
of Ginzburg-Landau) to the vortex-distances, allows one togive energy-dissipation rates at collision time and
optimal estimates on those collision-times, and under certain assumptions, to extend the limiting dynamics
after collision.

Montero discussed the weak Jacobians of Jerrard and Soner and showed they can be viewed as linear
functionals that act on Ḧolder continuous, compactly supported vector fields inΩ. He and his collaborators
use the limiting behaviour ofEε to identify a geometric condition onΩ that guarantees the existence of local
minimizers ofEε. This condition essentially amounts to the existence of a line segment inΩ, with endpoints
in ∂Ω, that locally minimizes length. He also showed an existenceresult forGε in 3-d simply connected
domains when the applied fieldhap is not too big. In particular, for the casehap = 0, this provides what
is perhaps the first existence result via Ginzburg-Landau theory of permanent currents in the presence of
vortices.

X. Ren studied gamma convergence in a dipolymer model. A molecule in a diblock copolymer is a linear
sub-chain ofA monomers grafted covalently to another sub-chain ofB monomers. The different type sub-
chains tend to segregate locally, resulting in micro-domains rich inA andB monomers. These micro-domains
form morphology patterns/phases in a larger scale. The Ohta-Kawasaki free energy of a diblock copolymer
melt is a functional of theA monomer density fieldu(x). When there is highA monomer concentration atx,
u(x) is close to1; when there is high concentration ofB monomers atx, u(x) is close to0. A value ofu(x)
between0 and1 means that a mixture ofA andB monomers occupiesx. The re-scaled, dimensionless free
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energy of the system is

I(u) =

∫

D

{ε
2

2
|∇u|2 +

εγ

2
|(−∆)−1/2(u− a)|2 + W (u)} dx,

which is defined in the admissible set

Xa = {u ∈W 1,2(D) : u = a}

whereu = 1
|D|

∫
D

u dx is the average ofu in D. a is a fixed constant in(0, 1). It is the ratio of the number
of theA monomers to the number of all the monomers in a chain molecule. One can take

W (u) =
1

4
(u2 − u)2.

The two parametersε andγ characterize the system. Ren considered the parameter range

ε→ 0, γ ∼ 1.

He studied two solutions: the spot solution and the ring solution of K interfaces, both in a unit disc.
The spot solution models a cell in a cylindrical phase of the diblock copolymer and the ring solution models
a defective lamellar phase. Using theΓ-convergence theory he showed that the spot solution existsfor all
γ > 0 and there existsγ1 > 0 such that the ring solution exists forγ > γ1.

Next he considered the stability of these solutions by analyzing their critical eigenvalues. He showed
that there existsγ0 > 0 such that the spot solution is stable ifγ < γ0 and unstable ifγ > γ0. For the ring
solution, there existsγ2 > γ1 such that the ring solution is stable ifγ ∈ (γ1, γ2) and unstable ifγ > γ2.
Finally he made a comparison between the diblock copolymer problem and the Cahn-Hilliard problem, which
is obtained by settingγ = 0 in the definition ofI.

Glotov studied the ‘variable thickness’ Ginzburg-Landau equations describing type-II superconducting
thin films. The convergence of the order parameter was discussed in the literature in a paper by Chapman,
Du, and Gunzburger. Glotov and his collaborators focussed their attention to the equation for the magnetic
potential and obtained results on convergence of various quantities involved in the latter equation. They also
showed that the limiting order parameter is a minimizer of the two-dimensional thin-film energy. The limiting
problem, among other properties, has an advantage, from a computational point of view, of being restricted
to a bounded domain. The regularity of the solutions to the three-dimensional problem presents another
interesting question for us. Using regularity, they obtainuniform convergence of the three-dimensional mini-
mizers. This in turn allows them to conclude, thanks to the description of the vortex structure for minimizers
of the two-dimensional thin-film energy available from the work of Ding and Du, that the three-dimensional
minimizers exhibit vortices and their degree is preserved as the thickness of the film tends to zero.

Alama and his collaborators consider the following variational problem arising from a two-dimensional
model for rotating Bose–Einstein Condensates (BEC.)Leta = a(r) be a real-analytic radially symmetric
function in the plane, with the property that

A = {x ∈ R2 : a(|x|) > 0}

is anannulus,and such thata vanishes linearly at each edge of the annulusA. Examples includea(r) =
−b0 + b1r

2 − b2r
4 with appropriately chosen coefficients. LetΩ ∈ R,x = (x1, x2) ∈ R2, x⊥ =

(−x2, x1),andε > 0. They study minimizersu ∈ H1
0 (A;C) of the energy functional

Eε(u) =

∫

A

{
1

2
|∇u|2 − Ωx⊥ · (iu,∇u) +

1

4ε2
(|u|2 − a(x))2

}
dx,

in the singular limit asε → 0. In the context of BEC,u is the quantum wave-function,Ω is the angular
speed of rotation, and−a(r) gives a potential well imposed to“trap” the condensate (by means of lasers) in a
bounded region of space. The choice of an annular trap here ismeant to simulate certain current experiments
for BEC.

Alama showed how the annular topology of the condensate domain affects the presence and location of
vortices as a function of the angular speedΩ. His results concern both fixed rotationΩ (independent ofε and
rotations which grow withε. WhenΩ is fixed,
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it is proved that minimizers converge to anon-zero (radially equivariant) solution away from the hole,
while the hole itself plays the role of a “Giant Vortex” with degree increasing withΩ. Alama also considered
angular velocities of the form

Ω = ω0| ln ε|+ ω1 ln | ln ε|,
with ω0, ω1 constant. He showed that there is a critical value of the coefficientω0 = ω∗

0 such that whenever
ω0 < ω∗

0 , minimizers have no vorticity in the interior of the annulusA, but whenω0 = ω∗
0 andω1 is large

enough, then vortices begin to appear insideA. The location of these vortices is completely determined by
the coefficienta: they lie on one or several concentric circles inA whose radii attain a given minimization
problem involvinga(r). This method involves deriving sharp upper and lower boundson the energy of
minimizers via a vortex-ball construction as in the work of Sandier–Serfaty. In order to determine the number
and location of the vortices for supercritical rotations they must take into account the effect of the Giant Vortex
in constructing the upper and lower bounds.

Sternberg discussed various basic questions for the Ginzburg-Landau and Allen-Cahn equations that re-
main unanswered. One such question is on the monotonicity ( i.e. increasing in one direction) of local
minimizers for the Allen-Cahn energy in a convex domain. Another such question is the smoothness of the
zero level set of solutions to Allen-Cahn energy.

Bates and his collaborators study a global minimizer of the van der Waals’ free energy functional with
nonlocal interaction. Short-range repulsive and long-range attractive interactions appear in, e.g., the van der
Waals’ forces (often modeled by the Lennard-Jones potential). For this model since there is no gradient term,
the underlying space is not restricted to differentiable functions and critical points are possibly discontinuous
functions. Indeed, monotone discontinuous heteroclinic critical points were constructed in previous work
by the authors and others. For instance, they discovered families of critical points, discontinuous along
arbitrarily prescribed interfaces, which are seemingly stable, since the formal second variation is positive.
However, there is no variational sufficiency condition for minimizers, since if the functional is defined on the
natural spaceL2 or u0 + L2, it is only C1,1 and the discontinuous solutions which usually form nonsmooth
continua inL2 are in general not local minimizers. Bates studied the case when the Fourier transform,̂J ≤ 1,
which assures that the energy functional is bounded below by0. If J ≥ 0, a monotone global minimizer can
be constructed using monotone rearrangements. However, ifJ changes sign, monotonicity methods are not
applicable, and in general the global minimizer will not be monotone. For this case ideas from concentration
and convexification techniques are employed.

Bubbles, Spikes and Concentration

Many variational problems arises from geometry particularly in the study of the Yamabe problem, Kahler-
Einstein manifolds, minimal surfaces, scalar curvature, harmonic maps, etc. A typical difficulty is the lack of
compactness, i.e., some kind of bubble or singularity appears. This area is very active and has been a major
source of new ideas in variational methods.

Let (M, g) be a compact smooth Riemannian manifold of dimensionn ≥ 3, and let

Ag :=
1

n− 2
(Ricg −

Rg

2(n− 1)
g)

denote the Schouten tensor ofg, whereRicg andRg denote respectively the Ricci tensor and the scalar
curvature ofg. Let λ(Ag) = (λ1(Ag), · · · , λn(Ag)) denote the eigenvalues ofAg with respect tog. Let V
be an open convex subset ofRn which is symmetric with respect to the coordinate axes. Assume that∅ 6= ∂V
is smooth and satisfies

ν(λ) ∈ {µ ∈ Rn|µi > 0, ∀1 ≤ i ≤ n}, ∀ λ ∈ ∂V,

and
ν(λ) · λ > 0, ∀ λ ∈ ∂V.

Let
Γ(V ) := {sλ | λ ∈ V, 0 < s <∞}
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be the cone with vertex at the origin generated byV .

Conjecture. Let (Mn, g), V andΓ(V ) be as above. Assume that

λ(Ag) ∈ Γ(V ), onMn.

Then there exists a smooth positive functionu ∈ C∞(Mn) such that the conformal metriĉg = u
4

n−2 g
satisfies

λ(Aĝ) ∈ ∂V, onMn.

For V = {λ ∈ Rn | ∑n
i=1 λi > 1}, the conjecture is the Yamabe Conjecture in the positive case.

Yanyan Li discussed recent joint work on this conjecture including some proofs of results on the existence
and compactness of solutions as well as some Liouville type theorems.

Min Ji consider the famous Nirenberg problem: which positive functionR can be the scalar curvature
of some metricg which is pointwise conformal tog0? Writing g = eug0, the problem is equivalent to the
solvability of the following PDE:

−4g0
u + 2− R eu = 0, on S2. (12.1)

Several years ago Moser proved the solvability forR an even function and this was followed by much further
research. Equation (12.1) can be reduced to a variational problem. The corresponding functional is bounded
from below, however it has no minimum ifR is not a constant. Most subsequent work involved attempts to
look for minimax type of solutions. A.Chang–P.Yang and others made further important progress. Min Ji
gave a nice general framework for getting solutions.

Wei and his coauthors consider the following nonlinear elliptic equation

∆u− µu + uq = 0 in Ω, u > 0 in Ω and
∂u

∂ν
= 0 on∂Ω, (12.2)

whereΩ is a bounded and smooth domain inRN , µ > 0 andq = N+2
N−2 . Problem (12.2) has been studied by

many authors in recent years . Wei mentioned the following results of Gui-Wei: Letq < N+2
N−2 . Given arbitrary

two positive integersK, l, there exists aµk,l such that forµ > µk,l, there exists a solution to (12.2) with
k−interior spikes andl−boundary spikes. In his talk, Wei showed similar phenomena for the critical exponent
case. Wei’s first result concerns the case ofµ large andN ≥ 7. (This is joint work with C.-S. Lin.) They
showed that at a positive nondegenerate local minimum pointQ0 of the mean curvature, (they may assume
thatQ0 = 0), for any fixed integerK ≥ 2, there exists aµK > 0 such that forµ > µK , the above problem
has aK − bubble solutionuµ concentrating at the same pointQ0. More precisely, they show thatuµ hasK

local maximum pointsQµ
1 , ..., Qµ

K ∈ ∂Ω with the property thatuµ(Qµ
j ) ∼ µ

2
N−2 , Qµ

j → Q0, j = 1, ..., K,

andµ
3−N

N (Qµ
1 , ..., Qµ

K) approach an optimal configuration of the following problem
(∗) Find out the optimal configuration that minimizes the following functional:

R[Q1, ..., QK ] = c1

K∑

i=1

ϕ(Qj) + c2

∑

i 6=j

1

|Qi −Qj |N−2
.

wherec1, c2 > 0 are two generic constants andϕ(Q) = QT GQ with G = (∇ijH(Q0)). This result shows
that the bubbling accumulations phenomenon can occur forN ≥ 7. (WhenN = 3, it was proved by Y.Y. Li
that no bubbling accumulations can occur.)

Wei’s second result concernsµ and the lower dimension caseN = 4, 5, 6. (This is joint work with O.
Rey.) They show that forN = 4, 5, 6 and any positive integerK such thatK 6= 2, there existsµK > 0 such
that for0 < µ < µK , the above problem has a nontrivial solution which blows up at someK interior points
in Ω, asµ → 0. The locations of the blowing up points are related to the domain geometry. No assumption
on the symmetry or the geometry or the topology of the domain is needed.
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Sharp Inequalities and Symmetry of Extreme Functions

Inequalities are a crucial part of mathematics. Many inequalities have a variational formulation. It is very
useful to get sharp inequalities by finding the extreme functions and their properties, which often involve
symmetries and underlying invariance of the functionals. In the workshop, many participants discussed the
relationship of sharp inequalities and symmetry.

Z.Q. Wang and his coauthors consider a family of weighted Hardy-Sobolev type inequalities due to Caf-
farelli, Kohn and Nirenberg: There isS(a, b) > 0 such that for allu ∈ C∞

0 (RN ), the inequality

∫

RN

|x|−2a|∇u|2 dx ≥ S(a, b)

(∫

RN

|x|−bq|u|q dx

)2/q

(12.3)

holds forN ≥ 3: −∞ < a < N−2
2 , 0 ≤ b − a ≤ 1 andq = 2N

N−2+2(b−a) . These inequalities extend to

D1,2
0 (RN ) := C∞

0 (RN )
||·||

with respect to the norm||u||2a =
∫

RN |x|−2a|∇u|2dx, and have the associated
Lagrange equation−div(|x|−2a∇u) = |x|−bquq−1, which is a prototype of more general anisotropic type
nonlinear elliptic PDEs with multiple singularities and degeneracies. Wang then discussed:

• Symmetry and symmetry breaking of extremal functions. Here due to the work of Aubin(1976), Tal-
enti(1976), Lieb(1983), and Chou-Chu(1993), fora ≥ 0, a ≤ b < a + 1, all extremal functions of the
inequalities are radially symmetric. Some recent work havepartially clarified the symmetry property of
extremal functions for the remaining parameter region. More precisely:

Theorem (Catrina-Wang, 2001) There is a functionh(a) defined fora ≤ 0, satisfyingh(0) = 0, a < h(a) <
a + 1 for a < 0, anda + 1− h(a)→ 0 as−a→∞, such that for(a, b) satisfyinga < 0 anda < b < h(a),
the extremal functions forS(a, b) are non-radial.

A more precise result was given by Felli-Schneider(2003) who showed
h(a) = 1 + a− N

2 (1− N−2−2a√
(N−2−2a)2+4(N−1)

).

As a more recent result we have:
Theorem (Lin-Wang, 2004) For(a, b) satisfyinga < 0 anda < b < h(a), any extremal functionu to S(a, b)
is axially symmetric about a line through the origin. Moreover, up to a rotation,u(x) only depends on the
radiusr and the angleθN between thexN -axis and~ox, and on each sphere{x ∈ RN | |x| = r}, u is strictly
decreasing as the angleθN increases.

Next Wang spoke on:
• Sharp versions of the improved Hardy inequalities.When restricted to bounded domains, on the right
hand side of (12.3) one can add additional terms leading to Hardy-Sobolev inequalities with remainder terms.
The following is the improved weighted Hardy inequality which gives the sharp version of the improved
Hardy inequality due to Brezis-Vazguez(1997) and Vazguez-Zuazua(2000), as well as generalizes their results
to the weighted versions. These inequalities are useful tools for elliptic and parabolic equations having
singular potentials.

Theorem (Wang-Willem, 2003) LetN ≥ 1, a < N−2
2 , andΩ ⊂⊂ BR(0) for someR > 0. Then there exists

C = C(a, Ω) > 0 such that for allu ∈ C∞
0 (Ω)

∫

Ω

|x|−2a|∇u|2dx−
(

N − 2− 2a

2

)2 ∫

Ω

|x|−2(a+1)u2dx ≥ C

∫

Ω

(
ln

R

|x|

)−2

|x|−2a|∇u|2dx.

When0 ∈ Ω, the inequality is sharp in the sense that
(
ln R

|x|

)−2

can not be replaced byg(x) ln
(

R
|x|

)−2

with

g satisfying|g(x)| → ∞ as|x| → 0.

• Further questions. i.) The symmetry of extremal functions for parametersa ≤ 0, h(a) ≤ b < a + 1. ii.)
Related issues for theLp versions of the weighted Hardy-Sobolev inequalities.

Congming Li and his coauthors studied the well-known Hardy-Littlewood-Sobolev inequality:
∫

Rn

∫
Rn f(x)|x− y|α−ng(y)dxdy

≤ C(n, s, α)||f ||r||g||s.
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Heref ∈ Lr(Rn), g ∈ Ls(Rn), 0 < α < n and 1
r + 1

s = n+α
n . They were mainly interested in the study of

non-negative solutions to the associated Euler-Lagrange equations which can be transformed to the following
system of integral equations inRn:

{
u(x) =

∫
Rn |x− y|α−nv(y)qdy

v(x) =
∫

Rn |x− y|α−nu(y)pdy

with 1
q+1 + 1

p+1 = n−α
n . First, under the natural integrability conditionsu ∈ Lp+1(Rn) andv ∈ Lq+1(Rn),

They prove that all the solutions are radially symmetric andmonotone decreasing about some point. In the
special casep = q, they classified all the solutions which solved a open problem posed by E. Lieb.

Congming Li also presented some of his joint work on regularity, radial symmetry, and monotonicity of
solutions to this and some related systems which include subcritical cases, super critical cases, and singular
solutions in all cases; and obtain qualitative properties for these solutions.

Burchard used symmetrization to gain compactness and studyrelated inequalities. Indeed, lack of com-
pactness is a principal analytical difficulty in the study offunctionals on unbounded domains. For symmetric
functionals, the existence of minimizers can often be established by first restricting the problem to radially
symmetric functions with the help of a rearrangement inequality, and then using the additional compactness
properties of symmetric functions, as captured by the Strauss radial lemma [1977], to find a convergent min-
imizing sequence. This strategy was used in the determination of the sharp Sobolev constants by Talenti
[1976], in the analysis of the sharp Hardy-Littlewood-Sobolev inequalities by Lieb [1983], and for the study
of ground states for many functionals of Mathematical Physics.

Certain dynamical stability problems can also be reduced tothe study of related variational problems.
Here, it is the compactness of arbitrary minimizing sequences, not just the existence of minimizers, that
plays the key role. In a series of famous papers, Lions [1984]introduced a general abstractconcentration
compactnessprinciple which has lead to many applications. In order to apply this principle to a specific
problem, some additional analysis is usually needed. In recent joint work with Y. Guo [2004], Burchard
closely examines the role of translations for minimizing sequences of two classes of functionals that appear
in many applications of the concentration compactness principle: convolution integrals of the form

I(f) =

∫

Rn

∫

Rn

f(x)K(|x− y|)f(y) dxdy

with some strictly decreasing, positive definite kernelK, and gradient integrals of the form

J (g) =

∫

Rn

Φ(|∇g(x)|) dx

with some strictly convex, increasing integrandΦ. Special cases are the Coulomb kernel in three dimensions,
and thep-norm of the gradient. They show that the difference betweena minimizing sequence and the
corresponding sequence of symmetrized functions is characterized by appropriate translations. Besides the
interest of their results in classical analysis, this characterization suggests a practical two-step procedure for
establishing compactness on an unbounded domain.Step 1.Show convergence of all symmetric minimizing
sequences.Step 2.Show convergence up to translations for general minimizingsequences, assuming that
their symmetrizations converge. The first step implies the existence of minimizers; it is also a necessary
ingredient in the proof that these minimizers are dynamically stable under symmetric perturbations. They
focus on the second step, which implies dynamical stabilityunder more general perturbations. They discuss
applications to symmetric galaxy configurations appearingin recent work of Guo and Rein [1999-2001], and
to functionals with additional scaling symmetries.

Technically, their results are inspired byasymmetryinequalities, which estimate the difference between
a function or a body and a symmetric one by a related geometricquantity. The most powerful result in
that direction, due to Hall [1992], states that a body whose surface area is close to the surface area of a
ball of the same volume is in fact close (in symmetric difference) to a suitable translate of the ball. They
expect that asymmetry inequalities should hold for large classes of symmetric functionals, including the
Coulomb electrostatic energy. They hope that their approach can give another perspective on concentration
compactness for symmetric functionals.

On another front, McKenna discussed the symmetry of approximate solutions. Over the past quarter
century, one field of intense research activity has been the study of what symmetry properties the solution
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of a nonlinear elliptic boundary value problem can inherit from the domain on which it is being solved. A
classic paper is that of Gidas-Ni-Nirenberg, in which a typical result of the type we have in mind is: a positive
solution of the boundary value problem

∆u = f(u) in Ω, u = 0 on∂Ω (12.4)

must be radially symmetric ifΩ is a ball. More recently, a related area has been attracting growing attention,
namely how does one approximate solutions of this type of nonlinear boundary value problem? Typically,
the work in this area relies on a suitable discretization of (12.4), (most commonly by finite-differences), and
then uses theoretical ideas from nonlinear analysis such asmonotonicity methods, mountain pass algorithms,
or linking methods, to develop an approximate or exact solution to the discretized problem.

McKenna addressed the so-far-neglected question: if the partial differential equation (12.4) has inherited
certain symmetry properties from the domain, to what extentdoes the discretized problem also inherit these
symmetry properties?

This leads to the study of the most natural discretization of(12.4), namely,

ui+1 − 2ui + ui−1 = h2f(ui), ui > 0, i = −(N − 1) . . .N − 1, (12.5)

u−N = uN = 0,

whereh = L/N > 0 is the mesh-size of an equidistant mesh on[−L, L]. Suppose thatf : [0,∞) → R
is a given function. A solution of (12.5) is represented as a vectoru = (u−N , . . . , uN ) ∈ R2N+1 with
‖u‖∞ = maxi=−N...N |ui|. The first natural conjecture would be that the discrete approximate solutionui

would have a maximum atj = 0, and be symmetric about0 in the sense thatu−j = uj . This would exactly
reflect the symmetry properties of the analogous continuousproblem. This conjecture is false. Roughly
speaking McKenna’s result statesash→ 0, the solution becomes more and more symmetric about the origin
and the maximum→ towards the origin.Thus, the correct result is that for a sufficiently small space step, the
solution will be “approximately” symmetric about the origin. They hope to prove an analogous result in the
partial differential equation setting.

Hamiltonian Systems and Mathematical Physics

Let V ∈ C2(Rn, R) andh > 0 such thatΩ ≡ {q ∈ Rn|V (q) < h} is bounded, open and connected.
Consider the following given energy problem of the second order Hamiltonian system:

q̈(t) + V ′(q(t)) = 0, for q(t) ∈ Ω, ) (12.6)
1

2
|q̇(t)|2 + V (q(t)) = h, ∀t ∈ R, ) (12.7)

q̇(0) = q̇(
τ

2
) = 0, ) (12.8)

q(
τ

2
+ t) = q(

τ

2
− t), q(t + τ ) = q(t), ∀t ∈ R.) (12.9)

A solution (τ, q) of (12.6)-(12.9) is called abrake orbiton Ω. Two orbitsq andp : R → Rm are said
to begeometrically distinct, if q(R) 6= p(R). Denote byJ (Ω) and J̃ (Ω) the sets of all brake orbits and
geometrically distinct brake orbits inΩ respectively.

In 1948, H. Seifert proved#J (Ω) ≥ 1 providedV is analytic,Ω is homeomorphic to the unit ball inRn,
andV ′(q) 6= 0 for q ∈ ∂Ω. Then he conjectured that#J̃ (Ω) ≥ n holds under the same conditions. Since
then many studies have been carried out for brake orbits. Specially in 1983-1984, K. Hayashi, H. Gluck-W.
Ziller, and V. Benci proved independently that#J (Ω) ≥ 1, if V is C1, Ω̄ = {V ≤ h} is compact, and
V ′(q) 6= 0 for all q ∈ ∂Ω. In 1987, P. Rabinowitz proved the corresponding result forfirst order Hamiltonian
systems. For multiplicity results concerning Seifert’s conjecture, there are only the papers of E. van Groesen
in 1985, A. Szulkin in 1989, and A. Ambrosetti-V. Benci-Y. Long in 1993, in which#J̃ (Ω) ≥ n was proved
under various pinching conditions on the hypersurface∂Ω.

Yiming Long and his students study the multiplicity of brakeorbits without any pinching conditions.
Their main result is the following:
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Theorem. For n ≥ 2 andV ∈ C2(Rn, R), supposeV (0) = 0, V (q) ≥ 0, V (−q) = V (q), andV ′′(q) is
positive definite for allq ∈ Rn \ {0}. Then for any givenh > 0 andΩ ≡ {q ∈ Rn|V (q) < h}, there holds

#J̃ (Ω) ≥ 2. (12.10)

Bolotin studied another class of problems for (12.6). Consider the 3-body problem inR2 where we have
a sun of mass 1, Jupiter of massε and an asteroid of negligible mass. Letu(t) be the ellipticT -periodic orbit
of the Jupiter. The motion of the asteroid is described by a Lagrangian system (Lε) with

Lε(q, q̇, t) = |q̇|2/2 + |q + εu(t)|−1 + ε|q − u(t)|−1.

The system (Lε) is a singular perturbation of the Kepler problem (L0).
Fix m, n ∈ N . Let Π be the set of chainsc = (ci)

n
i=1 of collision curvesci : [ti−1, ti]→ R2 \ {0} such

thatci(ti−1) = u(ti−1), ci(ti) = u(ti). The time momentst0 < · · · < tn−1 are independent variables and
tn = t0 + mT . ThusΠ is an open set inW 1,2

0 ([0, 1], R2n)×Rn. Critical points of the action functional

I(c) =
∑

I(ci), I(ci) =

∫
L0(ci(t), ċi(t), t) dt

are chains of collision orbits of system (L0) such that the relative Hamiltonianh = H0 − q̇ · u̇(t) does not
change at collisions:h+

i = h−
i = hi. We say thatc = (ci)

n
i=1 is a nondegenerate collision chainif it is

a nondegenerate critical point ofI and at each collision the direction of the relative velocityv = q̇ − u̇(t)
changes:v+

i ∦ v−i . Bolotin’s main result is:

Theorem 1 For any nondegenerate periodic collision chainc = (ci)
n
i=1, there existsε0 > 0 such that for

anyε ∈ (0, ε0), there exists a uniquemT -periodic solution of system (Lε) which isO(ε)-close toci(t) for
ti−1 ≤ t ≤ ti.

Such shadowing periodic orbits were called periodic solutions of the second kind by Poincaré. However,
Poincaŕe didn’t prove their existence. A similar result holds for infinite collision chains. TakeN open
bounded setsUk ⊂ R2 such that for each(t1, t2) ∈ Uk there exists a collision orbitc : [t1, t2]→ R2 of (L0)
with c(t1) = u(t1), c(t2) = u(t2), smoothly depending on(t1, t2). In particulart1 < t2 are not conjugate
alongc. ThenI(c) = Sk(t1, t2) is a smooth function onUk. Sequencesκ = (ki)i∈Z andτ = (ti)i∈Z such
that(ti−1 − Tmi, ti − Tmi) ∈ Uki

, mi ∈ Z, define a collision chainc = (ci)i∈Z . Set

Aκ(τ ) =
∑

I(ci) =
∑

Ski
(ti−1, ti).

The functional is formal but its derivativeA′
κ(τ ) ∈ l∞ is well defined. A collision chainc = (ci)i∈Z

corresponding to the critical pointτ is called nondegenerate if the second derivativeA′′
κ(τ ) : l∞ → l∞ has a

bounded inverse and the changing direction condition is uniform in i. Then for smallε ∈ (0, ε0) there exists
an orbit of (Lε) shadowing the chainc.

If Sk satisfies the twist conditionD2
t1t2Sk 6= 0, critical points ofAκ correspond to orbits of compositions

fkn
◦ · · · ◦ fk0

of symplectic mapsfki
: (ti−1, hi−1) → (ti, hi) ∈ (R/TZ) × R with generating functions

Ski
. Such random dynamical systems have rich hyperbolic dynamics even if every mapfk is integrable. This

makes it possible to construct many nondegenerate collision chains and hence periodic and chaotic shadowing
orbits for system (Lε).

Turning from classical to quantum mechanics, the Dirac-Fock equations are the Euler-Lagrange equations
corresponding to the Dirac-Fock energy functional in a “sphere” of L2(R3, C4)N , N being a positive integer.
This model corresponds, in an approximate way, to the searchof stationary states for relativistic atoms and
molecules. The Dirac operator being unbounded, both from above and from below, the corresponding energy
functional is highly indefinite. However, this model “should contain” a notion of ground state if it is to
describe a physical situation in which “minimal energy” solutions should exist and correspond to “most
probable” configurations for the physical system. Moreover, the nonrelativistic limit of these equations (in the
high light speed limit) can be shown to be the Hartree-Fock equations, for which ground state solutions exist
under reasonable conditions (the Hartree-Fock energy is bounded from below). Maria Esteban first described
the Dirac-Fock equations, and how taking the nonrelativistic limit leads us to the Hartree-Fock equations.
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Then, she concentrated in showing how for high light speeds,various different variational problems are
equivalent to the one that she uses to show existence of solutions. From this, one can obtain a physically
relevant notion of ground state solution for this model. By doing so, what is really shown is that the critical
points that are physically relevant all lie in a subset of the“sphere” defined by a nonlinear constraint. What is
indirectly shown is that the Dirac-Fock energy is bounded from below in that set while it is not in the whole
“sphere”, i.e. that its minimum is reached there and that theminimizers are critical points of the energy which
correspond to the solutions that previously found by using an unconstrained variational argument.

Eric Śeŕe also presented his work on existence of a stable polarized vacuum in the Bogoliubov-Dirac-
Fock approximation. According to Dirac’s ideas, the vacuumconsists of infinitely many virtual electrons
which completely fill up the negative part of the spectrum of the free Dirac operatorD0 (this model is called
the “Dirac sea”). In the presence of an external field, these virtual particles react and the vacuum becomes
polarized. In this work, Śeŕe and his coauthors consider a nonlinear model of the vacuum derived from QED,
called the Bogoliubov-Dirac-Fock model (BDF). In this model, the vacuum is represented by a bounded self-
adjoint operatorΓ on L2(R3). An energy of this vacuum is defined. A stable vacuum is a minimizer of this
BDF energy functional, under some convex constraints. Séŕe showed the existence of a minimizer of the
BDF energy in the presence of an external electrostatic field andproved that this minimizer is a projector,
which solves a self-consistent equation of Hartree-Fock type. This minimizer is interpreted as the polarized
Dirac sea.

Other Aspects and Applications of Variational Methods

In addition to the topics discussed above, some new methods and applications related to variational problems
were presented in the workshop.

Nassif Ghoussoub developed a theory of anti-self dual Lagrangians and new variational formulations of
boundary value problems and evolution equations. Its antecedents are old work of Brezis and Ekeland. His
theory of anti-self dual Lagrangians allows for surprisingvariational formulations and resolutions for many
boundary value and initial value problems which normally cannot be obtained as Euler-Lagrange equations
of action functionals. Examples include non-potential operator equations (like nonlinear transport and others
involving first order differential operators), as well as certain dissipative evolution equations (like the heat
equation, porous media, other gradient flows and the Navier-Stokes equations).

Ivar Ekeland and Louis Nirenberg studied a very interestingvariational problem from economics. When
computing conditional expectations by Monte-Carlo methods, one tries to minimize the mean variance of the
error. Applying Malliavin calculus to the problem, one is led to a novel type of Sobolev space, consisting
of all functions on the positive orthant ofRn, such that every derivative not containing terms in(dp)/(dxi)

p

with p = 2 or more is square integrable. The last derivative with this property isdn/(dx1)...(dxn). They
show that this is a bona fide Sobolev space, and They consider the problem of minimizing a quadratic form
on that space under boundary conditions. they show existence, uniqueness and regularity of the minimizer.
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California, Davis), Robert Russell (Simon Fraser University)

In the last 15 years the profound impact of scientific computing upon virtually every area of science and
engineering has been well established. The increasing complexity of the underlying mathematical models has
also highlighted the critical role to be played by ScientificVisualization. It therefore comes as no surprise that
Scientific Visualization is one of the most active and exciting areas of Mathematics and Computing Science,
and indeed one which is only beginning to mature.

The importance of more rigorous mathematical approaches isbecoming self apparent. At the last few
Siggraph and Visualization conferences (the main conferences in the fields of graphics and visualization),
an increasing number of mathematically oriented tutorialshave been offered and received an enthusiastic
reception. Examples are tutorials on “Multiresolution Techniques for Surfaces and Volumes” (Visualization
2001), “From Transfer Functions to Level Sets: Advanced Topics in Volume Image Processing” (Visual-
ization 2001), “Level Set and PDE Methods for Computer Graphics” (Siggraph 2002), “A Practical Guide
to Global Illumination Using Photon Mapping” (Siggraph 2002), “Mathematical Optimization in Graphics
and Vision” (Siggraph 2002), “An Introduction to the KalmanFilter” (Siggraph 2001), “Geometric Signal
Processing on Large Polygonal Meshes” (Siggraph 2001), “Using Tensor Diagrams to Represent and Solve
Geometric Problems” (Siggraph 2001).

A primarly objective of the workshop is to gather together the main researchers in the mathematical areas
relevant to the recent advances in order to discuss the research challenges facing this field in the next several
years. The workshop shall cover five main thrusts:

• PDE’s

– segmentation

– level set method

– mathematical modeling

• Signal Processing + Wavelet methods

– multi-resolution

– compression
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– filtering

– stochastic approaches/noise removal

• Data Approximation

– splines

– volume modeling

– scattered data methods

– intrinsic surface and volume properties

– parameterization

– point cloud fitting

• Topology/Discrete methods

– combinatorial topology

– computational geometry

– differential topology

– feature and geometry extraction

• Massive Data (the only application track)

– CFD

– time-varying

– multi-variate/multi-valued

– uncertainty, visualization error metric

– hardware methods (GPU’s, out-of-core methods, parallel and distributed algorithms)

– information visualization

The format of the workshop will include presentations by theparticipants as well as brainstorming ses-
sions. Some of the questions to be addressed during the brainstorming sessions include:

• What are the scientifically challenging problems to be tackled in your topic area?

• What are the driving applications in this field?

• Which journals and conferences exist today that are appropriate venues for publishing mathematically
oriented methods in this field?

• Which good online resources exist today supporting research in this sub-field. (e.g. example data sets,
commercial and free software libraries, publication databases, benchmarking sites, etc.)

• Which scientific domains and sub-fields are needed to solve successfully and elegantly the identified
problems?
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Aperiodic Order: Dynamical Systems,
Combinatorics, and Operators
(04w5001)

May 29–June 3, 2004

Organizer(s): Michael Baake (Bielefeld), David Damanik (Caltech), Ian Putnam (Victo-
ria), Boris Solomyak (Seattle)

The field of Aperiodic Order is concerned with the structure and properties of point sets that display long-
range orientational order, and of all structures that can bederived from such point sets. The latter include
tilings, discrete structures in general, measures, operators etc. Although there is no standard monograph on
the subject yet, several review volumes on key topics are available by now [48, 53, 8, 56]. This indicates the
activity of the field, see also [3] for a guide to further literature.

It was the aim of this workshop to bring people from the various mathematical disciplines together and to
exchange the state of the art as well as to communicate open problems.

Model Sets and Diffraction Theory

An important class of ordered Delone sets are Meyer sets and,among them, model sets, compare [41] for
details. Model sets are also known as cut and project sets, and admit a rather general formulation in the
setting of locally compact Abelian groups, compare [47, 63]. Though they made their appearance in the
context of algebraic number theory already in the seventies[47], their importance was only recognized after
the discovery of quasicrystals whose spatial structure canbe described by model sets, see [69] for a recent
review from an experimental perspective.

Mathematically, model sets are defined on the basis of acut and project scheme. The latter is a triple
(G, H, L̃) consisting of locally compact Abelian groupsG andH, of which G is alsoσ-compact, and a
latticeL̃ in G×H (i.e., a co-compact discrete subgroup)

G
π1←− G×H

π2−→ H
∪
L̃

(14.1)

such that the natural projectionsπ1 : G ×H −→ G, (t, h) 7→ t andπ2 : G×H −→ H, (t, h) 7→ h satisfy
the following properties:

• The restrictionπ1|L̃ of π1 to L̃ is injective.
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• The imageπ2(L̃) is dense inH.

Let L := π1(L̃) and? : L −→ H be the mappingπ2 ◦ (π1|L̃)−1. Note that? is indeed well defined.
Given a cut and project scheme (14.1) and a compactW ⊂ H, we definef(W ) by

f(W ) := {x ∈ L : x? ∈W}.

A model set, associated with the cut and project scheme (14.1), is a non-empty subsetΛ of G of the form

Λ = x + f(y + W ),

wherex ∈ G, y ∈ H, andW ⊂ H is compact withW = W ◦. A model setΛ = x + f(y + W ) is
calledregular if the Haar measure of the boundary∂W of W is zero. A regular model set is calledgeneric
if ∂W ∩ L? = ∅. Any model set is a Delone set. Namely, it is uniformly discrete (asW is compact) and
relatively dense (asW has nonempty interior). In fact, they are even Meyer sets, becauseΛ−Λ ⊂f(W−W )
andW −W is compact, so thatΛ − Λ ⊂ Λ + F with F a finite set. Moreover, a regular model set has
uniform patch frequencies (i.e., the associated dynamicalsystem is uniquely ergodic) and a generic model set
is repetitive, see [49] for a review of the properties of model sets.

A prominent feature of regular model sets is their pure pointdiffraction. If we start from the Dirac comb
ω = δΛ =

∑
x∈Λ δx, with δx the normalized point measure atx, there exists a naturalautocorrelation

γω = lim
r→∞

1

vol(Br)
ω̃ ∗ ω|r

whereBr is the ball of radiusr around0 for G = Rd, or a suitable generalization of this concept for general
G, see [64] for details. Moreover,ω|r is the restriction ofω to Br andω̃ = δ−Λ is the origin inverted variant
of ω. This autocorrelation is unique (w.r.t. averaging sequences of van Hove type) which reflects the unique
ergodicity of the corresponding dynamical system (see below). What is more, it is always a positive definite
and translation bounded measure onG. Consequently, it is transformable, and its Fourier transform, γ̂ω,
is a positive measure, called thediffraction measureof ω. It describes the outcome of standard diffraction
experiments, compare [37, 24].

An important result is that the diffraction measure for the Dirac comb of a regular model set is a pure
point measure, or, in other words, that regular model sets are pure point diffractive. In this generality, it
was proved by M. Schlottmann in [64], though it has several predecessors [37, 68]. These aspects, and in
particular their various relations to dynamical systems, were summarized in the opening lecture by Robert
Moody, and reappeared in many other talks throughout the meeting.

The cornerstone of most proofs of this result is the connection to pure point spectra of dynamical systems,
to which we will come back below. One alternative proof is known [9] that relates pure point diffraction
spectra directly to strong almost periodicity of the autocorrelation measure, the latter being a consequence
of a Weyl type result on uniform distribution in model sets [63, 50]. This is also related to recent results of
J.-B. Goúeŕe [34]. Using this approach, one can see in general that a complex translation bounded measure
ω onG is pure point diffractive (w.r.t. an averaging van Hove sequenceA = {an | n ∈ N}, compare [64, 9])
if and only if its autocorrelationγω (obtained w.r.t.A) is strongly almost periodic, compare also [31] for
background.

Various generalizations of model sets are studied, such as multi-component model sets (e.g., in the talk
by J.-Y. Lee) or deformed model sets (in the talk by D. Lenz), where the latter go considerably beyond the
setting of Delone sets of finite local complexity. Of considerable interest is the question for the diffractive
properties of Meyer sets. Though it is known [47] that they are subsets of model sets, their diffraction is much
more involved. In particular, one can have mixed spectrum (i.e., both pure point and continuous components),
and Meyer sets can have positive entropy density (e.g., the union of2Z with an arbitrary subset of2Z + 1 is
Meyer). First general results on the systematic study of Meyer set diffraction were presented by N. Strungaru,
building on the more detailed theory of almost periodic measures (strong versus weak, see [31] for details).

Still of interest is the systematic investigation of symmetry, and the development of efficient methods to
determine the symmetry of a given Delone set, ranging from translation over point to inflation symmetries.
Well-known heuristics from the physics literature, see [46] and references given there, are now reformulated
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in the context of the cohomology of groups, and the survey talk of B. Fisher showed the present state of
affairs, compare [28].

Finally, one common theme of many talks on aperiodic order was the apparent similarity of model sets
to lattices. Sometimes, it requires a slight reformulationof the classic concepts, but very often a new and
simplifying point of view emerges. The talk by U. Grimm mightserve as an illustration, where combinatorial
problems of crystallography [5] were reformulated and solved in a unified fashion for lattices and model sets,
see [4, 6] for more.

Aperiodic Order and Dynamical Systems

The dynamical systems approach to the theory of aperiodic order has gained prominence in recent years. Let
us explain how dynamical systems appear in the simple setting of Delone sets inRd. Given a Delone setΛ,
which can be viewed as a model of an atomic configurations, we can consider itshull XΛ. It can be defined as
the closure of the set{Λ− x : x ∈ Rd} of all translates ofΛ in the natural (local) topology. In this topology,
two sets are close if they almost agree on a large ball around the origin. The groupRd acts continuously on
XΛ by translations, which is our topological dynamical system. Given an invariant probability measure on
XΛ (it always exists and is often unique; then the system is saidto beuniquely ergodic), we get a measure-
preserving system(XΛ, Rd, µ), which may be studied using the tools of ergodic theory. In particular, we
can consider thedynamical spectrum, that is, the projection spectral measure, or a family of scalar spectral
measures, associated with the group of unitary operators onL2(XΛ, µ) given by (Uxf)(ξ) = f(ξ − x)
for x ∈ Rd. The spectral type of the dynamical system may be pure point (pure discrete), pure absolutely
continuous, pure singular continuous, or a mixture. A key observation made by Dworkin [25] in 1993 is that
pure point dynamical spectrum implies pure point diffraction spectrum, which has been widely viewed as the
key feature of an ordered (crystalline or quasi-crystalline) structure.

One direction of research in the recent years has been to reverse the implication, that is, to deduce pure
point dynamicalspectrum from pure pointdiffraction spectrum. This was done in a restricted setting of
Delone sets of finite local complexity in [42], and more recently, in much greater generality, by J.-B. Gouéŕe
[34] and M. Baake & D. Lenz [7]. In fact, in [7], instead of Delone dynamical systems onRn, dynamical
systems on translation bounded measures on rather general locally compact Abelian groups are considered.
This approach via measures is both more general and well-suited for applications. The talks by D. Lenz and
J.-B. Goúeŕe described these achievements, among other things.

Another class of dynamical systems related to aperiodic order is that of tiling dynamical systems. They are
defined similarly to Delone dynamical systems, starting with a tiling of the Euclidean space, and considering
the translation action on the hull. In recent years, topological methods have been increasingly used to study
such systems. Some of these developments were described in the talk on “Tilings, tiling spaces, and topology”
by L. Sadun. One of the key questions is: what are the possibleperturbations of a tiling and what happens to
the dynamical systems under these perturbations? It turns out that the tiling spaces may be homeomorphic
(e.g., if the two tiling systems have identical combinatorics), but that their dynamical properties can still
differ. In the recent work by A. Clark and L. Sadun [22], theČech cohomologyH1 of the tiling space is used
to determine when the perturbation yields a topologically conjugate system, and when it yields a mutually
locally derivable system. The latter notion corresponds tothe the existence of a “local code”; unlike in
symbolic dynamics, for tiling dynamical systems not every conjugacy is given by a local code.

Symbolic substitution systems form a rich and interesting class of examples, studied in dynamical sys-
tems and ergodic theory for several decades. More recently,generalizations to higher dimensions, including
substitution tiling systems and substitution Delone sets,largely motivated by the theory of aperiodic order,
were introduced and investigated. They provide examples with various spectral types: pure discrete, pure
singular, and partially absolutely continuous. But even inthe classical, one-dimensional symbolic setting,
there remain many open questions. We describe one of them in detail.

LetA = {1, . . . , d} be a finite alphabet, withd ≥ 2, and denote byA∗ =
⋃∞

i=0Ai the set of finite words.
A substitutionis a mapζ : A → A∗; it is extended to a mapA∗ → A∗ by concatenation. Thed× d matrix
associated with the substitutionζ is defined byMζ(i, j) = `i(ζ(j)), where`i(w) denotes the number of
occurrences of the letteri in the wordw. The substitution isprimitive if there exists ak such that all entries
of Mk

ζ are strictly positive. A primitive substitution gives riseto a uniquely ergodic dynamical system: the
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space is the set of all sequences all blocks of which occur inζk(i) for somek andi, and the dynamics is given
by the shift. One of the outstanding problems is to resolve the Pisot discrete spectrum conjecturewhich is
that every Pisot type substitution system has pure point spectrum. The substitution is ofPisot typeif all the
eigenvalues of the matrixMζ , except the largest eigenvalue, are strictly between 0 and 1in absolute value. It
is still open, although recently the case of two symbols was settled affirmatively, see [11, 38]. The important
special case of unimodular Pisot substitutions, where it isalso assumed thatdet(Mζ) = 1, is open, too. There
is a relatedcoincidence conjecturewhich we do not describe here. At the workshop, we were fortunate to
have several groups present from around the world who are working in this field, and there were many lively
discussions of various approaches to the problems. Among the participants were Sh. Akiyama [1], M. Baake
and B. Sing [10], and V. Sirvent and Y. Wang [66] who made contributions to this area. J. Kwapisz, in his
talk entitled “Geometric coincidence conjecture and pure discrete spectrum for unimodular tiling spaces,”
described his work in progress, jointly with M. Barge and B. Diamond. Their approach uses the space of
“strands”, which was first introduced in [11], to represent the dynamical system. One of the new results is
that, for unimodular Pisot substitutions, pure point spectrum is equivalent to the model set representation. A
geometric approach to the Pisot Substitution Conjecture was pioneered by G. Rauzy [59]; it uses what is now
known as the “Rauzy tiling” of the substitution. At the workshop, A. Siegel represented this direction; she
described some combinatorial conditions for pure discretespectrum in her talk, based on [19, 65].

It is impossible to discuss all the recent developments related to substitutions here. There is an excellent
recent book on this topic [56] with the chapter on spectral theory written by A. Siegel.

Substitution tilings inRd represent a far-reaching generalization of substitution sequences. The role of
the alphabet is played by a finite set ofprototiles. The substitution map replaces a tile by a “patch” of
tiles in a consistent manner. We do not go into the details of the definition here. A crucial point comes in
deciding how the tiles of the tiling are obtained from the prototiles: (a) using translations only, or (b) using
arbitrary Euclidean motions. We have a much better understanding of the class (a), in large part due to the
commutativity of the translation group. The class (b), however, is gradually being investigated as well. Its
best known example is thepinwheel tilingof the plane [58]. The dynamical and diffraction spectrum ofthis
tiling are still poorly understood: it is known that it has nonon-trivial discrete spectral component, but we
do not know whether the spectrum is singular or it has an absolutely continuous component. At the Problem
Session, N. Strungaru described his recent result with R. V.Moody and D. Postnikov [51] which says that the
diffraction spectrum is rotation-invariant under the action ofS1.

An important feature of many substitution systems isunique decomposition. It can be defined by say-
ing that the substitution map defines a homeomorphism of the tiling space. It was proved in [67] in the
translationally-finite setting that the unique decomposition property is equivalent to the tiling being non-
periodic (i.e., it should have no translation symmetries).C. Holton reported on the recent progress for non-
translationally finite tilings. In joint work with C. Radin and L. Sadun (in preparation), the unique decompo-
sition property was verified under some assumptions, the main one being that the set of relative orientations
of a tile in the tiling leaves no subspace ofRd invariant. On the other hand, a counter-example inR3 was
constructed to demonstrate that the latter condition cannot be dropped.

Combinatorics on Words

A popular way to measure complexity is via subword or patterncomplexity. Aperiodic order then manifests
itself in low complexity with respect to this measure. In onedimension, investigations in this direction date
back at least to the 1930’s and have evolved into an independent mathematical subdiscipline, often called
“Combinatorics on Words.” Currently, this field is particularly active in France, and the French school has
put the theory on a firm footing and made it more accessible to abroad audience by the publication of a
series of textbooks, [43, 44, 45] (see also [56]). We were happy to have Vaĺerie Berth́e and Julien Cassaigne
participate in the workshop and report on recent progress ofcombinatorics on words in dimensions greater
than one—a subject that is still in its early stages.

Before summarizing the key results and open problems in higher dimensions, let us briefly discuss the
one-dimensional case. Here, one studies words over a finite alphabet. That is, ifA is a finite set, one considers
the setsA∗,AZ+ ,AZ of finite, one-sided infinite, and two-sided infinite words overA, respectively. Given a
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one-sided or two-sided infinite wordw, define its complexity functionpw : Z+ → Z+ by

pw(n) = #{subwords ofw having lengthn}.

It is obvious thatpw is a bounded function ifw is (eventually) periodic. A surprising, albeit elementary, result
of Hedlund and Morse [36] states that the converse is true and, moreover, there is some minimum growth of
the complexity function whenw is not eventually periodic. Forw ∈ AZ+ , the following are equivalent,

(i) w is ultimately periodic, that is, there aren0, q ∈ Z+ such thatwn+q = wn for n ≥ n0.

(ii) pw is bounded.

(iii) There existsn1 ∈ Z+ such thatpw(n1) ≤ n1.

That is, words displaying aperiodic order should have a complexity function that is bounded from below
by n + 1 but does not grow much faster than that. One is then interested in consequences of low complexity.
The case of minimal complexity,pw(n) = n + 1, has been completely analyzed; see [15, 36, 44]. Words
w with this complexity function are calledSturmianand they have a large number of equivalent descrip-
tions. Aside from the combinatorial description in terms oftheir complexity function above, they can also be
characterized geometrically, in terms of certain balance properties, their palindromic subwords; to mention
just a few. Other classes of words, for which strong general structure results are known, are those satisfying
pw(n) = n + k for somek and large enoughn, the so-called quasi-Sturmian words (see, e.g., [23, 54]),or
pw(n) = O(n), the words having linearly bounded complexity (cf. [27]).

The Hedlund-Morse result for two-sided infinite words looksslightly more elegant in that ultimate peri-
odicity can be replaced by periodicity. Forw ∈ AZ, the following are equivalent,

(i) w is periodic, that is, there isq ∈ Z+ such thatwn+q = wn for everyn ∈ Z.

(ii) pw is bounded.

(iii) There existsn1 ∈ Z+ such thatpw(n1) ≤ n1.

In dimensions greater than one, the most basic open problemsconcern suitable analogues of the results
described above, that is, a suitable version of the Hedlund-Morse theorem and a characterization of a suitable
class of low-complexity objects. Of course, one has to definea notion of complexity first. A natural way to
do this is the following. Givenw ∈ AZd

andn1, . . . , nd ∈ Z+, one defines

pw(n1, . . . , nd) = #{ subwords ofw having “shape”n1 × · · · × nd}.

The functionpw on box shapes could be called the box complexity function or,in the cased = 2, the rectangle
complexity function. In search of an analogue of the Hedlund-Morse theorem, a naive guess could be that if
there is some shape(n1, . . . , nd) such thatpw(n1, . . . , nd) ≤ n1 × · · · × nd, thenw has a periodicity vector.
A simple example found by Sander and Tijdeman [62] shows sucha statement cannot hold whend ≥ 3. The
question ind = 2 is open, but the answer is conjectured to be affirmative.

Nivat’s Conjecture [52]. Let w ∈ AZ2

. If there existn1, n2 ∈ Z+ such thatpw(n1, n2) ≤ n1n2, thenw has
a periodicity vector.

However, unlike in the one-dimensional case, Nivat’s conjecture is not an equivalence. In fact, there exists
a wordw, possessing a periodicity vector, for whichpw(n1, n2) > n1n2 for all pairs(n1, n2) [17].

There are partial results saying that ifpw(n1, n2) ≤ c n1n2 for somen1, n2 ∈ Z+ andc = 1/144 [26]
or c = 1/16 [57], thenw has a periodicity vector. There are surveys of results and questions centred around
Nivat’s conjecture by Cassaigne [21] and Tijdeman [70]. Cassaigne’s talk at our workshop dealt with these
and related issues.

Two-dimensional words of low complexity, and in particularanalogues of one-dimensional Sturmian
words, have been studied in a number of papers (e.g., [16, 17,18, 20]). Since Sturmian words in one dimen-
sion admit various equivalent descriptions, there are multiple ways to approach such a generalization. It turns
out that they lead to different classes of two-dimensional words and hence the situation is more complicated
than in one dimension. Valérie Berth́e presented an overview of these results at the workshop, together with
possible directions for future research.
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Topological Aspects of Aperiodic Order

Beginning from a tiling or Delone set inRd, denotedΛ, one may consider the set of all its translates and
endow this with a natural metric. Under the hypothesis of finite local complexity, this metric space is pre-
compact. That is, its completion, denotedXΛ, is a compact metric space. Moreover, the translation action of
Rd extends continuously. In the case that the periodic vectorsfor the tiling form a spanning set forRd, the
space is just a torus of dimensiond.

The topology of the spaceXΛ has been the focus of much research. It was observed very early that, for
aperiodic tilings, the space, locally, is the product of an open ball inRd with a totally disconnected space. A
global extension of this result was obtained by Sadun and Williams [61] who showed that the space was a
fibre bundle over a torus with totally disconnected fibres.

Anderson and Putnam [2] considered the case of substitutiontilings and showed that the space could be
written as an inverse limit of spaces which are quite tractable. They are branched oriented manifolds and, if
the tiles are polygons meeting edge to edge and vertex to vertex, they are also finite cell complexes. In fact,
the inverse limit is stationary in the sense that each space is the same and each map is the same. This result
(with non-stationary system) was extended to the general situation in two distinct ways; first by Bellissard,
Benedetti and Gambaudo [12] and secondly by Gähler [30] and Sadun [60], the latter paper being based on
a talk given by G̈ahler on a previous meeting. Jean-Marc Gambaudo gave a presentation at the workshop
on the former and subsequent generalizations (with Benedetti [14]) to other situations, including tilings of
non-Euclidean spaces.

A result of Sadun and Williams [61] states that, under the hypothesis of finite local complexity, the space
XΛ is homeomorphic to one obtained by performing ad-fold suspension of a free minimal action ofZd on
a Cantor setX. This then connects the subject with the very active area ofZd dynamical systems. The
construction of Bellissard, Benedetti and Gambaudo may be used in this context to give approximating finite
subequivalence relations of the orbit relation for such an action.

The presentation by Anderson and Putnam of the space as an inverse limit made it possible to compute
its K-theory andČech cohomology. (The methods in the general situation alsowork in principle, but for
practical computations they seem unwieldy.) The computation of cohomology andK-theory for projection
method tilings can be done using methods of Forrest, Hunton and Kellendonk [29]. The method uses some
advanced techniques from algebraic topology: finding resolutions of certain modules and spectral sequences.
In his lecture at the workshop, John Hunton sketched the basic ideas. He also discussed the Euler charac-
teristic for these spaces. This can be obtained from the cohomology, of course, but its computation is much
simpler. Moreover, examples suggest that there are some interesting questions regarding its sign.

Franz G̈ahler reported on his work in actually carrying out these cohomology computations (with the title
“Examples and counter-examples ...”). In particular, he has developed software to implement the Anderson-
Putnam method, as well as to do some calculations using his own technique. This resulting evidence was
quite interesting. In particular, he found an example wherethe cohomology has a torsion component. This
contradicted results of Forrest, Hunton and Kellendonk. Bythe end of the meeting, the problem seemed to
have been resolved and a correct version of the Forrest-Hunton-Kellendonk result found, compare [30] for
more.

Jean Bellissard showed how one may construct aC∗-algebra from an aperiodic tiling [13]. A different
version is due to Kellendonk [39]. By present knowledge, this is – up to strong Morita equivalence – the
crossed product construction by the action ofRd on XΛ, see [40]. Let us denote thisC∗-algebra byAΛ. It
is important from a physical viewpoint because Schrödinger operators (in the tight binding approximation)
associated with an electron’s movement in an aperiodic material are in thisC∗-algebra.

A reasonable amount of information is now known about theseC∗-algebras. First of all, theirK-theory
is computable. By a result of Connes, it is isomorphic to theK-theory of the spaceXΛ. The internal
structure of the algebras has been investigated by Giordano, Herman, Putnam and Skau [35, 32] in dimension
one and by N.C. Phillips [55] in higher dimensions, where theanalysis becomes much more difficult. The
technique is to make use of the finite approximations of the Bellissard-Benedetti-Gambaudo inverse limit
to construct approximating subalgebras which are themselves finite dimensional. Many nice properties of
finite dimensionalC∗-algebras may then be transferred to the larger algebra. Phillips gave a presentation
summarizing these methods.

An alternate approach to this problem is in the work of Giordano, Putnam and Skau to classify minimal
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Cantor set dynamics up to orbit equivalence. Skau gave a summary of the past work in the program (in
dimension one) and its relations with the structure of theC∗-algebras. Giordano gave a presentation of the
current work in dimension two [33]. Here, better finite approximations of the orbit space are obtained by
using cocycles for the action, the drawback being that little is currently known about the existence of such
cocycles. This problem is equivalent to a more complete understanding of the cohomology of the spaceXΛ.
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Chapter 15

Semimartingale Theory and Practice in
Finance (04w5032)

June 5–10, 2004
Organizer(s): Tom Hurd (McMaster University), Thaleia Zariphopoulou (University of
Texas, Austin), Philip Protter (Cornell University), LaneHughston (King’s College Lon-
don)

The theme of this meeting will reflect these new developmentsin the foundations of mathematical fi-
nance, and the following topics are intended to constitute the main focus of the five-day workshop: a. The
mathematical methods of general semimartingale modellingfor finance in (i) asset pricing and hedging (ii)
portfolio optimization and (iii) optimal stopping problems. b. The consistent statistical estimation and cali-
bration of jump diffusions and purely discontinuous processes with respect to econometric data. c. Theory
and implementation of Levy-based stochastic volatility models. d. New term structure models for fixed
income and equity dynamics.

It is intended that on the order of twenty of the world’s leading probabilists and mathematical finance the-
orists will be brought to the meeting, balanced with a corresponding number of highly qualified international
doctoral and postdoctoral researchers. We intend to adopt aselection procedure that will allow invited senior
scientists to identify promising young researchers. The meeting will be appropriately paced with focused
talks by invited speakers during the mornings and early afternoons. The late afternoons will typically then be
less structured to allow smaller groups to break away to focus on specialized areas of current research.

The finance industry has undergone a prolonged period of intensive mathematization, to the extent that it
is now perhaps the leading industrial user of mathematics PhDs and MScs. Will this trend continue through
to the next decade and beyond? This workshop will enable the world’s experts both to exposite and critically
examine the best new mathematical methods in finance. It willalso provide a timely opportunity for assessing
the future applicability of advanced mathematical methodsin finance.
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New Horizons in String Cosmology
(04w5021)

June 12–17, 2004
Organizer(s): James Cline (McGill University), Robert Brandenberger (Brown Univer-
sity), Steve Giddings (University of California, Santa Barbara), Brian Greene (Columbia
University), Robert Myers (Perimeter Institute), Gordon Semenoff (University of British
Columbia)

This workshop was co-sponsored by the Cosmology and GravityProgram of the Canadian Institute for
Advanced Research (CIAR).

Because of the aforementioned advances, issues in string cosmology have attracted the attention of string
theorists who would not otherwise have attempted to addresscosmology, as well as field theorists whose
expertise is more on the cosmological issues themselves. Although the main focus of the proposed workshop
will be on the mathematical and string theoretic aspects of the subject, it is worthwhile to have input from
people in the second group, since the ultimate aim is still tomake a connection with observable physics. The
purpose of the workshop is therefore to provide an opportunity to discuss the current problems and issues in
string cosmology, both at the technical level and at a more conceptual level.

To this end, we are proposing a 5-Day Workshop which will begin by providing overviews of the latest
progress in areas of string cosmology, followed by forums todiscuss its key problems. The topics and
outstanding questions which seem most urgent at present are:

• string theory in time-dependent backgrounds

• identification of the appropriate observables for defining the theory

• time-dependent orbifolds

• AdS/CFT constructions of cosmological string backgrounds

• dynamics of tachyon condensation

• consistency of string theory with deSitter space; alternative ways to get an accelerating universe from
string theory

• resolution of spacelike (cosmological) singularities by string theory

• the proposed dS/CFT correspondence; does deSitter space have a finite number of degrees of freedom?

• inflation from string moduli or D-brane interactions

• string theoretic effects on inflationary perturbations
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• can noncommutative geometry play a role in the early universe?

One of the goals of the proposed workshop is to try to move closer to having a set of tools or a framework
within which one might hope to carry out more rigorous calculations. Despite the remarkable surge of interest
amongst both string theorists and cosmologists in exploring the potential overlap of these two fields, and the
variety of new ideas which have been generated, the field is still in its infancy and it requires refinement and
clarification of the methodology.

The above choice of topics reflects the most important stringtheoretic issues that emerged from our very
successful workshop on string cosmology at the Aspen Centerfor Physics, in August and September of 2002.
The Aspen meeting had a larger phenomenological component than the one presently being proposed, so the
proposed BIRS workshop will be complementary.

One measure of the importance of this workshop is the qualityof people who have agreed in principle to
participate, as enumerated below. They include many of the most highly recognized researchers in modern
string theory and early universe cosmology. We are confidentthat the dialog which occurs at this meeting
will positively influence the development of this rapidly progressing field of mathematical physics.

Given the rapid pace of evolution in this interdisciplinaryfield between mathematical physics and cos-
mology, the time is right to provide a forum to summarize the different paradigms of string cosmology, to
clearly formulate the outstanding challenges, and to outline the most promising avenues to address them. The
organizers have in mind to produce a document which will summarize the outcome of this discussion. As of
now, no such written account exists which coherently definesthe field of string cosmology, and the time is
right to create such a reference. The experts in the field who attend the workshop will be asked to contribute.
Several publishers have already expressed interest in thisidea.
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Advances in Complexity Theory
(04w5100)

July 4–8, 2004

Organizer(s): Stephen Cook (University of Toronto), Arvind Gupta (Simon Fraser Uni-
versity), Russell Impagliazzo (University of California,San Diego), Valentine Kabanets
(Simon Fraser University), Madhu Sudan (Massachusetts Institute of Technology), Avi
Wigderson (Institute for Advanced Study, Princeton)

Computational Complexity Theory is the field that studies the efficiency of computation. Its major goals
are to find efficient algorithms for natural problems in natural computational models, or to show that no
efficient solutions exist. The famed “P versus NP” problem (one of the seven open problems of the Clay
Institute) is the central problem of this field.

In the last two decades, our understanding of efficient computation has improved significantly through a
number of concepts, techniques and results, including:

• Discovery of efficient ways of converting computational hardness into computational randomness
(hardness-randomness tradeoffs), and other techniques for eliminating or reducing randomness use
in probabilistic algorithms.

• Classification of hardness of approximation algorithms fora number of optimization problems, using
the concept of Probabilistically Checkable Proofs (PCP).

• Connections of both items above to old and new problems in coding and information theory, which
fertilized both fields.

• Investigations of the complexity of proofs, and their connections to limits on circuit lower bounds on
the one hand, and to the complexity of search heuristics on the other.

• Use of quantum computation to get efficient algorithms for classically difficult problems (such as fac-
toring), as well as using quantum arguments to obtain complexity results in the classical model of
computation.

Many new developments in these areas were presented by the participants of the workshop. These new
results will be described in the following sections of this report, grouped by topic. For each topic, we give a
brief summary of the presented results, followed by the abstracts of the talks.

Probabilistically Checkable Proofs

The area of Probabilistically Checkable Proofs (PCPs) and Hardness of Approximation continues to be one
of the most active research directions in complexity. The talk by Irit Dinur discussed how to make the original
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algebraic proof of the PCP Theorem [AS98, ALM+98] more combinatorial (and hence, maybe simpler). Eli
Ben-Sasson presented a new construction of shorter PCPs. Finally, Guy Kindler showed optimal conditional
in-approximability for the problem MAX-CUT.

IRIT DINUR, Assignment testers: Towards a combinatorial proof of the PCP Theorem (joint work
with Omer Reingold)

In this talk we look back into the proof of the PCP Theorem, with the goal of finding new proofs that are
“more combinatorial” and arguably simpler. For that we introduce the notion of an assignment tester, which
is a strengthening of the standard PCP verifier, in the following sense. Given a statement and an alleged proof
for it, while the PCP verifier checks correctness of thestatementthe assignment-tester checks correctness
of the statementand the proof. This notion enables simpler composition that is truly modular, i.e., one can
compose two assignment-testers without any assumptions onhow they are constructed. A related notion was
independently introduced in [Ben-Sasson et al.,STOC’04]. Based on this notion, we present two main results:
1. The first is a new proof of the PCP Theorem. This proof relieson a rather weak PCP given as a “black
box”. From this, we construct combinatorially the full PCP,relying on composition and a new combinatorial
aggregation technique. 2. Our second construction is a “standalone” combinatorial construction showing
“NP ⊂ PCP [polylog 1]”. This implies, for example, that approximating max-SAT is quasi-NP-hard.

ELI BEN-SASSON, Simple PCPs with poly-log rate and query complexity(joint work with Madhu
Sudan)

We give constructions of PCPs of lengthn · poly(log n) (with respect to circuits of sizen) that can be
verified by makingpoly(log n) queries to bits of the proof. These PCPs are not only shorter than previous
ones, but also simpler. Our (only) building blocks are Reed-Solomon codes and the Bivariate Low Degree
Test of Polischuk and Spielman. First, we present a novel reduction of SAT to the following problem. Given
oracle access to a string of lengthn′ = n · poly(log n), verify whether it is close to being an evaluation of
a univariate polynomial of degreen′/10. While somewhat similar reductions have been extensively used in
previous PCP constructions, our new reduction favours overthem in its simplicity. Notice the degree of the
polynomial is larger than the size of the original SAT problem. Thus, testing low degree of this string seems
to cost more queries than required for reading the original satisfying assignment in its entirety! To overcome
this, we present a short PCP of Proximity for certain Reed-Solomon codes. For these codes, verifying that
a string of lengthn′ is close to an evaluation of a degreen′/10 polynomial can be done withpoly(log n′)
queries into the string and into an additional proof of length n′ · poly(log n′). Such PCPs of proximity also
gives rise to locally testable codes with poly-logarithmicrate and query complexity.

GUY K INDLER, Conditional optimal in-approximability results for MAX-C UT (joint work with Sub-
hash Khot, Elchanan Mossel, and Ryan O’Donnell)

In this talk we give evidence that it is hard to approximate the maximal cut in a given graph to within a
factor ofα + ε, for all ε > 0. Hereα = .878567.. denotes the approximation ratio achieved by the Goemans-
Williamson algorithm [GW95], which means that we achieve anessentially optimal factor. Our result relies
on two conjectures: (1) A widely-believed conjecture we fondly call “Majority is Stablest”; this conjecture
leads to a long-code test that queries two bits, and whose soundness/completeness factor is exactlyα. (2)
The Unique Games conjecture of Khot [Khot02]. Our results suggest (even for non-believers in the above
conjectures) that the geometric structure imposed on the MAX-CUT problem by the Goemans-Williamson
algorithm may in fact be intrinsic to it. They also raise several interesting questions of both complexity-
theoretic and geometric nature.

Pseudorandomness

Pseudorandomness is the area concerned with explicit constructions of various “random-like” combinatorial
objects. New constructions of one type of such objects,randomness extractors, have been reported by Ronen
Shaltiel, Russell Impagliazzo, and Guy Kindler. The work described in the talk by Impagliazzo relied on
some tools from Combinatorial Number Theory. A tutorial on Combinatorial Number Theory was given by
Avi Wigderson. Finally, Pavel Pudlak described a new explicit construction of Ramsey graphs with better
parameters than previously known; interestingly, the (yetunpublished) results on extractors described in the
talk by Kindler actually yield the construction of Ramsey graphs with even better parameters.
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RONEN SHALTIEL , Deterministic extractors for bit-fixing sources by obtaining an independent seed
(joint work with Ariel Gabizon and Ran Raz) [GRS04]

An (n, k)-bit-fixing source is a distributionX overn bit strings such that there is a subset ofk variables
in X1, ..., Xn which are uniformly distributed and independent of each other, and the remainingn−k indices
are fixed. A deterministic bit-fixing source extractor is a function E which given an arbitrary(n, k)-bit-
fixing source outputsm bits which are statistically-close to uniform. Recently, Kamp and Zuckerman gave a
construction of deterministic bit-fixing source extractorwhich extractsΩ(k2/n) bits, and requiresk >

√
n.

In this paper we give constructions of deterministic-bit-fixing source extractors that extract(1 − o(1))k bits
wheneverk > (log n)c for some constantc > 0. Thus, our constructions extract almost all the randomness
from bit-fixing sources and work even whenk is small. Fork >>

√
n the extracted bits have statistical

distance2−nΩ(1)

from uniform, and fork <
√

n the extracted bits have statistical distancek−Ω(1) from
uniform. Our technique gives a general method to transform deterministic bit-fixing source extractors that
extract few bits into extractors which extract almost all the bits.

AVI WIGDERSON, Gems of Combinatorial Number Theory
We describe three theorems from Combinatorial Number Theory, and give their proofs. These the-

orems are related to the recent extractors obtained by Barak, Impagliazzo and Wigderson [Barak et al.,
FOCS’04](described in another talk of this workshop).

The extensive research area of Combinatorial Number Theoryoften deals with the structure of sets of
(commutative) groups, and its evolution under the group operation. The theorems below are prime examples,
not only being basic and powerful, but also due to their ingenious proofs that utilize ideas and tools from
seemingly unrelated areas.

Let A, B be subsets of sizem in an Abelian group. We use the notationA + B = {a + ba ∈ A, b ∈ B}
(here + is the group operation; later we’ll use both additionand multiplication over the Reals). Further if
G = (A, B; E) is a bipartite graph onA, B, we letA +G B = {a + ba ∈ A, b ∈ B, (a, b) ∈ E}.

The theorems below will hold for all choices ofm and setsA, B (andC) of this size.
Theorem [Ruzsa, Plunneke]:For everyk, if |A + B| = km, then|A + A| ≤ k2m.
Theorem [Gowers]:For everyk and graphG = (A, B; E) with |E| ≥ m2/k, if |A +G B| ≤ km, then

there exist subsetsA′ ⊆ A andB′ ⊆ B such that|A′ + B′| ≤ k8m
Theorem [Erdos-Szemeredi, Elekes]:Let A, B, C be subsets of sizem of the real numbers. Then|AB +

C| ≥ m3/2

RUSSELL IMPAGLIAZZO, Extracting randomness using few independent sources(joint work with
Boaz Barak and Avi Wigderson) [BIW04]

Randomness is prevalent in computer science, and is widely used in algorithms, distributed computing,
and cryptography. Perhaps the main motivation and justification for the use of randomness in computation is
that randomness does exist in nature, and thus it is possibleto sample natural phenomena (such as radioactive
decay) in order to make random choices in computation. However, there is a discrepancy between the type of
random input that we expect when designing randomized algorithms and protocols, and the type of random
data that can be found in nature. While randomized algorithms and protocols expect a stream of independent
uniformly distributed random bits, in many cases, the sampled natural data is not distributed according to the
uniform distribution.

We consider the problem of extracting truly random bits fromseveral independent weak random sources.
Previous constructions either required a large number of sources (polynomial in the input length), or required
the entropy of each source to be large. Specifically, the bestprevious explicit construction using a constant
number ofn-bit sources required that at least one of the sources contains more thann/2 bits of (min-)entropy.
In contrast, the optimal, non-explicit construction only requires the min-entropy to be more thanlog n.

In this work, we manage to go beyond thisn/2 “barrier” and give an explicit construction for extracting
randomness from distributions with any constant entropy rate. The number of samples we require is a con-
stant (depending polynomially on the rate). Our main tools are results from additive number theory and in
particular a recent result by Bourgain, Katz and Tao and an improvement by Konyagin.

GUY K INDLER, Breaking the 1/2-barrier for bipartite Ramsey constructions and for linear source
dispersers(joint work with Boaz Barak, Ronen Shaltiel, Benny Sudakov,and Avi Wigderson)

Thek-partite Ramsey construction problem with parameterδ, is to find explicit functionsf , f : [N ]k →
{0, 1}, such that for every choice ofk subsetsA1, . . . , Ak ⊆ [N ] of size at least[N ]δ each, the restriction of
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f to A1×· · ·×Ak is non-constant. An alternative formalization would be to find a functionf : ({0, 1}n)k →
{0, 1}, such that for everyk sourcesX1, . . . , Xk of sizen-bits each and with min-entropy at leastδn each,
f(X1, . . . , Xk) yields both0 and1 with positive probability.

So far, no bipartite Ramsey constructions were known for parametersδ < 1/2. In this talk we present
explicit constructions of Bipartite Ramsey graphs for all positive constant parametersδ (this trivially solves
the k-partite problem for the same parameters for everyk > 2). We also show 4-source extractors, that
extract bits from fourn-bit independent sources with min-entropy at leastδn each. This answers a question
of Barak, Impagliazzo, and Wigderson [Barak et al.,FOCS’04].

Similar ideas lead also to explicit constructions of seedless condensers for Linear sources, namely explicit
functionsf : {0, 1}n → {0, 1}, which are non-constant on every affine linear subspace of{0, 1}n of dimen-
sion at leastδn. While no such construction was known for anyδ < 1/2, we can construct such functions for
every positive constantδ.

PAVEL PUDLAK , Pseudorandom sets and explicit constructions of Ramsey graphs (joint work with
Vojtech R̈odl)

We shall show a polynomial time construction of a graphG on N vertices such that neitherG nor G
containsKr,r, for r =

√
N/2

√
log N = o(

√
N). To this end we construct a subsetX ⊂ Fm which has small

intersections with all subspaces of dimensionm/2.

Bounded Arithmetic and Proof Complexity

The framework of Bounded Arithmetic can be used to give machine-independent characterization of various
complexity classes. Thus, complexity classes may be studied through the properties of logical theories of
bounded arithmetic that “capture” these complexity classes. The overview of this approach was given in the
talk by Stephen Cook. The logical theories for the classesNL andPSPACE were presented by Antonina
Kolokolova and Alan Skelley. Sam Buss and Tsuyoshi Morioka discussed the connections between systems
of bounded arithmetic and propositional proof systems, andproved witnessing theorems for certain theories
of bounded arithmetic.

STEPHEN COOK, Making Sense of Bounded Arithmetic
We present a unified treatment of logical theories for each ofthe major complexity classes betweenAC0

andP , and give simple translations into the quantified propositional calculus.

SAM BUSS, Bounded Arithmetic and Constant Depth Propositional Proofs
We discuss the Paris-Wilkie translation from bounded arithmetic proofs to bounded depth propositional

proofs. We describe normal forms for proofs in bounded arithmetic, and a definition ofΣ′-depth forPK-
proofs that makes the translation from bounded arithmetic to propositional logic particularly transparent.
Using this, we give new proofs of the witnessing theorems forS1

2 andT 1
2 ; namely, new proofs that theΣb

1-
definable functions ofS1

2 are polynomial time computable and that those ofT 1
2 are in Polynomial Local

Search (PLS). Both proofs generalize toΣb
i -definable functions ofSi

2 andT i
2.

ANTONINA KOLOKOLOVA, A second-order theory for NL (joint work with Stephen Cook)
We introduce a second-order theoryV -Krom of bounded arithmetic for nondeterministic log space. This

system is based on Grädel’s characterization ofNL by second-order Krom formulae with only universal first-
order quantifiers, which in turn is motivated by the result that the decision problem for 2-CNF satisfiability is
complete forcoNL (and hence forNL). This theory has the style of the authors’ theoryV1-Horn [APAL 124
(2003)] for polynomial time. Both theories use Zambella’s elegantsecond-order syntax, and are axiomatized
by a set 2-BASIC of simple formulae, together with a comprehension scheme for either second-order Horn
formulae (in the case ofV1-Horn), or second-order Krom (2-CNF) formulae (in the case of V -Krom). Our
main result forV -Krom is a formalization of the Immerman-Szelepcenyi theorem thatNL is closed under
complementation. This formalization is necessary to show that theNL functions areΣB

1 -definable inV -
Krom. The only other theory forNL in the literature relies on the Immerman-Szelepcenyi’s result rather
than proving it.

TSUYOSHI MORIOKA, The witnessing problems for Quantified Propositional Calculus (joint work
with Stephen Cook)
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Let H be a proof system for the quantified propositional calculus (QPC). We define theΣq
j -witnessing

problem forH to be: given a prenexΣq
j -formulaA, anH-proof ofA, and a truth assignment to the free vari-

ables inA, find a witness for the outermost existential quantifiers inA. We point out that theΣq
1 witnessing

problems for the systemsG∗
1 andG1 are complete for polynomial time andPLS (polynomial local search),

respectively. We introduce and study the systemsG∗
0 andG0, in which cuts are restricted to quantifier-free

formulas, and prove that theΣq
1-witnessing problem for each is complete forNC1. Our proof involves

proving a polynomial time version of Gentzen’s midsequent theorem forG∗
0 and proving thatG0-proofs are

TC0-recognizable. We also introduce QPC systems forTC0 and prove witnessing theorems for them.

ALAN SKELLEY , Theories and proof systems for PSPACE and beyond
We present a new third-order theoryW 1

1 for PSPACE and discuss howΣ1 theorems of it can be trans-
lated into polynomial-sized proofs inBPLK. BPLK is a propositional proof system polynomially equiva-
lent toG but using Boolean programs instead of quantified Boolean formulas. We then speculate as to how
W 1

1 could be extended to obtain theories for the levels of the exponential-time hierarchy but, more interest-
ingly, howBPLK is uniquely amenable (unlikeG) also to be extended in this direction.

Circuit Complexity, Probabilistic and Real Computation

Complexity theory studies the power of nonuniform (circuit-based) and uniform (Turing machine-based)
models of computation. The talks by Ran Raz and Eric Allenderdiscussed the computational power of
restricted arithmetic and Boolean circuit models. Lance Fortnow presented the Probabilistic Time Hierar-
chy Theorem for Turing machines with constant amount of nonuniform advice. Finally, Mark Braverman
discussed his results in the field of Real Computation.

RAN RAZ, Multilinear formulas for Permanent and Determinant are of superpolynomial size[Raz04]
An arithmetic formula is multilinear if the polynomial computed by each of its subformulas is multilinear.

We prove that any multilinear arithmetic formula for the permanent or the determinant of ann× n matrix is
of size superpolynomial inn. Previously, superpolynomial lower bounds were not known (for any explicit
function) even for the special case of multilinear formulasof constant depth.

ERIC ALLENDER, Toward a topology for NC1 (joint work with Samir Datta and Sambuddha Roy)
Hansen recently provided a characterization ofACC0 as precisely the class of problems computable

by constant-width PLANAR circuits of polynomial size (withAND and OR gates, with negation available
at the inputs.) Barrington’s theorem shows that, without the restriction of planarity, constant-width circuits
characterizeNC1. We consider possible generalizations of Hansen’s theorem, by considering circuits with
small genus and thickness. Every problem inNC1 is computed by a constant-width circuit of thickness two,
and thus thickness does not seem to be a useful parameter for investigating the structure ofNC1. In contrast,
we show that restricting constant-width circuits to have genusO(1) again yields a characterization ofACC0.
It remains an intriguing open question if there are problemsthat are not believed to lie inACC0 that can be
computed by constant-width, polynomial-size circuits of small (say, logarithmic) genus.

LANCE FORTNOW, A hierarchy theorem for probabilistic polynomial time with one bit of advice
(joint work with Rahul Santhanam)

We show a hierarchy for probabilistic time with one bit of advice, specifically we show that for all real
numbers1 ≤ α < β, BPTIME(nα)/1 ⊂ BPTIME(nβ)/1. This result builds on and improves an earlier
hierarchy by Barak usingO(log log n) bits of advice. We build on Barak’s idea by a careful application of
the fact that there is a PSPACE-complete problemL such that worst case probabilistic algorithms forL take
only slightly more time than average case algorithms.

MARK BRAVERMAN, On the computability of Julia sets
While the computer is a discrete device, it is often used to solve problems of a continuous nature. The field

of Real Computation addresses the issues of computability in the continuous setting. We will discuss different
models of computation for subsets ofRn. The main definition we use has a computer graphics interpretation
(in the casen = 2), as well as a deeper mathematical meaning. The Julia sets are particularly well studied
sets arising from complex dynamics. In the talk we will present the basic facts about Julia sets and some
computability results for them. Our computability resultscome in contrast to the Julia sets noncomputability
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results presented by Blum/Cucker/Shub/Smale. This discrepancy follows from the fact that we are using a
different computability model.

Matrix Multiplication, Search Heuristics, Learning, and Q uantum Com-
putation

Determining the complexity of matrix multiplication is oneof the most important questions in computer sci-
ence. A very interesting new approach to this problem was described in the talk by Chris Umans. Josh Buresh-
Oppenheim presented a formal model for the class of backtracking algorithms, and showed lower bounds on
the power of algorithms in that model. Several new (both positive and negative) results on learnability were
presented by Toniann Pitassi; some of these results exploited a connection between proof complexity and
learning theory. Mario Szegedy showed a very general resulton “speeding up” classical algorithms by quan-
tum algorithms; he described the conditions on classical Markov-chain based algorithms that yield quadratic
speedup in the quantum model of computation. Finally, Oded Regev presented an efficient lattice-based
cryptographic system, whose security relies on the assumption of quantum (rather than classical) hardness of
certain lattice problems.

CHRIS UMANS, A group-theoretic approach to fast matrix multiplication (joint work with Henry
Cohn) [CU03]

How many operations are required to multiply twon × n matrices? The standard algorithm requiresn3

operations, but in 1969 Strassen showed thatO(n2.81) operations suffice. Over the next twenty years, a se-
quence of increasingly complex algorithms were devised, but since 1990 no one has been able to improve on
the current best algorithm of Coppersmith and Winograd, that runs in timeO(n2.39). I’ll describe work that
develops a new (and self-contained) approach to the problem. In the new framework, one devises algorithms
for matrix multiplication by constructing non-abelian groups with certain properties. The algorithms them-
selves are easy to describe, and they make critical use of theDiscrete Fourier Transform over non-abelian
groups. I’ll outline some progress toward an improved algorithm using this new approach.

JOSH BURESH-OPPENHEIM, Toward a model for Backtracking (joint work with Allan Borodin, Rus-
sell Impagliazzo, Avner Magen, and Toniann Pitassi)

In this paper, we develop a hierarchy of models for backtracking algorithms (BT). Our model generalizes
both the priority model of Borodin, Neilson and Rackoff, as well as the simple dynamic programming model
due to Ẅogenger. We demonstrate the strength of our models by showing how well-known algorithms and
algorithmic techniques can be simulated within our model, both those that are usually considered back-
tracking as well as a large family of greedy algorithms and dynamic programming algorithms. Finally we
prove strong lower bounds on the capabilities of algorithmsin this model, often essentially proving that the
known algorithms are the best possible in the model.

After defining and discussing the BT family of models, we consider the following fundamental problems:
interval scheduling with proportional profit, the knapsackproblem, 2SAT, 3SAT, and vertex cover. Our main
results are as follows: (1) For interval scheduling ofn intervals onm machines with proportional profits,
the optimal width of an adaptive BT algorithm isΘ(nm). Further, for fixed-ordering BT, we obtain similar
upper and lower bounds for approximating interval scheduling. (2) For knapsack, we prove an exponential
lower bound in the adaptive BT model. (3) We prove that 2SAT has a linear size adaptive BT algorithm, but
that any fixed-ordering BT algorithm requires exponential size. Further the lower also extends to show that
neither 2SAT nor vertex cover can be approximated by subexponential size fixed-ordering BT programs. (4)
For 3SAT we prove that any adaptive BT algorithm requires exponential size.

TONIANN PITASSI, Learnability and automatizability (joint work with Misha Alekhnovich, Mark
Braverman, Vitaly Feldman, and Adam Klivans)

In this talk we prove new upper and lower bounds on the proper PAC learnability of decision trees, DNF
formulas, and intersections of halfspaces. Several of our results were obtained by exploring a new connection
between automatizability in proof complexity and learnability. After explaining this basic connection, we
will prove the following new results: (1) We give new upper bounds for proper PAC learning of decision
trees and DNF, based on similar known algorithms for automatizability of Resolution. (2) We show that it is



Advances in Complexity Theory 105

not possible to PAC learn DNF by DNF in polynomial-time unless NP ⊆ BPP . We also prove the same
negative result for proper PAC learning of intersections ofhalfspaces. (3) We show that decision trees cannot
be proper PAC learned, under a different (less standard) complexity-theoretic assumption.

MARIO SZEGEDY, Quantum speed-up of Markov chain based algorithms
We develop a generic method for quantizing classical algorithms based on random walks. We show that

under certain conditions, the quantum version gives rise toa quadratic speed-up. This is the case, in particular,
when the Markov chain is ergodic and its transition matrix issymmetric. This generalizes the celebrated result
of [Grover 1996] and a number of more recent results, including [Ambainis 2003] and [Ambainis, Kempe
and Rivosh, 2004]. Among the consequences is a faster searchfor multiple marked items. We show that the
quantum escape time, just like its classical version, depends on the spectral properties of the transition matrix
with the marked rows and columns deleted.

ODED REGEV, Lattice based cryptography, quantum and some learning theory
We present strong and more efficient lattice based public keycryptographic schemes. In all previous

systems, the encryption process increases the size of a message by a factor ofn2 wheren is the hardness
parameter. This is considered prohibitive sincen has to be on the order of thousands in order to make
the system secure. We reduce this blow-up to onlyn. This, we believe, makes our cryptographic scheme
more practical. One curious feature of our construction is that it is based on the quantum hardness of lattice
problems. All previous constructions were based on the classical hardness of lattice problems. The reason
for this difference is the following: we present a quantum algorithm for a problem that we do not know how
to solve classically.
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Chapter 18

Convex Geometric Analysis (04w5014)

July 10–15, 2004

Organizer(s): Nicole Tomczak-Jaegermann (University of Alberta), Vitali Milman (Tel
Aviv University), Elisabeth Werner (Case Western Reserve University)

The main goal of the workshop was to bring researchers from different fields of Convex Geometric Anal-
ysis to exchange new ideas, to inform on new results and to consider new directions essential for further
developments and applications. This goal was achieved and overachieved. We brought together senior ex-
perts and we ensured the participation of a significant number of young researchers – in fact, more than a
half of all talks were given by people from this latter group.The subject was treated in a very broad sense,
and some leading people from related fields (such as Classical Convexity and Asymptotic Combinatorics)
were invited and contributed to the success of the meeting. By the request of some participants we also had
an informal seminar lecture (see below) which attracted many participants and continued much more than an
hour.

Below we collect together the abstracts of the talks, organized in the thematic groups, corresponding to
the schedule of the workshop.

Franck Barthe: Orlicz Hypercontractive semigroups
This is a joint work with Patrick Cattiaux and Cyril Roberto.
The usual Ornstein Uhlenbeck semigroup is known to be hypercontractive (it is a contraction fromL2

into a smallerLp space, andp increases with time). We study the analogue question for Heat semigroups of
measures between exponential and Gaussian. An analogue of Gross theorem is presented, relating hypercon-
tractivity in Orlicz spaces to generalF -Sobolev inequalities. These Sobolev inequalities are analysed in con-
nection with previous Sobolev type inequalities for these measures, as the ones of Latala and Oleszkiewicz.
Applications to concentration and isoperimetric inequalities will be discussed too.

Bo’az Klartag: Approaches to the slicing problem
We will discuss some recent partial progress regarding the slicing problem. The slicing problem asks

whether any n-dimensional convex body of volume one, has at least one hyperplane section, whose n-1
dimensional volume is larger than some positive, universalconstant, independent of the dimension. This
question is known to be equivalent to the question of the universal boundedness of the isotropic constant
of centrally symmetric convex bodies. A few directions and possible tools to handle this problem will be
described. We will focus on two main issues. The first is the use of geometric symmetrization techniques,
and the second is the proof that any centrally symmetricn-dimensional convex bodyK, has a perturbationT
such that the isotropic constant ofT is bounded, and the Banach-Mazur distance betweenK andT is smaller
thanc log n, wherec > 0 is a numerical constant.

Vitali Milman: Explicit versus random
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In this talk connections of the Asymptotic theory with Complexity Theory were exploited. The new
notion of Simplicitywas introduced which describes exactly the reverse direction to the standard notion of
Complexity. Let a family of “simple” procedures be described and a family of “simple” objects are specified.
Starting with some (supposedly complicated) object we would like to estimate the minimal numberN of
simplesteps (i.e. steps from the family of simple procedures) thatmay be applied to our object in order to
bring it to some other object that has been defined as a simple one. Then we say thatN is a simplicity of
our object. (Note that it is exactly the opposite direction of transformations which are used in defining the
Complexity). So, in the process of constructing an algorithm which estimates Complexity we are starting
with a simple object (system) and recover the original structure; but in estimating Simplicity, we “destroy”
all specific information of our system to come to a simple one with very little specific information. A lot of
recent results of the Asymptotic Theory of Convexity are directed to this goal: how quickly we may destroy
all specification of a given (arbitrary, anda priori very complicated) object (normed space, or a convex
body) and to derive some, say, isomorphic copy of an euclidean space (or an ellipsoid). There are really
a number of breackthrough in this direction. For example, itis proved by Klartag that just5n Minkowski
symmetrizations are sufficient to bring any convex body inRn to a body very close to an euclidean ball. Or,
only 3n Steiner symmetrizations are enough to bring an arbitrary body to a neighbourhood of a euclidean
ball (Klartag, Milman), and many others.

After describing this scheme and a number of examples, we moved to another complexity related subject.
Standardly, we are describing some very interesting features of spaces and bodies (say, euclidean subspaces
of very large dimensions, or euclidean quotients of subspaces of proportional dimension) through random
selection of corresponding subspaces in a specified euclidean structure. To estimate the complexity of such
features it would be right to demonstrate an explicit construction which leads to these properties. How-
ever, such explicit constructions are unknown. Then, we suggest to estimate a complexity through finding
a small number of random steps which should be complemented by a number of explicit simple and short
constructions. Then this number of (remaining) random steps will tell us what is the remaining complex-
ity (“randomized complexity”) of the feature we are studing. We consider a very famous example of the
spacè n

1 : It is known that this space contains isomorphic copies of euclidean subspaces of any dimension
proportional ton (with the isomorphic constant depending only on this proportion); this is so-called Kashin
decomposition. We analys different ways for such an euclidean embedding, the problem which very recently
attracted significant attention, including important talks on this conference, and we demonstrate some ways
of reducing known “randomized complexity” by considering partially explicit steps using Walsh matrix (joint
work with Artstein and Friedland).

Assaf Naor: Vertex expansion, edge expansion and the observable diameter.
Joint work with Yuval Rabani and Alistair Sinclair.
In this talk we will show that the edges of anyn-point vertex expander can be replaced by new edges

so that the resulting graph is an edge expander, and such thatany two vertices that are joined by a new
edge are at distanceO(

√
log n) in the original graph. This result is optimal, and is shown tohave various

geometric consequences. In particular, it is used to give a nearly optimal lower bound on the ratio between
the observable diameter and the diameter of doubling metricmeasure spaces which are quasisymmetrically
embeddable in Hilbert space.

Alexander Litvak: Behaviour of the smallest singular value of a random matrix and applications to geom-
etry.

This is a report on the joint work with Alain Pajor, Mark Rudelson and Nicole Tomczak-Jaegermann.
We study behaviour of the smallest singular value of a rectangular random matrix, i.e., matrix whose en-

tries are independent random variables satisfying some additional conditions. We prove a deviation inequality
and show that such a matrix is a “good” isomorphism on its image. Then we show applications to geometry
of random polytopes and to the problem of finding Euclidean subspaces of convex bodies.

Staszek Szarek: Saturation constructions in normed spaces
This is a joint work with Nicole Tomczak-Jaegermann.
Questions on how to detect possible regularities in the structure of a finite-dimensional normed space or

improve and simplify this structure, by passing to its subspaces or quotients or, conversely, to what degree



110 Five-day Workshop Reports

the structure of the entire space can be recovered from the knowledge of its subspaces or quotients, have
constituted over the years one of the driving directions in the asymptotic theory of normed spaces. Many
background results, starting with the fundamental Dvoretzky’s theorem (especially in the form proved by
Milman), through the Quotient of a Subspace theorem of Milman and its byproducts and relatives, show that
one can achieve very considerable regularity for global invariants of a space by passing to a quotient or a
subspace.

In this talk we present several results which clarify this circle of ideas. Here is a sample result:Given
finite dimensional normed spaceV there exists another spaceX with log dimX = O(log dim V ) and such
that every subspace (or every quotient) ofX, whose dimension is not “too small,” contains a further subspace
isometric toV . Moreover, some geometric properties of the spaceV can be “lifted” toX. This sheds new
light on the structure of such large subspaces or quotients (or, equivalently, of large sections or projections of
convex bodies) and allows to solve several problems stated in the 1980s by V. Milman.

Semyon Alesker: The multiplicative structure on valuations.
We describe a canonical multiplicative structure on (a dense subspace of) continuous valuations. Then

we discuss its properties and results from convexity and integral geometry staying behind these properties. If
the time permits, we will discuss some applications.

Dario Cordero-Erausquin: On the convergence of Information in the Central Limit Theorem.
This is a joint work with Keith Ball.
The goal of the present work is to give uniform bounds for the converge in the Central Limit Theorem of

quantities from information theory such as (Shannon) entropy and (Fisher) information. Only partial results
were known, for instance under spectral gap assumptions. Weshow that under moment conditions (moment
of order2 + ε is enough)the information converges polynomially (with uniform rate). The proof uses the
variational formulation for the information of the sum of two random variables discovered by Ball, Barthe
and Naor. The different regimes that appear in the proof bring new light on the behavior of the information
along the Central Limitprocess.

Roman Vershynin: Gromovs isoperimetry of waists and its use in asymptotic convex geometry
The isoperimetry of waists on the sphere is a recent result ofGromov. We will describe a simple way to

use it in asymptotic convex geometry. For example, it implies the following “local versus global result. If
two bodiesK andL have nicely bounded sections, then the intersection of random rotations ofK andL is
nicely bounded. ForL = subspace, this yields a new “deterministic versus random phenomenon: ifK has
one nicely bounded section, then most sections ofK are nicely bounded. The latter phenomenon was also
independently discovered by Giannopoulos, Milman and Tsolomitis.

Shiri Artstein: On convexified packing and entropy duality
This is a joint work with Vitali Milman, Staszek Szarek and Nicole Tomczak-Jaegermann.
The notion of convexified packing (and convex separation) ofconvex sets will be introduced, and shown

to satisfy a duality theorem: the convexified packings of a body by another body, and of its polars 9taken
in the opposite direction) are comparable. A number of instances will be mentioned in which a relationship
between convex separation and the usual separation can be established by geometric considerations. This
will lead to a generalization of the recent duality result (by the first three authors [AMS]) from the case when
one body is an ellipsoid, to the setting of two arbitrary bodies under only mild geometric assumptions about
one of the underlying norms.

Robert McCann: A convex action principle giving steepest descent into a nonconvex landscape
This is a joint work with Nassif Ghoussoub.
Physical dynamics interpolate naturally between the dissipative and conservative extremes, in which fric-

tion either dominates or can be neglected.Gradient flowsandHamiltonian systemsrepresent the archetypal
examples of these two extremes. The orbits of a Hamiltonian system correspond to the critical paths of an
actionfunctional, but variational characterizations for the trajectories of a gradient flow are less familiar. For
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steepest descent into aconvex valleysuch characterizations were formulated by Brezis-Ekelandand Auch-
muty. Here we refine their approach, taking advantage of the Bolza self-duality introduced by Ghoussoub-
Tzou, to formulate aconvexvariational principle for steepest descent into a valley which is merely semi-
convex.

Van Vu: Random polytopes: High moments and beyond
Let K be a convex body with volume one inRd. Consider a selection of n random points inK (chosen

with repsect to the unfirom distribution). The convex hullKn of these points is a random polytope.
Basic parameters (such as the volume, number of vertices, number of facets etc) of random polytopes

have been studied for many years. There is a huge amount of strong results about the expectation of these pa-
rameters. On the other hand, not too much has been obtained about the distribution. For instance, determining
the higher moments is a major problem.

In this talk, we introduce a new method, which allows us to obtain useful information about the distribu-
tion. Using this, we can, among others, derive fairly accurate bounds for the high moments and prove limit
theorems.

Mark Rudelson: Random processes via the combinatorial dimension
This is a report on a joint work with Roman Vershynin.
Let F be a class of real valued functions defined on a probability spaceX. For a givent > 0 we introduce

a dimensionv(F, t) measuring the complexity ofF in terms of the existence of specific patterns inF . More
precisely, the combinatorial dimensionv(F, t) is the largest dimension of a structure inF , which is similar to
a discrete cube of sizet. This characteristic plays a crucial role in determining whether the classF satisfies
the uniform Law of Large Numbers and the uniform Central Limit Theorem.

Combinatorial dimension provides a sharp estimate of the metric entropy of the function class. This
allows to prove two basic combinatorial conjectures on random processes.

1. A class of functions satisfies the uniform Central Limit Theorem if the square root of its combinatorial
dimension is integrable.

2. The uniform entropy is equivalent to the combinatorial dimension under minimal regularity.

Michael Krivelevich: Models of Random Graphs
In this survey talk I will discuss several, old and new, models of random graphs. The main aim of the talk

is to familiarize the audience with the variety of models of random graphs, while stressing their differences
and similarities and emphasizing common research approaches and methodology. Between the models I plan
(or rather hope) to discuss are:

• binomial random graphs G(n,p) and the Erdos-Renyi model G(n,m);

• graph processes and hitting times;

• random regular graphs;

• network reliability model;

• adding random edges (smoothed analysis);

• random lifts;

• preferential attachment models.

Although no previous research experience with random graphs will be assumed, a genuine interest in the
subject would be appreciated.

Gideon Schechtman: An observation regarding the dependence onε in Dvoretzky’s theorem
Recall that Dvoretzky’s theorem says that there is a function c(ε) > 0 such that for alln ≥ 1 and allε > 0,

everyn-dimensional normed space contains a subspace(1 + ε)-isomorphic tò k
2 , for all k < c(ε) log n. It

was well-known that one may takec(ε) ≥ c ε2. In this talk it is shown that this estimate can be improved to

c(ε) > c
ε

(log(1/ε))2
,
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wherec > 0 is an absolute constant.

Deane Yang: Moment-entropy Inequalities
This is a joint work with Erwin Lutwak and Gaoyong Zhang.
We establish a new link between the dualLp Brunn-Minkowski theory and probability theory by using

p-th moments to associate a star body to eachRn-valued random variable and defining the dual mixed volume
of a random variable with a star body. Using this, the authorsgeneralized the fundamental dual Minkowski
inequality for star bodies to an inequality of dual mixed volumes of star bodies and random variables. This
in turn gives a fundamental inequality between the Renyi entropy of a random variable and its associated star
body. Combining this with theLp affine isoperimetric inequality of centroid bodies establishes a moment-
entropy inequality of random variables that implies the well-known Blaschke-Santaló inequality of convex
bodies.

Daniel Hug: On theLp Minkowski problem
This is a joint work with Erwin Lutwak, Deane Yang, and Gaoyong Zhang.
A classical result of the Brunn-Minkowski theory is Minkowski’s existence theorem. For a given centred

and non-degenerate Borel measureµ on the unit sphereSn−1 it yields the existence of a unique (up to
translation) convex bodyK ⊂ Rn such that the top order surface area measure ofK equalsµ. In the middle
of the last century, Firey extended the Minkowski combination of convex bodies and thus laid the foundations
of the Brunn-Minkowski-Firey (orLp) theory. Subsequently, various elements of the classical theory such as
Minkowski’s inequality have been established in theLp setting.

In this talk, we consider anLp extension of Minkowski’s existence theorem. A first proof making use of
the machinery of PDE’s is due to Chou and Wang. We describe twodifferent elementary approaches to an
Lp version of Minkowski’s existence theorem. For this we first study polytopal solutions to the discrete-data
Lp Minkowski problem.

Rolf Schneider: Size and limit shape of some random polytopes
This is a joint work with Daniel Hug. Familiar ways of generating a random polytope are either taking

the convex hull of random points or the intersection of random halfspaces. In the first case, finitely many
independent uniform points in a given convex body are an often studied setup. In the second case, which we
consider here, an equally natural approach consists in taking a homogeneous Poisson hyperplane process and
intersecting the halfspaces which are bounded by the hyperplanes of the process and contain a fixed point,
say 0. Here, geometry comes in via the direction distribution of the hyperplane process. For the random
polytope thus obtained, we study the existence of weak limits of the conditional shape distribution, given that
the ‘size’ of the polytope is large. We show how the answer depends on the direction distribution and on the
way how the ‘size’ is measured.

Olivier Gu édon: Concentration of Mass on the Schatten Classes.
This is a report on a recent work with Grigoris Paouris.

Let 1 ≤ p ≤ ∞ andB̃(Sn
p ) be the unit ball of the Schatten trace class of matrices onCn or on Rn,

normalized to have Lebesgue measure equal to one. We prove that

λ

({
T ∈ B̃(Sn

p ) :
‖T‖HS

n
≥ c1 t

})
≤ exp (−c2 t nkp)

for everyt ≥ 1, wherekp = min{2, 1 + p/2}, c1, c2 > 1 are universal constants andλ is the Lebesgue
measure. This concentration of mass inside a ball of radius proportional ton follows from an almost constant

behaviour of theLq norms (with respect to the Lebesgue measure oñB(Sn
p )) of the Hilbert-Schmidt operator

norm ofT .

Carsten Schuett: Approximation of Convex Bodies by Polytopes
In this joint work with Monika Ludwig and Elisabeth Werner, we study the approximation of convex

bodies by polytopes. There are extensive investigations ofthis problem with the additional assumption that the
polytope is either contained in the convex body or contains the convex body. Here we study the approximation
without this additional assumption.
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Monika Ludwig: A characterization of the intersection body transform
The intersection body transform associates with each convex body its intersection body. It is well know

that it intertwines with the general linear group and that itis a valuation with respect to radial addition. We
describe a classification of radial valuations on convex bodies that commute with the general linear group and
obtain a characterization of the intersection body transform.

Hermann Koenig: Geometric inequalities for a class of exponential measures
This is a joint work with Nicole Tomczak-Jaegermann.
In this talk we consider versions of some geometric inequalities (of an isomorphic-type) for a natural class

of exponential log-concave measures, replacing the usual volume inRn. These are versions of Milman’s in-
verse Brunn-Minkowski inequality and Bourgain–Milman’s inverse Santaló inequality, which have played an
important role in the convex geometric analysis and the asymptotic theory of normed spaces during the last
fifteen years. Both these inequalities can be viewed as a consequence of the existence, for any symmetric
convex body inRn, of a special ellipsoid, called nowadays anM -ellipsoid, which, in a sense, reflects volu-
metric properties of the body. We show that the same ellipsoid also reflects, in an analogous way, properties
of the body with respect to a large class of exponential (log-concave) measures onRn. This class contains in
particular the Gaussian measure onRn.

An informal seminar was given byShiri Artstein on her joint work with B. Klartag and V. Milman on
the geometry of log-concave measures.
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Modelling Protein Flexibility and
Motions (04w5017)

July 17–22, 2004

Organizer(s): Walter Whiteley (Mathematics and Statistics, York University), Michael
Thorpe (Physics, Arizona State University), Leslie Kuhn (Biochemistry, Michigan State
University)

Overview of the Subject

Following from work on the genome, the focus is shifting to protein structure and function. Much of the
function of a protein is determined by its 3-D structure and motions (often in complexes of several molecules).
The structure of many new proteins is being determined by x-ray crystallography and by nuclear magnetic
resonance techniques. One can then study both local flexibility (adapting shape to fit with other molecules)
and larger motions. One can also study the impact of other contacts such as ligands (drugs), or binding
into complexes of proteins, DNA etc. in changing the shape and flexibility. An important area of current
research in biochemistry, computational geometry and in applied mathematics is the computer modelling of
such behaviour: which sections are rigid, under certain conditions; the possible motions; unfolding pathways;
multiple configurations with different biological functions; and paths between these configurations.

Figure 19.1: Showing the various elements in the body-bar representation of a folded protein structure that
are used in many algorithms for rigidity including FIRST.

The mathematical theory of rigidity, and related techniques from geometric constraint theory (CAD,
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robotics), are one set of tools for such computer modelling.Applications of such techniques to protein
flexibility have been expanding over the last few years, centred on the program FIRST. A short summary
of the current state of the art for the combinatorics centralto the rigidity methods and the robotics methods
includes three factors:

1. the general problem of predicting whether a graph, build in 3-space as a bar and joint framework, will
be rigid or flexible, for almost all realizations, is an long standing problem, going back at least to James
Clerk Maxwell.

2. the general problem of predicting whether a graph built with vertices as rigid bodies, and edges as
hinges, in 3-space, will be rigid or flexible for almost all choices of lines for the hinges, has a simple
combinatorial solution and an efficient algorithm.

3. the general problem of frameworks extracted from covalent bonds of molecular structures (with fixed
angles at the bonds) is conjectured to be covered by the algorithms of (2) (the Molecular Framework
Conjecture) although it is a special class of frameworks under (1).

Algorithms have been implemented for certain models of proteins as frameworks within this mathematical
theory. These models develop a graph based on the covalent bond network plus additional edges related to
ionic bonding (salt bridges and hydrogen bonds, identified by proximity of these atoms in the 3-D structure)
as well as graph edges for hydrophobic interactions, also identified by proximity of suitable heavy atoms in
the 3-D structure. This graph yields a constraint matrix which will predict the first-order rigidity or flexibility
of the corresponding model, and hopefully of the underlyingmolecules. However, for speed of computation
(on works with up to 400,000 atoms), the rank is actually predicted from the combinatorics of the graph, using
counting algorithms (often called the ‘pebble game’). The accuracy of these combinatorial results to the rank
of the underlying matrix would follow from the ‘molecular conjectures’ of Tay and Whiteley, and there is
significant experimental evidence, as well as partial results to support this correctness. These algorithms are
fast enough to be used as preliminary screening in areas suchas ligands as drugs. Other partial results have
been obtained, and interesting comparisons have been made with measured biological data. Recent work has
scaled up from single proteins to complexes such viral coatsand RNA protein complexes but much work
remains. The program FIRST [Floppy Inclusions and Rigid Substructure Topography] was discussed at some
length during the workshop, and is available on the net at flexweb.asu.edu. The use of this web site was
demonstrated during the workshop.

This rigidity/constraint based work has been extended fromfirst-order predictions (in the rank of the ma-
trix), using rigidity decompositions, and Monte-Carlo steps, to simulate larger motions, including pathways
between known conformations of the same molecule. This is embedded in the program ROCK [Rigidity
Optimized Conformational Kinetics], which was also presented during the workshop, and is also available at
flexweb.asu.edu

Gaussian Network Models (GNM) represent another combinatorial and computation method for integrat-
ing ‘proximity’ constraints into linear algebra and predictions of motions of large bio-molecular structures.
These models build a simple “incidence’ matrix for proximity of large atoms in the molecule, on a scale
designed to ensure non-singular square matrices, then examine the dominant eigenvalues and vectors to
predict significant overall motions. These methods were also presented at the workshop, along with some
comparisons of predictions from GNM and FIRST and with knownexperimental measurements of forms of
flexibility.

Recent work in computational has investigated the computational complexity of a variety of algorithms
and questions around folding and unfolding chains, polygons and other simplified models which would relate
to proteins. This includes the results in computational geometry (such as the Carpenter’s rule problem that
combined computational geometry with results in rigidity theory. Other work on linkages in 3-space confirms
that the 3-D problem is significantly harder, but also indicates that some results can be obtained. Work
in robotics has also studied the kinematics of larger scale structures subject to geometric constraints. In
particular, the Probabilistic Road Map method from roboticmotion planning has been applied by several
groups to generate possible folding pathways for proteins.One version of this was presented at the workshop,
along with a brief introduction to their on-line service that was being mounted as the workshop progressed,
at parasol.tamu.edu/foldingserver/.
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A number of computational biochemists and biophysicists have generated a broader range of algorithms
for predicting and simulating the shape and motion of proteins. Many of these include minimizing energy
functions - a process is can, at critical points of the functions, have relationships to rigidity theory. The
most intensive of these methods are the Molecular Dynamics Simulations (MDS), which work with all atom
models and energy functions for many interactions, to both simulate local motions, and to examine larger
scale motions, up to the level of protein unfolding and folding.

Other Biochemists are working at a more detailed level of thelocal geometric configurations and choices
made in the placement of small sections of the backbone, and side chains, in creating the initial protein data
bank (pdb) models from X-ray crystallography and NMR data. The quality of this data can be crucial as input
to various modelling methods (above) and some of the modelling and computational methods above can, in
turn, contribute to the quality of the pdb data. The interplay of data and modelling is an important feature of
the state of the art these days, and all communities share an interest in this interplay.

Figure 19.2: Showing the flexibility of the protein barnase.On the left is the structure as determined by NMR
experiments. On the right additional conformers have been generated from the average X-ray structure using
the programs FIRST and ROCK. [S. Menor, Ming Lei, M. Zavodszky and M.F. Thorpe, unpublished]

Each of these fields is in rapid evolution, due both to new theoretical results and to new experimental
results that modify our assumptions and raise new questions. The work is increasingly interdisciplinary and
the workshop reflected that reality.

Structure of the Workshop

There are a number of distinct communities working on computer (and mathematical) modelling of protein
flexibility, rigidity, and folding, or on simplified and abstracted models with potential applications to these
problems. This workshop brought together leading experts as well as current graduate students and post-
docs from at least four of these communities: mathematicians working on the rigidity theory for structures
(frameworks, molecular structures, tensegrity structures); computational geometers working on motions and
paths of linkages, polygons, etc.; material scientists modelling rigidity in large molecular configurations; and
biochemists modelling protein flexing, binding of molecules on proteins, detailed modelling of 3-D protein
modelling and a variety of tools for predicting protein behaviour.

The workshop gathered together members of these communities of researchers to:

1. summarize the state of the art (as this time) for modellingprotein flexibility and motions using models
such as frameworks, linkages, Gaussian network models, robotics kinematics, etc.;

2. describe unsolved critical problems about current and potential models (mathematical, computational
and biochemical), helping to sort the potential significance of various problems and potential results;

3. provide some grounding of mathematical and computational modelling efforts in biochemical data, to
explore the effective use of this knowledge within modelling programs, and offer some reality checks
on the meaning of that data for predictions of flexibility andfolding.

4. Participate in working sessions to explore ways to clarify, resolve or solve these problems and propose
priority problems and approaches.
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Full hour talks the first day provided a survey of all four areas, with an emphasis on posing questions,
conjectures, and directions for work that would connect therepresented audiences. This was followed by an
evening ‘problem session’ of issues worthy of follow up. These problems were immediately posted to the
Web Comptes Rendu site (see below) and integrated into the ongoing discussions.

In advance of the workshop, participants were encouraged topost relevant papers, presentations and
unsolved problems on a web site (see below). About 25 participants loaded materials, and many participants
were able to prepare for the exchange by downloading and reading the materials. This easy ability to share
materials played an essential role in building sufficient common ground to support strong exchanges among
participants from diverse backgrounds, who had never met prior to the workshop.

Some ‘problems needing to be solved’ were posed in advance, and least three of these were solved before
the workshop was over. Other problems posed were discussed during the workshop and additional problems
were posed and posted during the workshop. Solutions or other follow up commentary continue to be posted
at this time. We anticipate further follow up materials willbe posted to the site over the next few months.
This valuable site linking material on flexibility of proteins has now been linked from the flexweb.asu.edu
web site. It has also been linked from the home pages of several of the participants, to become a resource for
the wider community of researchers. In this way, it offers a basic source of information for new people to
this area, including graduate students just moving into these areas. As such, this resource represents a clear
outcome from the workshop that will continue to assist the building of a larger community with common
goals, and building comparisons of results towards shared standards.

The program was deliberately flexible. Participants brought along PowerPoint or other presentations that
were adapted overnight to address questions raised, or new approaches and issues that were relevant. All
talks generated extensive discussion both during and after- confirming that we had achieved the desired
engagement of people in interdisciplinary conversations.We also scheduled, from the second day on, some
time for focused conversations with leadership from one, orseveral participants, and guidance from one (or
both) of the organizers. give time for organized and informal working groups. As proposed, we also offered
on site, software, and web site demonstrations, and access on a demonstration basis to software.

From there, the program evolved with

1. themed sections (Biochemistry, mathematics, computer science, biophysics with comparisons of meth-
ods (see below).

2. some wide ranging discussions with experts leading off aneveryone pitching in;

3. substantial unscheduled time (noon to 3:30 most days) forinformal conversations;

4. some evening discussions and software / web site demonstrations, running up to 10:30 at night;

5. discussions of shared concerns, including one session onthe community responses to issues of patents,
university intellectual property rules, sharing of code, etc.

Overall of the program elements there was active, spirited and informative discussion. No talk passed
without engaging in extensive conversation about the methods and the results, and some sessions became
extended conversations focused on themes from the problem sessions, or from debates which arose during
previous discussions.

The patience of all speakers contributed to an atmosphere ofrespect and debate through which our differ-
ent priorities, approaches, solved and unsolved questionswere compared, and sometimes contrasted. The dis-
cussions on into the night engaged people from distinct communities in more detailed sharing of approaches,
resources, and ‘gold standards’ for evaluating the qualityof conclusions.

Since even the people within a single community had not previously gathered in one spot, there were
also exchanges among people with similar backgrounds, and these exchanges among mathematicians, some
computer scientists and some biophysicists were further reinforced in the follow-up Calgary Workshop on
Rigidity (see below).

Working within Diverse Communities

There were some spirited, good natured and insightful exchanges about the priorities and contributions of
various communities to the conversations. Here is how one graduate student (in computer science) presented
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her observations:

1. The mathematicians like theorems, but don’t really care if the theorems can be used to compute results.

2. The physicists like computing results, but don’t really care if the theory behind the results is correct.

3. The computer scientists like to compute results and have the theory be correct, but the mathematicians
don’t like our proofs, and the physicists don’t like our results.

Here are a couple of other noted quotes, illustrating the good-humoured give and take:
“What we need is a good definition ... I am starting to think like a mathematician and the opposite was

supposed to happen!” (A biophysicist)
“Mathematicians care about conjectures and things like that” (Post-doc).

Discussion and Outcomes

Everything said at the workshop supported the initial claimthat flexibility of proteins (and other molecules)
is an essential feature of the 3-D structure and its functioning. All of the speakers cast their work in terms of
ways to explore this flexibility, to compare different measures and modelling methods and to predict flexibility
and its impact on the interaction of molecules, both complexes of large molecules, and interactions of small
drugs with large molecules.

Not surprisingly, everything said also supported the implicit theme that this modelling is hard. There
were passing references to modelling protein folding (a very hard problem ab initio from the sequence) but
this was not central to our discussions. The results, and theproblems, addressed more modest goals, such as:
- predicting, from a single 3-D structure, the regions of rigidity and flexibility within the molecular complex
(e.g. FIRST); - predicting, from a single 3-D structure, thelarge scale patterns of the dominate modes of mo-
tion (e.g. Gaussian Network Models, ROCK) - searching for pathways between two known conformations
of a molecule (e.g. ROCK PRM); - comparison of single molecule predictions with ensembles of struc-
tures generated by NMR methods, and increasingly generatedby high quality X-ray crystallography methods
(e.g. X-ray + ROCK = NMR), as illustrated in Figure 2. - ways ofrepresenting flexibility and motions of
molecules, in ways that scale up and down for detail and overview; - providing solid mathematical founda-
tions for the methods (above) and for comparisons among these methods. - improved models, computational
techniques, and data base presentations, which will speed up work in many of these efforts; - incorporation
of accurate biochemical information (e.g. rotomer data bases and improved Ramachandran plots) to improve
the speed and accuracy of current algorithmic methods.

There was a good review of the successes (and limitations) ofthe current rigidity based algorithms. Dis-
cussion did confirm the advantages of switching from the former, 3-D bar and joint mathematical model to the
molecular bar and hinge model. The advantages include: - a closer fit to kinematic models in use in robotics
and in representations of molecular coordinates in terms oftorsion angles; - simpler implementation of the
combinatorial counting rules - more options for the value ofconstraints such as hydrophobic constraints,
without resorting to ‘pseudo-atom’ insertions to trick to original algorithm - a more complete capture of
‘stresses’ and ’redundancy’ in molecular models with smallrings. - direct representation of possible ‘col-
lectively linked torsion angle changes’ Other desirable features include: - equivalent matrix representations
of first-order motions in the previous bar and joint models and the alternate models, - experimental equiv-
alence with the prior algorithms for bar and joint models, - conjectures (with strong support) that the rigid
region decompositions from the algorithms are identical; -close alignment with the mathematical conjectures
and the broader mathematical model (body and hinge structures) for which the algorithms are known to be
correct. An expository and research paper comparing the twomodels is being drafted by two of the mathe-
maticians (Tay and Whiteley) to lay out the foundations of the molecular hinge model now being used, and
to demonstrate the known equivalences and correspondenceswith the bar and joint model. This will support
both those using these models for algorithmic work, and mathematicians investigating the conjectures about
the algorithms for these models.

Extensive discussions, at Banff and the follow-up Calgary Workshop (see below) probed the mathematical
complexities of the algorithms and the possible proofs of the molecular conjectures. A number of pieces
were added to the puzzle, around connectivity and other features of ‘rigid region decompositions’ for general
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structures, and for molecular structures. As someone who has worked on these problems for over a decade,
I was impressed by the new partial results, and new approaches which were discussed. Overall, the critical
objective of engaging more mathematicians to work on the significant problems posed by the algorithms for
modelling protein flexibility was achieved.

There were also discussions of how rigidity (FIRST) type results are being integrated into larger sim-
ulations, such as ROCK (flexweb.asu.edu/rockindex.html), and the newer Parasol Folding Server (para-
sol.tamu.edu/foldingserver/). In each case, grouping theatoms of a ’rigid cluster’ together as a single moving
body reduces the complexity of the computations.

Ring Closure: A number of computations involve steps which perturb the torsion angles along a bonds,
and then relaxing or filling in missing values to ensure the closure of loops formed either by other bonds,
such as ionic bonds, or implicity by fixing the position of more distant atoms. This ring closure is a classical
problem that forms a bottleneck in terms of simulations. There was a morning session on algorithms for
ring closure, and their applications in programs such a ROCK, the Parasol server, and the Richardson’s work
on ‘protein chiropraxis’ (snapping pieces of the backbone to alternative positions to generate more relaxed
configurations). This sharing of techniques again opened the possibility of further collaborations to improve
current algorithms and other examples to benchmark proposed methods with.

We had a wide-ranging introduction to the programs, viewers, and data-bases at the Richardson Lab
(kinemage.biochem.duke.edu/). This provoked a lot of discussion about the quality of different sources of
data, what errors to suspect, and what could be done to anticipate, and perhaps correct, the errors in the
data which might impact the performance of the algorithms. As follow up to this discussion, some existing
software will build in use of the improved systems For example, following discussions on possible collabora-
tions, FIRST will soon provide Reduce placement of hydrogenatoms as an alternative to WhatIf placement
now recommended. Other software will look at using the ‘penultimate rotamer library’, and other refined
Ramachandron Plots to control which torsion angles are permitted in the simulations.

In general, there was an underlying theme that algorithms for protein flexibility can improved by better
incorporation of accurate biochemical information duringthe initial processing or during selection of steps
for simulation. This discussion was only possible because we had people from the multiple communities
debating and exchanging over the full five days of the workshop.

A second complementary theme is adding computation expertise to current biochemistry (and perhaps
biophysics) algorithms to improve their performance. The discussion of ring closure (above), and another
discussion of the use of singular value decomposition for ‘collective motions’ were two examples of this
theme. No definitive conclusions were reached, but possibilities were explored, and comparisons generated
for further reflection.

There were a number of new ideas and approaches that were sparked for individuals and for small groups.
Here is one illustration of how this worked.

There were two presentations about the flexibility of icosahedral virus capsids, using different techniques
(engineering model building and FIRST analysis). Looking at the illustrations, the question was raised -
can we find algorithms to detect only the motions respecting certain symmetries which are subgroups of the
symmetries of the molecule? (This question can also be askedfor much smaller structures, such as dimers of
two protein chains with half-turn symmetry.) After some exploration, discussion during a coffee break gen-
erated a proposal (from an engineering participant) for extracting the combinatorial counts for matrices from
the irreducible representations of the symmetry group. From these counts, the corresponding combinatorial
pebble games were proposed (from a mathematician), and somesimple examples computed and analyzed to
ensure the overall results fit the larger patterns in cases weunderstand. The tentative conclusion is that we do
have a ’program’ for adapting known methods to symmetric motions of symmetric molecules, and a research
/ writing project is underway to tie up the details and share the results.

Finally, the most difficult outcome to document, but achievement, is that each participant came way with
a broader perspective on what questions are significant, what resources are available for pursing our old
questions (and some new ones) and what people might offer that additional insight which make carry us
over from initial ideas to promising methods and new results. All the individual feedback received by the
organizers has confirmed that participants, from graduate students to senior faculty, made new connections,
saw new possibilities, and developed new respect for the contributions, and the difficulties of each of the
participating communities.

We ended with one consensus conclusion - we should do this again in the future!
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Special Features around this Workshop

Travel Funds. In addition to the BIRS funding, and the associated MSRI travel support, the NIH grant of
one of the organizers (Walter Whiteley) included some funding for a workshop in the summer of 2004. This
funding was used to provide support for a number of additional graduate students and post-doctoral fellows,
as well as a few more senior researchers who would otherwise not have been able to attend. This funding was
also used to partially subsidize the related Workshop on Rigidity (see below) in Calgary.

Web Comptes Rendus

biophysics.asu.edu/banf/list.php
This web site, hosted Arizona State University by one of the organizers, Michael Thorpe, permitted

uploading of documents for sharing before, during and afterthe workshop. A number of people downloaded
relevant articles and presentations to develop further background prior to the workshop. During the workshop,
presentations, and related references were uploaded and accessed by people to further discussion. [The ready
access to computers, wireless connections, and printers was a real assistance here.]

During the workshop, this web site became a ‘value added’ feature, as some presentations given in the
morning became available to participants that evening. Overall, the easy access to the internet, via wireless
and in-room connections, as well as the printers, was effectively mobilized to support the conversation, rather
than distract from participation. When US visa problems forced a few cancellations, this web site also became
a place to post their presentations, so these contributionscould also be accessed.

University of Calgary Workshop on Rigidity July 22–24

This Banff Workshop gathered an important segment of the mathematical (and computational) research com-
munity on rigidity in one place. While the interdisciplinary workshop was an important source of problems
and an impetus for future work, we also wanted a few days wherethe full range of current mathematical
questions of rigidity could be shared and discussed. With the cooperation of the Department of Mathematics
at the University of Calgary, in particular of the Canada Research Chair in Geometry, Karoly Bezdek, Robert
Connelly, and Walter Whiteley organized a follow-up Workshop on Rigidity on Friday and Saturday, July
23-24. Funds from the University of Calgary, and some travel/ housing funds from the NIH subcontract
of Walter Whiteley, we were able to cover costs for housing, lunches, and transportation from Banff to the
Calgary Hotel.

As a surprise (to the Rigidity Workshop Organizers), peoplefrom the computational and biophysics
communities also stayed on for this workshop and contributed greatly to the discussions. As a result, we
were able to have some follow up talks addressing issues raised in Banff, and several focused discussions on
core conceptual and computational issues around ’collective motions’ and ’redundant constraints’, as well as
follow up tasks from Banff, such as extending algorithmic work to describe symmetric patterns of stress and
motions for symmetric structures such as viral capsids.

These discussions consolidated mathematical and computational developments from the Banff workshop,
and have been followed up by active electronic discussions,several initiatives among the participants to
write papers (both expository and with new results) and follow up collaborations engaging people from the
workshops along with other collaborators who were not able to attend.

List of Participants

Amato, Nancy (Texas A&M University)
Bahar, Ivet (University of Pittsburgh)
Bereg, Sergey(University of Texas, Dallas)
Bezdek, Karoly (University of Calgary)
Borcea, Ciprian (Rider University)
Brock, Oliver (University of Massachusetts, Amherst)
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Burkowski, Forbes J. (University of Waterloo)
Chubynsky, Mykyta (Arizona State University Tempe)
Connelly, Robert (Cornell University)
Gohlke, Holger (J.W. Goethe-Universitat)
Guest, Simon(University of Cambridge)
Hespenheide, Brandon(Arizona State University Tempe)
Jackson, Bill (Queen Mary College, University of London)
Jacobs, Don(California State University, Northridge)
Jiguo, Jiang (York University)
Jordan, Tibor (Eotvos University)
Kumar, Sanjay (Children’s Hospital Boston, Harvard Medical School)
Lerner, Michael George (University of Michigan)
Mantler, Andrea (University of North Carolina, Chapel Hill)
Melnik, Roderick V.N. (Wilfred Laurier University)
Menor, Scott (Arizona State University)
Mousseau, Normand(Universit́e de Montŕeal)
Rader, Andrew J. (University of Pittsburgh)
Richardson, David (Duke University)
Richardson, Jane(Duke University)
Ros, Lluis (Instutite of Robotics, Barcelona)
Rybnikov, Konstatin (University of Massachusetts)
Sanner, Michel (The Scripps Research Institute)
Servatius, Brigitte (Worcester Polytechnic Institute)
Servatius, Herman(Worcester Polytechnic University)
Sloughter, Maria (Cornell University)
Snoeyink, Jack(University of North Carolina, Chapel Hill)
Streinu, Ileana (Smith College)
Tay, Tiong-Seng(National University of Singapore)
Thomas, Shawna(Texas A&M University)
Thorpe, Michael (Arizona State University)
Whiteley, Walter (York University)
Whitesides, Sue(McGill University)
Zavodszky, Maria (Michigan State University)
Zuckerman, Daniel (University of Pittsburgh)
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Geometric Evolution Equations
(04w5008)

July 24–29, 2004

Organizer(s): Christine Guenther (Pacific University), Jingyi Chen (University of British
Columbia), Bennett Chow (University of California, San Diego), Klaus Ecker (Freie Uni-
versitaet Berlin)

In view of the continuing spectacular growth and advancement of the field of geometric evolution equa-
tions (GEEs for short), a 5-day workshop in the summer of 2004at BIRS focused in this area would present
a unique and timely opportunity to stimulate important new mathematical research and exposition on GEEs.

Methods and techniques which have been developed for one GEEoften apply to numerous others. For
example the method of P. Li and S.T. Yau for deriving differential Harnack inequalities for the heat equation
has been further developed for many GEEs and applied to the analysis of singularity formation. Isoperimetric
estimates are now known for many GEEs, both leading to proofsof global existence and convergence and
finding applications in singularity theory. Pinching estimates hold for various GEEs; they are central to global
existence and convergence theorems in the presence of convexity, and lead to proofs of the convexity of
singularity models. Monotonicity formulas are common to the mean curvature flow (MCF) and the harmonic
map flow, and yield important information on singularities,leading to the classification of singularities of
Type I for the MCF. Entropy estimates are common to the 2-dimensional Ricci flow and the Gauss curvature
flow, and have been generalized to many fully nonlinear GEEs.Maximum principle and gradient estimates
are ubiquitous in the field. Because of this cross-fertilization of methodology, interaction between researchers
on different GEEs is crucial, and often leads to new and important advances in the field.

Tentatively, a daily schedule of four 45-minute talks is planned for the 5-day workshop, with the possible
exception of Tuesday, when we may organize an afternoon outing. A possible schedule consists of two talks
in the morning and two in the afternoon: 9:00-9:45, 10:30 - 11:15, 1:30 - 2:15, 3:00 - 3:45. This would
enable a good number of the 40 participants to present their recent research on GEEs. Additional lectures
may be arranged as needed. The remainder of each afternoon will be devoted to problem sessions and/or
informal discussion among the participants. To encourage the success of the problem sessions the organizers
plan to contact a selection of participants who are leaders in the field to moderate the sessions, and ask that
they prepare mini-topics for discussion. The setting of BIRS seems ideal for promoting informal interaction
which has proved so fruitful in the past in the field of GEEs.

In recent years there has been increasing interaction amongresearchers on GEEs. In particular, a large
percentage of papers on GEEs now appearing are joint papers.Important advances are happening in many
parts of the world, and as the list of proposed participants of this workshop demonstrates, a goal of the
organizers is to foster mathematical interaction between them.

The organizers would also like to encourage interaction between senior and junior mathematicians work-
ing in the area of GEEs. Such vertical integration at the research level is crucial to the continuing high level
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development of the field. The list of proposed participants includes a good mixture of both some of the most
distinguished mathematicians in the world and many of the top young researchers in the field. We will also
try to accomodate some advanced graduate students. We will ask each speaker to include open problems
as a part of his or her talk to stimulate the research of juniorparticipants in particular. It is the hope of the
organizers that the combination of talks, problem sessions, informal discussions, and the special environment
of BIRS will be the means of providing a wonderful educational opportunity for junior researchers.

Because of the geographic diversity of the researchers in the field of GEEs, bringing participants together
for the 5-day workshop will facilitate the dissemination ofthe most recent research ideas and results, which
otherwise might not be possible. The atmosphere of the workshop and its surroundings will hopefully lead to
new collaborations during the workshop and especially in the years following the workshop.

In such a rapidly developing area as GEEs, it often importantfor researchers, both senior and junior, to
have access to the most recent developments in the field. We plan to ask participants to send the organizers
abstracts of their talks, and to bring recent papers for distribution during the workshop.

The combination of the breadth and the cohesiveness of the field of GEEs should make a 5-day workshop
at BIRS have a significant impact on the field.

List of Participants

Buckland, John (Australian National University)
Butscher, Adrian (University of Toronto at Scarborough)
Cao, Xiaodong(Columbia University)
Chau, Albert (Harvard University)
Chen, Jingyi (University of British Columbia)
Chow, Bennett(University of California, San Diego)
Chu, Sun-Chin (National Chung Cheng University)
Ecker, Klaus (Freie Universitaet Berlin)
Guenther, Christine (Pacific University)
Gulliver, Robert (University of Minnesota)
Hong, Min-Chun (University of Queensland)
Huisken, Gerhard (Max Planck Institute for Gravit Phys)
Isenberg, Jim (University of Oregon)
Ivey , Thomas(College of Charleston)
Knopf, Dan (University of Texas, Austin)
Kuwert, Ernst (Albert-Ludwigs-Universitaet Freiburg)
McCoy, James(Australia National University)
Neves, Andre(Stanford University)
Ni, Lei (University of California, San Diego)
Sesum, Natasa(Massachusetts Institute of Technology)
Simon, Miles (Albert-Ludwigs-Universitaet Freiburg)
Sinestrari, Carlo (Universita di Roma)
Smoczyk, Knut (Max Planck Institute for Mathematics in the Sciences)
Struwe, Michael (Eidgen Technische Hochschule, Zentrum)
Tam, Luen-Fai (Chinese University of Hong Kong)
Tsai, Dong-Ho(National Tsing Hua University)
White, Brian (Stanford University)
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Conformal Geometry (04w5006)

July 31–August 5, 2004

Organizer(s): Thomas Branson (University of Iowa), Michael Eastwood (University of
Adelaide), McKenzie Wang (McMaster University)

The workshop organisers see conformal geometry as central in the following circle of ideas:–
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Arrows in this diagram indicate input from one topic to another. Closely related topics are joined by lines.
Conformal geometry is highly analogous to CR geometry, so their boxes are close together and arrows run in
both directions. The left hand side of the diagram is largelyalgebraic. At the top of the diagram,Q-curvature
and ambient metricsare specific aspects of conformal geometry, which are separated for special attention.
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The right hand side of the diagram is more concerned with applications in geometric analysis and physics.
The workshop touched on all aspects of this diagram and the discussion below will refer to topics in the
diagram by underliningthem.

In contrast with the more familiar Riemannian geometry, there are clear difficulties concerning the basic
local geometry, symmetry, and invariance in conformal geometry. These difficulties may be traced to differ-
ences in the ‘flat model’: Riemannian geometry is a curved version of Euclidean geometry whereas conformal
geometry is a curved version of the sphereSn as a homogeneous space forSO(n + 1, 1). In particular, the
isotropy subgroup in the Euclidean case isSO(n) and in Riemannian geometry there is a principalSO(n)-
connection on the frame bundle responsible for the usual Riemannian curvature. On the conformal sphere,
however, the isotropy subgroup is a parabolic subgroupP ≤ SO(n + 1, 1) whose algebraic structure and
representation theoryis much more subtle. There is a principalP -bundle induced on any conformal manifold
but no principalP -connection. Instead one has only a ‘Cartan connection’ [18] (with values inso(n + 1, 1)).

Let us run now through the talks presented at the workshop anddiscuss how they fit in this general scheme
of things. Some background is included. Also, some digressions are indulged in an effort to explain links
between talks and to bring out some underlying themes. Speakers in appear inbold type.

SUNDAY Conformal differential geometry was a popular topic in the 1920s. It was then that Cartan
introduced his conformal connection [18]. An equivalent formulation due to Thomas [51] followed shortly
afterwards and is now understood as an important alternative viewpoint. But this was only the beginning of a
theory of conformal differential geometry. At that stage, obvious questions remained unanswered. There was
no classification, or even a means of writing down, conformalinvariants or conformally invariant differential
operators. A few intriguing examples were known: in addition to the Weyl tensor, there was the confor-
mally invariant Bach tensor [3] in 4 dimensions and various differential equations from physics, including
Maxwell’s equations, were known to be conformally invariant. Little further progress was made until the mid
1980s although, with hindsight, hints of the ambient metricconstruction and AdS/CFT correspondencemay
be seen in articles of Thomas [52], Schouten-Haantjes [49],and Dirac [21]. Some renewed stimulus was also
provided by Branson’s finding [7] new conformally invariantoperators with a more significant dependence
on the Ricci tensor. There are some separate issues of geometric analysisconcerning special Riemannian
metrics and the Yamabe problem. We shall return to them in thediscussion of Wednesday below. Laying
them on one side for the moment, the real breakthrough in conformal geometry was presaged by develop-
ments in CR geometry. A real hypersurface in a complex manifold inherits a CR structure as a remnant of
the ambient Cauchy-Riemann equations. There are clear parallels between CR geometry and conformal ge-
ometry. In particular, there is a Cartan connectionin the CR case due to Chern-Moser [19] and Tanaka [50].
In 1979, Fefferman [26] developed the ambient metric construction for CR structures. It is a formal con-
struction, which attempts to associate to every non-degenerate CR manifold a K̈ahler-Einstein manifold of
higher dimension. As a consequence, CR invariants may be built from Lorentzian invariants of the ambient
Kähler-Einstein manifold. Though the construction breaks down at a certain order, it builds CR invariants be-
low a certain ‘weight’. Fefferman also formulated a purely algebraic problem whose positive solution would
show that all CR invariants below the critical weight arise in this way. This would be sufficient to predict the
form of the coefficients of the asymptotic expansion up to thelog term of the Bergman kernel of a strictly
pseudo-convex domain. Since the isotropy subgroupP ≤ SU(n + 1, 1) of the flat model (a hyper-quadric
in CPn+1) is a parabolic subgroup and since the algebraic problems concerned the invariant theoryof P ,
Fefferman dubbed these matters of ‘parabolic invariant theory’. He was able to solve the algebraic problems
subject to suitable restrictions on the degree and weight ofthe invariant.

The real breakthrough, alluded to above, was the ambient metric construction of Fefferman and Gra-
ham [28]. It is the (more difficult) conformal counterpart ofFefferman’s ambient construction in the CR
case [26]. Many of the recent developments in conformal differential geometry are based on this construc-
tion. It also lies at the heart of the spectacular AdS/CFT correspondence[44, 54] in the physics of string
theory. Our first speaker on Sunday wasRobin Graham. His talk concerned some new analytic aspects of
the ambient metric construction. The most basic of questions concerning the ambient metric construction is
whether the formal asymptotics detailed by Fefferman and Graham are attached to a genuine analytic con-
struction. There has been a lot of recent work in this direction especially by Anderson [1] but this aspect
was not seriously discussed at the workshop. Instead, a sufficient starting point for Graham was his older
work with Lee [35], which shows that every conformal metric on the sphere sufficiently close to the round
metric is the conformal infinity of a unique asymptotically hyperbolic Einstein metric on the ball. The usual
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Dirichlet-to-Neumann mapping is obtained by taking a function on the sphere as the Dirichlet data for a har-
monic function in the ball and then restricting the normal derivative back to the sphere. Graham considers
a natural non-linear version of this construction startingwith a deformation of the conformal metric on the
sphere at infinity and picking off the conformally invariantpart of the volume renormalisation [33]. This is
an interesting construction even starting on the round sphere. In this case he uses an analysis of intertwining
operators from representation theory [10] to see what is happening. What is happening more generally is
clearly a very interesting but currently unanswered problem.

A little surprisingly, there was not a lot of discussion at this workshop concerning Branson’sQ-curvature[8,
9]. A closely related entity, however, is the Fefferman-Graham obstruction tensor. This is a conformally in-
variant tensor defined in even dimensions generalising the Bach tensor [3] in four dimensions. Last year,
Graham and Hirachi [36] showed that the metric variation of the integral ofQ-curvature is the obstruction
tensor. In their talks on Monday,Rod GoverandLarry Peterson showed how to obtain the obstruction ten-
sor via certain conformally invariant differential operators constructed via ‘tractor calculus’. Gover explained
how some basic properties of the obstruction tensor could beseen from this point of view (e.g. that it vanishes
for metrics conformal to Einstein) and Peterson explained how to use this method to teach a computer (us-
ing Lee’s Ricci program [40]) to find explicit formulae for the obstruction tensor (in low dimensions). This
should be compared with earlier work by the same two authors [31] on explicit formulae forQ via ‘tractors’
and computer assisted calculations. There now follows a brief digression on the tractor calculus.

As already mentioned, the natural connection in conformal geometry is a Cartan connection. It was first
introduced in [18] as anso(n + 1, 1)-valued1-form on the total space of a principalP -bundle naturally
attached to any conformal manifold as a certain bundle of second order frames. Here,P is the stabiliser
subgroup ofSO(n + 1, 1) under its action on then-sphere as conformal motions. A completely equivalent
formulation of the Cartan connection arises as the induced connection on the vector bundleT arising from
the defining representation ofSO(n+1, 1) onRn+2. In [51], Thomas independently and directly defined this
bundle and its connection. Bearing in mind that this was before ‘vector bundles’ were standard mathematical
objects, it was not so clear at the time that this construction was equivalent to Cartan’s. A modern explanation
of Thomas’s construction is given in [4]. There are certainly some aspects to conformal geometry that are
better pursued from the Thomas viewpoint. Thomas himself already understood [52] that the basic connection
is an inadequate substitute for the Levi-Civita connectionin Riemannian geometry. Roughly speaking, the
Levi-Civita connection, as a connection on tensor bundles,can be iterated and so invariantly captures all the
higher jets of a Riemannian metric. This is not the case for the Cartan or Thomas connections. It is this
problem that the Fefferman-Graham ambient metric construction overcomes (to all orders in odd dimension
and to some finite but obstructed order in even dimensions (see [30] for how to push past the obstruction in
even dimensions)). The Thomas construction, or ‘tractor calculus’ as it is now known, is more closely related
to the ambient metric construction [13] than is the Cartan connection. It seems to be more and more involved
in progress in conformal geometry.

From the Cartan point of view, however, conformal differential geometry arises as a sort of ‘curved
version’ of the flat model, which is then-sphere under the action ofSO(n + 1, 1) (then-sphere is regarded
as the space of generators of the null cone inRn+2 with its standard Lorentzian metric). It was pondered
for some time whether there are ‘curved versions’ of all homogeneous spacesG/P whereG is an arbitrary
Lie groups andP is a parabolic subgroup. For some years, there were several known geometries (projective,
conformal, CR, Cartan’s five variables [17], . . . ) but no unified theory. The term parabolic geometrywas
already being employed before the general formulation, which now exists thanks to Morimoto [46] andČap-
Schichl [14]. The theory is now highly developed.AndreasČap andJan Slov́ak are writing a comprehensive
text on the subject [15].̌Cap gave a survey of the main points, especially Lie algebra cohomology and how it
is used to normalise the Cartan connections and explore where lies the torsion and curvature of a normalised
connection.

The final speaker on Monday wasGestur Ólafssonwho talked about a certain integral geometric trans-
form in representation theory. Though this was a little to one side of the main theme of the workshop, there
are some links as follows. Twistor theory[38] is an alternative approach to basic physics introducedand
developed by Roger Penrose over the past 30 years or so. A basic idea in twistor theory is that space-time
should be view as a space of preferred ‘cycles’ in another, more fundamental, space: its ‘twistor space’. All
basic physics should then be seen as constructions on twistor space and the physical ramifications obtained
by integral geometry. Usually, the twistor space has some complex structure (at least a CR structure) but
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the complex integral geometry is closely parallel to classical real integral geometry starting with the Radon
and Funk transforms (now familiar in medical imaging).Ólafsson’s talk was concerned with the real integral
geometry of complex cycles in a complexified non-Riemanniansymmetric space. There is a mathemati-
cal toolbox here that impinges of conformal geometry through the ideas of twistor theory and also because
representation theory is finding its way more and more into conformal geometry.

MONDAY Conformal differential geometry is very much tied to physics. This is true on a classical
level, where the most basic equations of physics (for example, the Dirac equation) are conformally invariant.
It is also true on a quantum level and especially through the AdS/CFT correspondence [44, 54] linking
string theoryand supergravity on a ‘bulk’ Einstein manifold of negative scalar curvature and conformal field
theory on its ‘conformal infinity’. Monday’s talks were largely devoted to physics.

For the benefit of mathematicians,Louise Dolangave a very useful survey of her joint work [22] with
Nappi and Witten from a couple of years ago. The idea is that there are equations that one can write down (due
to Deser), in some sense between the usual massless and massive field equations on space-time. It turns out
that these equations in the bulk have surprising consequences at infinity under the AdS/CFT correspondence,
producing a known basic series of conformally invariant operators. These ‘partially massless fields’ are
certainly intriguing but have not yet found their way into mathematics. Maybe this could be done now. There
are further clues to a mathematical theory in that the inner product of the space of fields turns out to be
sometimes negative (not physical).

Don Pagetalked about construction of Einstein metrics on certain compact manifolds (such asS2 ×
Sn) especially in odd dimensions. Like the classical Kerr metric, these metric admit many (conformal)
symmetries. Finding explicit Einstein metrics is a difficult business. Nicely symmetrical examples (cf. [53])
are good for testing the behaviour of fields subject to invariant equations.

Lionel Mason’s talk was very much based on the ideas of twistor theory. From the mathematical point
of view he was talking about connections onRP2 with zero holonomy. He has worked out the Penrose-Ward
transform for such connections and there are two parts to thetwistor data. One is a field onRP∗

2 much like
the Funk-Radon transform would give. But the other part (to which the first part is coupled) takes the form
on a holomorphic vector bundle onCP∗. This is similar in spirit toÓlafsson’s talk yesterday in that there is
a unexpectedly useful complexification.

Spyros Alexakisgave an excellent review of howQ-curvaturehas recently been used (especially in4
dimensions by Chang, Yang, and co-workers) in geometric analysis. Unfortunately, none of the researchers
directly involved in this area were able to attend the workshop. Here is a digression onQ-curvature. It
is a scalar Riemannian invariant canonically defined in evendimensions. In four dimensionsQ = 1

6R2 −
1
2RabRab − 1

6∆R. Though there is a now a straightforward definition [29] in terms of the ambient metric,
explicit formulae in higher dimensions are complicated [31] or unavailable. A characterisation ofQ is also
unavailable but one of its key properties is that, under conformal rescaling of the metricgab 7→ ĝab = Ω2gab

we haveQ̂ = Q + P log Ω, whereP is a linear operator. Conformal invariance ofP is forced. It is
the Graham-Jenne-Mason-Sparling operator [34]. It also follows that

∫
M

Q, for M a compact manifold, is
conformally invariant. It has been asserted in the physics literature that these properties forceQ to have
to form Q = E + I + D whereE is the Euler density or Pfaffian,I is a conformal invariant, andD is a
divergence (and so does not contribute to

∫
M

Q). Alexakis’s PhD thesis, currently in preparation, provesthis
assertion. It is not at all an easy argument and he was only able to sketch one ingredient (that if an identity
on a Riemannian manifold holds formally (in the sense of Weyl’s classical invariant theory), then it holds in
all dimensions and so one can extract consequences by looking at the leading order terms as the dimension
goes to infinity!).

Penrose’s ‘Weyl curvature hypothesis’ states that the initial singularity in space-time (i.e. the ‘big bang’)
is qualitatively different from final singularities (i.e. ‘black holes’ and the ‘big crunch’). Specifically, at the
initial singularity the conformal curvature should be smooth up to the boundary such as one might obtain by
taking a smooth metric and rescaling it by a conformal factorthat blows up at the boundary. But how can one
recognise this phenomenon? There are no preferred coordinates and nor even a given boundary. One might
choose bad coordinates and/or a bad conformal gauge.Paul Tod suggested various conformally invariant
tests for the Weyl curvature hypothesis but complete recognition is still a problem.

Maciej Dunajski also spoke on material derived from twistor theory. Beginning with the Ward corre-
spondence for instantons, there are twistor description ofvarious integrable systems. All of them involve
families of rational curves in an associated ‘twistor space’. In higher dimensions, ‘paraconformal’ or ‘almost
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Grassmannian’ structures seem to provide a suitable generalisation of conformal geometry in dimension four.
Dunajski discussed a refinement of such structures, namely manifolds for which the tangent bundle has the
form S′ ⊗⊙k S whereS andS′ are rank 2 vector bundles.

TUESDAY A fundamental observation in even-dimensional conformal geometry is that the Hodge?-
operator is conformally invariant on forms of middle degree. For example, in 4 dimensions the2-forms
canonically split into self-dual and anti-self-dual types. Many of the special features of4-dimensional geom-
etry can be traced to this fact. Moreover, the general structure of conformally invariant differential operators
follows similar patterns to the de Rham sequence. These are the Bernstein-Gelfand-Gelfand sequences (in-
troduced in [24] in dimension4). There is now an extensive theory, referred to as BGG machineryand largely
due toČap-Slov́ak-Soǔcek [16] and Calderbank-Diemer [12]. Though the BGG sequence cannot usually be
locally exact in the curved setting, it has been noticed thatsometimes there are subcomplexes that have this
property on special manifolds (for example, CR manifolds orself-dual manifolds in dimension4). Vladimı́r
Soǔcek presented many examples of this phenomenon (found in joint work with Čap). Representation the-
ory is involved, this time to see that curvature cannot possibly interfere with local exactness if the relevant
representation is not present. These are exactly the sort ofsequences that appear in trying to deform a given
parabolic geometry (and in good circumstances this ‘deformation complex’ is elliptic).

As already mentioned, CR geometry of hypersurface type is closely analogous to conformal geometry.
Remarkably, there are other examples of CR geometry that fit into this scheme, most notably the CR ge-
ometry of real codimension2 submanifolds inC4 due to Schmalz and Slovák [48], which was only found
via the general parabolic theory (and almost surely would have been impossible to find without the general
theory). But is is far from clear whether parabolic geometryis the end of the road. More specifically, the
basic construction in parabolic geometryis of a preferred Cartan connectionand, until recently, the means
for picking out a preferred connection was to insist that it be ‘normal’, a restriction best formulated with the
BGG machinery. Earlier this year, Fox [27] found an example of a parabolic geometry (contact projective
geometry), which possessed a canonical Cartan connection that was not necessarily normal. Instead, normal-
ity was an extra condition that showed up in the torsion of theFox connection. In his talk on Tuesday,Gerd
Schmalzconsidered the CR geometryof real codimension 2 submanifolds inC3. This geometry is far from
parabolic: the5-dimensional structure algebra is not even close to semisimple. Nevertheless, Schmalz re-
ported on joint work with Beloshapka and Ezhov that constructs a canonical Cartan connection (and a normal
form for the embedding analogous to Moser normal form [19] for hypersurfaces). It is interesting to note that
the underlying real structure, of an ‘Engel manifold’ (a4-dimensional real manifoldM with 2-dimensional
distributionD such that[D, [D, D]] = TM ), carries no local information. In this sense it is quite close to the
hypersurface case with underlying contact structure. However, the local structure algebra is quite different.

Kengo Hirachi continued the CR theme but back to hypersurface type. Of course, the prime example
such geometry is found on the boundary of a strictly pseudo-convex domain inCn. Hirachi explained how
to formulate the volume expansion with respect to the Einstein-Kähler or Bergmann metric. This is a parallel
development to the conformal case [33] but there are new features: if the domain is taken to be a strictly
pseudo-convex neighbourhood of the zero section of a sufficiently ample vector bundle, then the Chern classes
of the bundle show up as CR invariants on the boundary.

There were two talks in the evening given by graduate students. Continuing Hirachi’s volume renormali-
sation in the CR setting, his studentNeil Seshadritalked about another aspect of the volume expansion: there
are two interesting terms in the expansion and Seshadri talked about the coefficient of the ‘log’ term. As a
digression, it is worth noting that there is a direct link between CR geometryand conformal geometry. Feffer-
man [25] (in the embedded case and Burns-Diederich-Shnider[11] intrinsically) found that a non-degenerate
CR structure on a manifoldM determines a canonical circle bundle overM , the total space of which is now
known as the Fefferman space. This is naturally equipped with a conformal structure, which encodes the un-
derlying CR structure. Conformally invariant constructions on the Fefferman space gives rise to CR invariant
constructions onM . For example, the Chern-Moser chains onM arise as the images of null geodesics and
CR Q-curvature pulls back to the conformalQ-curvature. However, the conformal structures that arise are
special [32] and so it is wise to proceed independently. It isunknown in the CR case whether

∫
M

Q can be
non-zero.

The other evening talk was byDoojin Hong, a student of Branson. He talked about generating the
spectrum for spinors overS1 × Sn with Lorentzian metric. This should be compared with spectrum gener-
ating [10] for densities onSn as an example of principal series representations and theirintertwinors (and as
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used by Graham in the opening talk of this conference (and as may be used to understand the GJMS-operators
operators on the sphere)).

WEDNESDAY The first talk was given byClaude LeBrun who discussed ‘optimal metrics’ on4-
manifolds, defined on ann-manifold M as a metric such that

∫
M
|R|n/2 is absolutely minimised, where

|R| denotes the pointwise norm of the Riemann curvature tensor.The exponentn/2 is forced by requiring
invariance under constant rescaling of the metric and already one can see that dimension4 is special since
then we are talking about theL2 norm of the Riemann curvature. From the integral formulae for the Euler
characteristic and signature, it follows immediately thatthere are two special ways of guaranteeing an optimal
metric in 4 dimensions: Einstein metrics are always optimal and so are scalar-flat anti-self-dual metrics.
LeBrun uses twistor theoryto construct optimal metrics of this second type on the connected sum of 6 of more
copies of the complex projective plane with its opposite orientation. Earlier results say that these manifolds
are good test cases for the existence of optimal metrics. Twistor methods signal conformal geometry. The
point is that for a metric to be anti-self-dual is a conformally invariant condition and these are exactly the
manifolds with a twistor space. LeBrun uses the behaviour ofthe Green’s function of the Yamabe operator
to determine the sign of the Yamabe constant of a four manifold, this being reflected in the twistor space by
dint of Atiyah’s construction [2]. He uses this informationto detect a change of sign in a family of conformal
metrics and hence to find a find a metric with vanishing Yamabe constant. The details are in [39].

Helga Baum was concerned with Lorentzian metrics with special conformal properties. It is still un-
known whether a compact Lorentzian manifold with a group of essential conformal transformations has to be
constant curvature (where essential means that there is no metric in the conformal class for which the transfor-
mations are merely isometries). In the Riemannian case, there are no such exotic examples. The Lorentzian
case is much more difficult. For example, there are compact Lorentzian manifolds with non-compact isom-
etry group. These questions are very much connected with theexistence of parallel spinors and holonomy
in the Lorentzian case: see [41, 42]. In the conformal case, the existence of conformal Killing spinors and
solutions to other overdetermined systems of partial differential equations (sometimes collectively known
as twistor equations) is very much linked to tractor calculus. Baum explained how this link could be used.
Solutions to these equations constrain the underlying geometry [5] and are the source of symmetries of basic
equations such as the Dirac operator [6] and Laplacian [23].

Felipe Leitner continued with this theme, discussing the holonomy of conformal manifolds, meaning the
holonomy of their Cartan connections. This is very much related to the existence of Einstein metrics in a given
conformal class: a parallel standard tractor generically defines an Einstein scale. Unlike the Riemannian case,
not much is known about the holonomy of conformal manifolds.With very symmetrical manifolds it may
be calculated and this gives rise to the first real examples. Leitner finds [43], for example, the conformal
holonomy ofSO(4) (regarded as a Riemannian manifold via its bi-invariant metric) is SO(7) as a subgroup
of SO(7, 1). He also explained how special conformal holonomy gives rise to Einstein metrics in a given
conformal class.

William Ugalde used the Wodzicki residue applied to a simple conformally invariant pseudo-differential
operator to construct a natural conformally invariant differential pairing and an invariant differential operator,
which looks very much like the critical GJMS-operator [34].In dimension4, Connes [20] obtained exactly
this operator (sometimes called the Paneitz operator). In dimension6, Ugalde has checked by direct calcula-
tion that one obtains the GJMS-operator. This is already a formidable task. It is extremely plausible that the
GJMS-operators are indeed arising by Ugalde’s construction. Perhaps the Wodzicki residue could be related
to the scattering theoryapproach to the GJMS-operators [37]. Otherwise, we await a characterisation of these
operators. Ugalde has checked many of the salient features of his operators but these features are insufficient
precisely to pin them down.

Another popular geometry of the 1920s was projective differential geometry. Both Cartan and Thomas [4]
developed the basic theory in parallel to conformal geometry. In particular, there is a canonically defined
Cartan connection. Vladimir Matveev described his recent proof of the Lichnerowicz-Obata conjecture in
projective geometry, namely that is a connected Lie group acts on a closed connected Riemannian manifold
by transformations that preserve the geodesics (as unparameterised curves), then its acts by isometries or the
manifold is covered by the round sphere. This is clearly parallel to the conformal Lichnerowicz conjecture
(proved by Obata, Alekseevsky and Ferrand). Matveev converts the projective equivalence of two metrics into
the existence of a tensor field, a self-adjoint endomorphismof the tangent bundle, satisfying a certain partial
differential equation. He calls these tensors ‘BM-structures’. He then embarks on a careful investigation



Conformal Geometry 131

of such structures bearing in mind how the eigenvalues of theendomorphism might coalesce. For details
see [45].

After touching on Cartan connectionsin the geometry of differential equations[47] and reviewing the
basic geometry of twistor theory, George Sparlingdescribed the the quantum Hall effect and how it has
recently been viewed as a mathematical construction on the Riemann sphere under the action ofSU(1, 1).
He speculated that this construction might be extended to a sort of ‘cohomological twistor fluid’ on the open
orbits ofSU(2, 2) acting onCP3.
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Alberta)

General Overview of the Field and its Developments

The broad subject area of the meeting was that ofmathematical population genetics. It is concerned with
the analysis of the generation, nature, and maintenance of genetic variation within and between biological
populations. In its evolutionary aspects it describes the change in the genetic composition of populations
under the influence of various evolutionary forces, the mostimportant of which are mutation, selection, re-
combination, migration and random genetic drift. The latter is a consequence of the fact that even without
fitness differences, some individuals may, just by chance, have more offspring than others, so that the off-
spring of one genotype may displace another one in a finite population. Thus there is a significant element
of randomness in genetic systems. From the point of view of disease genetics, many diseases are caused by
deleterious mutant genes, and the analysis of the variationin a population for the disease and the normal gene
is a significant component of this area of research.

These two components of the theory have hitherto been somewhat separate. However, recent trends in
evolutionary genetics theory have brought them together, and one of the aims of this meeting was to further
this fusion of two important areas of population genetics.

Three new developments are shaping the area at present: a change in biological thinking, the emergence
of new data, and new mathematic(ian)s; these are, of course,all interrelated. Let us explain this in some more
detail.

The basic processes of evolution are known in principle, along with fundamental equations which describe
the effects of interactions between genes. Indeed, of the biological sciences, genetics is the one with the most
clearly defined mathematical models. The evolutionary behavior of a population may be described by a
stochastic model of gene frequency change, which is similarto corresponding models in interacting particle
systems. These models are well understood if mutation and drift are the only forces present, or if selection is
also present but acts on the genes at one or a small number of gene loci. In particular, the pattern of genetic
variation generated under these scenarios is quite well known.

But for several decades, the area suffered from a lack of datato support - or reject - the hypotheses about
the evolutionary process and the genetic basis of various diseases. It was therefore often criticized as “l’art
pour l’art”. This situation has suddenly been reversed due to the wealth of molecular data flowing in during
the past few years. The data come from the various genome projects, and from studies aimed at the genetic
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basis of human diseases. The most valuable data derive from samples from a population (population sequence
data), as opposed to single individuals. For the first time inthe history of the field, the theory is now lagging
behind the data, and the lack of analytical results translates into a lack of statistical methods for data analysis.
The immediate need of data evaluation methods is often satisfied by heuristic techniques of a preliminary
nature. But in the long run, there is a real need for methods which rest on a solid foundation with respect to
the underlying genetic stochastic processes.

Evolutionary genetics theory has thus moved in large part toan analysis of the corresponding inverse
problem, namely the reconstruction of evolutionary history from the observed patterns of genetic variation.
A particularly challenging problem is the detection of selection at the molecular level. Selective forces are
not easy to analyze since their effects must be discerned against a background of stochastic effects. Thus
the analysis of the genetic data used to assess the effects ofselection presents particularly difficult statistical
problems, which have no entirely satisfactory answer even today.

The theoretical foundations of such analyses have been laidby the change in direction in population ge-
netics from the classical prospective theory, consideringthe evolution of a population forwards in time, to the
retrospective theory, which considers the past history of the currently-observed population. Mathematically,
the backward view corresponds to the dual of the forward process. Coalescent theory, the most frequently
used area of the retrospective theory, is concerned specifically with properties of the ancestry of a sample of
genes as they trace back to a common ancestor. If, for example, a disease mutation occurs only once, two
or more disease genes in a contemporary sample have an ancestry that traces back to a most recent common
ancestor disease gene.

Problems beyond those listed above are far more complex, have not been solved, and will require signif-
icant mathematical analysis for their resolution. This is particularly so if processes like recombination are
included, or if selection acts in a complicated way. These are exactly the problems encountered in disease
genetics. Significant properties of the disease locus itself are in practice often unknown, including its location
- indeed a major aim of the theory is to attempt to locate it. Inferences about its location are made by using
genes at known marker loci. This leads to the problem that thecoalescent process of the disease gene is
different from that of the markers, because of recombination between disease and marker loci. The situation
is further complicated by the fact that diseases are often polygenic (and possibly under selection, which may
be of complicated type due to interaction between loci). Such diseases are called complex diseases, and their
study forms the center of current genetic investigation.

Another important development is the increasing interest of the mathematical community in theoretical
biology in general, and genetics in particular. Many professional probabilists have recently moved into the
area, with powerful modern methods at their fingertips, which has helped to turn the mathematics of biological
evolution into an active and growing field. This has resultedin a productive interplay in which the problems
of population biology have stimulated new mathematics which in turn has provided powerful new analytical
tools to address the emerging problems of biological evolution. In particular there have been important devel-
opments in the theory of Markov processes stimulated by population biology - these include the introduction
of important families of interacting particle systems and the class of measure-valued Fleming-Viot processes
including the infinitely many types and infinitely many sitesprocesses that now play an important role in
population genetics. A number of effective mathematical tools for the analysis of these systems have been
developed. Other mathematical tools will be described below, where appropriate.

After this general overview, let us now give a more detailed description of the various matters described
above, as discussed at the meeting. It had six main topics, each led by a key speaker: Particle systems
(Rick Durrett), The Coalescent (John Wakeley), Evolutionary population genetics (John Gillespie), Branching
processes (Peter Jagers), Human genetics (Robert Elston),and Haplotype blocks (Peter Donnelly). We will
proceed from the more theoretical to the more applied, and put special emphasis on the connections between
the topics.

Particle Systems and Coalescent Process

A fundamental model class in population genetics is defined by the Moran model and its relatives (and the
closely related Wright-Fisher model with its variants). This is best described as an interacting particle system
with a fixed number ofN individuals, each of which is assigned a type; individuals reproduce and mutate
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independently, in discrete or continuous time. Every time an individual reproduces, the offspring is assigned a
type (according to a Markov chain that describes mutation),and replaces another individual that is randomly
chosen to die, thus keeping population size constant. IfN gets large, the system is described by a diffusion
limit, known as the Fleming-Viot measure-valued process. Avery general particle representation that also
remains valid in this limit is provided by the so-called look-down process, which yields a joint representation
of particles and their genealogies [4].

From an evolutionary perspective, it is of particular interest to consider these particle systemsbackward
in time. Given a sample from the present population, one aimsat finding its genealogy. Here, a reproduction
event forward in time corresponds to merging of individual lineages to a common ancestor backward in time,
that is, a coalescence event. Since its invention by Kingman[22], the coalescence process has revolutionized
population genetic thinking and data analysis.

This coalescent process is tractable and has been much studied in the case of neutral evolution, that
is, all types of individuals have the same reproduction rate(this is the ‘vanilla-flavoured’ coalescent). The
emphasis of current research is on the extension of the underlying ideas and methods to more complex systems
involving selection, recombination, migration, and variable population size.

The mathematical description of the process becomes a greatchallenge when types have different re-
production rates, that is, if selection is involved. This situation is particularly relevant for many questions
in molecular evolution, in particular, when one wants to infer the (most likely) evolutionary history from a
sample of individuals of a present-day population, and pinpoint selective events that have happened in the
past.

One major step has been the construction of Neuhauser and Krone [24, 26], which uses, forward in time,
two different reproduction events: definitive ones that will be used by every individual regardless of its type,
and potential ones that may only be used by ‘fit’ individuals.Backward in time, this now induces a coalesc-
ing/branching structure, where the branching events correspond to unresolved birth events, meaning that the
ancestry here may only be decided in a second step, when the types of the ancestors have been resolved. This
process is rather complex, but some explicit results may be obtained, with considerable technical effort, about
the time to the most recent common ancestor, for example.

The process becomes much simpler if, rather than full geneologies, only the ancestral lines of single
individuals are considered. This seems to have been overlooked for quite some time; some explicit results
(for two types) have recently appeared [13].

If more than two types are considered, explicit analytical results seem out of reach at present, and even
simulation of the backward coalescent is a challenge. The ‘first generation’ simulation algorithms require
sampling from the stationary distribution, which is, however, known only for the unrealistic case of parent-
independent mutation. Recently, however, some progress could be made throughexact samplingalgorithms
[10]. They do not require explicit knowledge of the stationary distribution and are, therefore, more generally
applicable.

A second important direction concerns the inclusion of spatial structure into the Moran model and the
resulting coalescent. A popular model here is thestepping-stone model, where individuals perform a random
walk on a one- or two-dimensional lattice (or torus, in a mathematical idealization). Genetic structure may
then be analyzed through the homozygosity as a function of the separation of the colonies, and a genetic
distance known as FST (fixation index of subpopulations relative to the total population). Various limits,
depending on the scaling of migration rate, subpopulation size and number of subpopulations, must be con-
sidered. Recent results include the logarithmic growth of FST with the number of colonies, the identification
of parameter regimes where the stepping-stone model is effectively panmictic, the structure of genealogies,
the effect of migration on the mutation patterns expected under the infinite-sites model, and the additional
effect of selection [2, 5, 33, 32].

Another important line of development concerns the assumption of constant population size, which is
a severe limitation. Traditionally, variable population size has been treated with the help of the concept of
effective population size; but a certain confusion has been associated with this notion. Recently, this has been
analyzed within the framework of the coalescent [30]: Having identified conditions under which a model
with stochastic demography converges to the coalescent with a linear change in time scale, Sjodin et al. [30]
have argued that this is a necessary condition for the existence of a meaningful effective population size.
Such a linear time scale change is obtained when demographicfluctuations and coalescence events occur on
different time scales.
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Branching Processes

Branching processes have a long history in population genetics theory. They were first used by Wright to
determine the fate (fixation or loss) of a rare mutant within afinite population (for review, see [9, p. 27ff]); for
this purpose, a single-type Galton-Watson process is relevant. Recently, multi-type branching processes have
been used in the context of mutation-selection models for large populations [18]; here, as in the coalescent
process, the view back in time has become important, and earlier results by Jagers et al. [21] can now be used
to investigate the relationship between the forward and thebackward process, and the present and ancestral
distribution of types, respectively.

But coalescent and branching processes have more in common than the backward view along single lines.
Motivated by an earlier meeting on mathematical populationgenetics, Geiger [17] has recently started to
investigate an analogue to the coalescent for branching processes. Ifk individuals are sampled uniformly at
random from one generation of a large Galton-Watson population that has persisted forn generations, then
the shape of the subtrees spanned by the sampled vertices andthe root depends essentially on the tail of the
offspring distribution: While in the finite variance case the subtrees are asymptotically binary (asn → ∞),
multiple branch-points do persist in the limit if the variance of the offspring distribution is infinite.

Apart from concrete questions like this one, branching processes and particle systems can also be sub-
sumed under the general framework of particle systems and look-down processes mentioned earlier [4].

Evolutionary Genetics

An important topic in modern evolutionary genetics is the identification of selective events in the history of
a sample from the patterns of genetic variation observed in apresent-day population. This is often done by
means of the so-calledhitchhiking effect, namely the fact that the fixation of a strongly selected beneficial
mutation is accompanied by the increase of variants at otherloci linked with the beneficial mutation. This
effect leaves numerous signatures of diversity in DNA sequences, both within and between species, and
affects the frequency spectrum of alleles, as well as linkage disequilibria and codon bias. Depending on
whether there has been a single (recent) hitchhiking event or several repeated ones, the effects may be local
or over a broader range. By comparing theoretical predictions with actual sequence data, one can infer the
rate and strength of beneficial mutations in nature (among the many references available, see [23] for a recent
example).

The hitchhiking effect has recently entered the level of large-scale analysis of SNP data. SNP’s, ‘single
nucleotide polymorphisms’, are single nucleotide sites that are polymorphic in a population. Much effort is
devoted to the problem of detecting selective sweeps using large SNP data sets from genomic scans. However,
special care must be taken to overcome the ascertainment problem: Most population genetical methods do
not correctly accommodate the special discovery process used to identify SNPs, which results in biased allele
frequency distributions that must be corrected for [27].

Last but not least, our traditional understanding of the interplay of selection and genetic drift is challenged
by thepseudohithhiking modelproposed by Gillespie [19]. Strongly selected substitutions at one locus can
induce stochastic dynamics that resemble genetic drift at aclosely linked neutral locus. The pseudohitch-
hiking model is a one-locus model that approximates these effects and can be used to describe the major
consequences of linked selection. The coalescent of the pseudohitchhiking model has a random number of
branches at each node, which leads to a frequency spectrum that is different from that of the equilibrium neu-
tral model. Ifgenetic draft, the name given to these induced stochastic effects, is a more important stochastic
force than genetic drift, then a number of paradoxes that have plagued population genetics disappear – but,
at the same time, the estimation procedures commonly employed in genetic analyses may be estimating
parameters other than those that are assumed.

Apart from its impact on population genetics, this approachis also having a significant impact on mathe-
matical research. Since the model relies onstronglyselected mutants, the usual diffusion limit and associated
coalescence theory is not applicable. Durrett and Schweinsberg [6] have approximated it with the help of
random partitions created by a stick-breaking process, andEtheridge, Pfaffelhuber and Wakolbinger have
modelled the ancestry at the neutral locus by means of a structured coalescent in a random background, and
derived a corresponding sampling formula [8].
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Recombination and Haplotype Blocks

Recombination is the formation of a chromosome passed on by aparent to an offspring by physical exchange
between the two parental chromosomes, so that the transmitted chromosome consists of parts of each of the
two parental chromosomes. There has been much recent speculation (based on patterns of genetic variation),
and occasionally experimental confirmation (via sperm typing), that rates of recombination across the human
genome vary on a fine scale. In particular, some regions of thegenome appear to containrecombination
hotspots, where recombination occurs at rates several times higher than the background average rate. Aside
from inherent interest, an understanding of this local variation is essential for the appropriate design and
analysis of many studies aimed at elucidating the genetic basis of common diseases or of human population
histories. Standard pedigree-based approaches do not havethe fine scale (< 0.1 cM) resolution that is needed
to address this issue, because thousands of meioses are needed per recombination event. In contrast, samples
of DNA sequences from unrelated chromosomes in the population carry relevant information, as there are a
large number of meioses in the history of a sample of population data. But inference from such data is ex-
tremely challenging in several respects: the underlying stochastic model (the coalescent with recombination,
a process that is practically intractable in the full-fledged version required here), the statistical analysis, and
the computational requirements.

Although there has been much recent interest in the development of full likelihood inference methods
for estimating local recombination rates from such data, they are not currently practicable for data sets of
the size being generated by modern experimental techniques. Fearnhead and Donnelly [11, 12] introduced
and studied two approximate likelihood methods. The first, amarginal likelihood, ignores some of the data.
For larger sequences, they introduced acomposite likelihood, which approximates the model of interest by
ignoring certain long-range dependencies. With a combination of both methods, data from the lipoprotein
lipase gene have been analyzed. A different approach was pursued by Li and Stephens [25], who have related
the patterns of genetic variation to the underlying recombination process through their PAC model (product
of approximate conditionals). This method has already beenapplied to two problems: determining whether a
recombination hotspot identified in human males via sperm typing is also present in chimps; and quantifying
the frequency of recombination hotspots in genes in the human genome.

Closely related to the local variation of recombination rates is the concept of haplotype blocks. A haplo-
type block is a region of a chromosome that tends to be passed on intact, without recombination, from parent
to offspring. Partly as a result of this, the region of a chromosome corresponding to a block tends to exhibit
only a few haplotypes in the entire population. Identification of haplotype blocks is a way of examining the
extent of linkage disequilibrium in the genome, which generally provides useful information for the planning
of association studies in human genetics (see the next Section). The aim is to identify a minimal subset of
SNPs that can characterize the most common haplotypes. No uniform definition of a haplotype block has yet
been agreed upon; however, various operational definitionsare in use, see, e.g., Daly et al. [3]. TheHap-Map
project(http://www.hapmap.org/index.html.en) describes haplotype blocks in the human genome. Particular
interest is in the question whether there is similar haplotype block-structure between and within populations
(Nigeria/Yoruba, Asia, African Americans, Europeans), see, e.g., [16].

Human Genetics

In human genetics, finding genes underlying heritable traits has been a long-standing problem. In recent
years attention has shifted from ‘Mendelian’ disorders (that is, diseases caused by one defective gene, such
as Huntington’s disease or cystic fibrosis) to so-called complex traits, which are thought to be influenced by
multiple genes possibly interacting with each other and with environmental risk factors. Many of these are
common diseases, like diabetes.

As mentioned above, inference relies on the association with known marker genes, i.e., on linkage dis-
equilibrium; this association is complete if there is no recombination between disease and marker locus,
and decreases with distance (i.e. recombination rate) between them, thus giving a method of estimating this
distance.

On a finer scale, the coalescent-based methods of the previous Section are the methods of choice; but
for larger distances, pedigree-based methods are more appropriate. Here, one takes advantage of one basic
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difference between general population genetics and human genetics, which uses family (or pedigree) data
rather than population data. Observations are made on a collection of markers (usually SNP’s) transmitted
from parents to affected (and sometimes unaffected) offspring, and as a result an assessment can be made
about which SNP’s the disease gene is close to. Since the locations of the SNP’s are known, inferences can
be made about the location of the disease gene. This area of research is known aslinkage analysis, is based
on probability models and parametric inference, and has a very long tradition; for review, see [28]. Over
the years, each major development in parametric statistical inference has been adopted by the developers of
linkage analysis methods, and questions of genetic analysis have prompted new statistical developments, from
the work of Fisher [15] onwards. In many ways, statistical inference and genetic analysis have developed in
parallel over the last 100 years.

Currently, the field is moving from a situation in which marker typing was hard and expensive to an era
where this is relatively cheap, fast and easy, and the major cost of a study of a complex trait is now in the
family collection and trait phenotyping. Recent progress in sequence analysis has made available the joint
analysis of thousands and even hundreds of thousands of SNP’s, thus making possible genome-wide screens
for disease genes. Indeed, many researchers are already taking advantage of this fact. The statistical challenge
is now how to deal with the vastly larger number of variables than observations: The enormous number of
genotype configurations leads to acurse of dimensionality. This situation is analogous to that in microarray
expression analysis, where expression levels of large numbers of genes are measured on a comparatively very
small number of individuals. In both cases, false positivesare the main problem. This is now an area of
intensive statistical research; some recent approaches are discussed in [20].
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Chapter 23

Statistical Science for Genome Biology
(04w5519)

August 14–19, 2004

Organizer(s): Jennifer Bryan (University of British Columbia), SandrineDudoit (Univer-
sity of California, Berkeley), Mark van der Laan (University of California, Berkeley)

The main objective for this workshop is to facilitate the development and dissemination of statistical
methods relevant to genome-scale biology, by bringing together leading researchers working at the interface
between the biological and mathematical sciences. An important goal, that is reflected in our list of proposed
invitees, is to include statisticians working on differentaspects of statistics but all related to genomics. We
have intentionally targeted areas ranging from classical statistical genetics, such as the genetic mapping of
complex traits, to the emerging area of high throughput geneand protein expression analysis. It is becoming
increasingly important for statisticians working in genomics to be aware of the quantitative problems and
solutions related to diverse experimental platforms. Biological investigators are taking advantage of oppor-
tunities to study a system or process from several angles simultaneously and there is a growing need for
quantitative methods to handle disparate data types seamlessly, for example, a holistic analysis based on
sequence, expression, and molecular interaction data. An aim of this workshop is to devise appropriate statis-
tical formulations for such analyses, which will expedite the creation and application of sound and powerful
statistical methodologies.

The utility of sophisticated statistical methods in modernbiology is well-established and has been ad-
dressed in more detail elsewhere in this proposal. Promoting genomics as a source of interesting and impor-
tant problems is also of great benefit to the statistics research community. The fascinating developments in
the biological sciences have generated an unprecedented enthusiasm in the computational sciences generally
(statistics, mathematics, and computer science) by raising novel and challenging methodological questions.
However, there can be significant ’barriers to entry and expansion’ in this type of interdisciplinary work.
This workshop would enable researching statisticians, with documented expertise and interest in genomics,
to broaden their knowledge of current research and important open problems.

The question of timeliness is quite easy to address in this case. The pace at which genomic data are accu-
mulating far exceeds the scientific community’s ability to interpret it. Likewise, the emerging subspecialty in
statistics – statistical genetics and genomics – is growingand changing rapidly and a workshop specifically
aimed at this area is sorely needed.

List of Participants

Allison, David (University of Alabama, Birmingham)
Birkner, Merrill (University of California, Berkeley)
Brumm, Jochen (University of British Columbia)

144



Statistical Science for Genome Biology 145

Bryan, Jennifer (University of British Columbia)
Buhlmann, Peter (ETH Zurich)
Bull, Shelley (University of Toronto)
Bureau, Alexandre (University of Lethbridge)
Carey, Vince (Harvard University)
Dudoit, Sandrine (University of California, Berkeley)
Durbin, Blythe (University of California, Berkeley)
Fridlyand, Jane (University of California, San Francisco)
Gentleman, Robert(Harvard University/Dana Farber)
Hansen, Kasper Daniel(University of Copenhagen)
Holmes, Susan(Stanford University)
Hubbard, Alan (University of California, Berkeley)
Joe, Harry (University of British Columbia)
Jornsten, Rebecka(Rutgers University)
Keich, Uri (Cornell University)
Keles, Sunduz(University of Wisconsin, Madison)
Kendziorski, Christina (University of Wisconsin, Madison)
Kopciuk, Karen (Alberta Cancer Board/University of Calgary)
Kustra, Rafal (University Toronto)
Larkin, Jennie (The Institute for Genomic Research)
Lumley, Thomas (University of Washington)
Marin, Michael (University of British Columbia)
Molinaro, Annette (University of California, Berkeley/NCI)
Newton, Michael (University of Wisconsin)
Pachter, Lior (University of California, Berkeley)
Pollard, Katherine S. (University of California, Santa Cruz)
Purdom, Elizabeth (Stanford University)
Quackenbush, John(The Institute for Genomic Research)
Rocke, David(University of California, Davis)
Rossini, Anthony (University of Washington)
Ruczinski, Ingo (Johns Hopkins University)
Sinisi, Sandra(University of California at Berkeley)
Temple Lang, Duncan(University of California, Davis)
Trivedi, Prinal (University of Alabama, Birmingham)
Yang, Yee Hwa(University of California, San Francisco)
van der Laan, Mark (University of California, Berkeley)



Chapter 24

Dynamics, Control and Computation in
Biochemical Networks (04w5550)

August 21–26, 2004

Organizer(s): Brian Ingalls (University of Waterloo), Leon Glass (McGillUniversity),
John Reinitz (State University of New York, Stony Brook), Eduardo Sontag (Rutgers Uni-
versity), Erik Winfree (California Institute of Technology)

This workshop brought together a diverse group of people working in interdisciplinary areas touching on
molecular biology, computer science, nonlinear mathematics, control theory, and computer and biomedical
engineering. Since few meetings attract individuals from all these groups, this meeting was the first oppor-
tunity that many of the participants had to meet one another.This provided for a lively and intellectually
stimulating environment and enabled the forging of severalnew friendships and collaborations.

Cells and organisms have evolved elaborate mechanisms to carry out their basic functions. Networks of
biochemical reactions are responsible for processing environmental signals, inducing the appropriate cellular
responses, and sequencing internal events. The overall molecular algorithms carried out by such networks are
as yet poorly understood. Recent years have witnessed remarkable advances in elucidating the components of
these networks due to technological achievements. Prominent among these achievements are the means for
rapid sequencing of genomes, the means for simultaneously determining the expression levels of thousands
of different genes, and recombinant DNA techniques to isolate, identify, manipulate, and synthesize genetic
and metabolic networks. These advances have confronted thebiological sciences with massive amounts of
data that require huge computational resources backed by flexible software easily used by the non-expert. All
cellular and molecular biologists now use sophisticated computer-based algorithms to identify and analyze
DNA and protein sequences

The workshop was designed to address a range of questions that go beyond the development of algorithms
for the searching and analysis of genomic and protein data bases. This report summarizes some of the main
themes and questions emerging from the meeting. Further details and selected reprints are available. Since
the main themes of the meeting are inextricably woven together, it is hard to generate subheadings that do not
overlap each other. In recognition of this, the talks of the meeting were not organized into specific themes in
any given session, but presented in a “quasi-random” order.This presentations however does identify main
themes – but it will be clear that these overlap and several ofthe presentations are relevant to many of the
themes.

(i) DNA computers and nano-mechanical devices (Seeman, Yurke,Winfree). The function of DNA as the
primary means for storing genetic information is well known. In order to accomplish the biological tasks,
there are a vast range of molecules and organelles that have evolved to carry out the requisite biological
functions. In recent years, this growing knowledge about DNA function and chemistry has been exploited
in a variety of ways. An early paper by Adleman demonstrated how to use DNA recombinant technology
to solve combinatorial problems such as the Hamiltonian path problem. At this conference, there were
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demonstrations of the further and growing power of DNA technology. DNA is providing a new basis for
nanotechnology. By controlling the base sequence in DNA andthe sequences of DNA bases to generate
sticky ends of molecules, DNA can assemble in a huge variety of geometrical shapes and patterns in 2 and
3 dimensions. For example, Winfree showed how it is possibleto build the fractal shape of the Sierpinski
gasket from the self-organization of specially constructed DNA, Seeman generated polytopes out of DNA
molecules, Seeman and Yurke build nanorobotic devices thatsuch as walkers and tweezers. Theoretical
studies by Winfree and others have demonstrated that tilingcan be used to build a Turing machine. Now
the first steps are being taken to use tiling to carry out rudimentary computations such as XOR computations
(Seemans) or counting using binary logic (Winfree). DNA might also be used to build scaffolds that could
then be used to house molecules for further analysis. Crystals with dimensions up to a millimetre ordered
to 10 angstrom resolution (as determined by X-ray diffraction) can be produced. Seeman proposed that this
should be able to produce high resolution crystals of DNA host lattices with heterologous guests, leading to
well-ordered bio-macromolecular systems amenable to diffraction analysis. Fundamental questions involve
developing ways to design the DNA molecules to carry out desired tasks in a robust fashion, developing
an understanding of the way to program tiling algorithms to carry out specified computational tasks, and
determining ways to correct non-desired dynamic behaviouron a molecular scale.

(ii) Genetic networks. Gene expression is partially regulated by transcription factors binding to control
regions of the genome. The logic of the control of expressionis difficult to work out. The problem of genetic
control was addressed from several perspectives. Highly idealized models composed of Boolean devices
that update at discrete times were used to construct classesof networks whose dynamic properties could be
studied and analyzed (Kauffman, Peterson). There is evidence that real biological systems are only restricted
to some subclasses of the possible boolean functions. By studying the dynamics properties of ensembles of
networks composed of such devices Kauffman is defining new classes of observations that could potentially
be tested experimentally in real systems using emerging technologies. For example, it would be of interest
to test the modification of the global gene expression induced by the knockout or knocking of a single gene.
Such results would reflect the global structure of the genomethat might well be captured by very simple mod-
els. The notion that real genes may be modelled by simple rules was a concept that ran through a number of
the talks. Here are several examples. Jaeger and Kozlov described methods used to determine the structure of
gene networks using equations based on neural networks in Drosophila and demonstrated that these networks
could generate observed patterns of gene expression. Drosophila was also addressed by Louis, who presented
a model of the genetic control circuitry responsible for sex-determination. Stojanovic applied modular de-
sign to construct molecular logic gates with oligonucleotides as both inputs and outputs. These gates could
be arranged in circuits that autonomously perform complex Boolean calculations. Edwards demonstrated
general mathematical properties of differential equations modelling genetic circuits with switch-like control
but operating in continuous time, and Glass demonstrated how electronic circuits (modelling the equations
discussed by Edwards) could evolve novel dynamics. Generalissues of computability were addressed more
abstractly by Maass, while Prusinkiewicz presented an algorithmic framework for simulating growth driven
by genetic control. Oudenaarden and Bolouri emphasized theroles of functional modules and design mo-
tifs that are the building blocks for the entire cellular network. Oudenaarden showed how positive feedback
loops can be used to store information and generate steep switches, and presented both theoretical models
and experiments on natural and synthetic genetic networks in the bacterium Escherichia coli and the budding
yeast Saccharomyces cerevisiae. Finally, Bolouri described efforts being made to develop software to help
analyze and simulate real networks. Underlying the talks about the genetic networks are questions relating to
the relative roles of simplified models versus realistic models. Though simplified models have transparency
that can in some cases lead to strong theoretical results, asin the presentations by Kauffman and Edwards,
the relevance of these results to real networks is completely open. It is necessary to figure out ways to ana-
lyze and deconstruct real networks that have some transparency, but which are sufficiently complex that they
capture the relevant properties and dynamics of the real networks.

(iii) Engineered Genetic Circuits. Our understanding of genetic networks has progressed to the point
where it is possible to design and construct circuits which serve a particular purpose. Successful designs
have included a switch and an oscillator. Much current work is focused on reliable implementation of inter-
connections of such components. Weiss designed and built simple genetic circuits, implemented in bacteria,
that could generate a pulse when the appropriate stimulus was given. Issues of computing with minimal
genetic circuits were addressed by Kim. Swain and Elowitz presented work on characterizing the sources
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of randomness in genetic networks, with the aim of improvingdesign procedures for engineered genetic cir-
cuits. Improved design was also dealt with on an experimental level by Surette, who discussed mechanisms
of genetic regulation. Endy presented a novel approach to biological design. Work in his laboratory aims to
modify existing organisms to make them more amenable to study and control.

(iv) Signal Transduction Networks. Cells receive information about their external environment through
proteins situated in the cell membrane. This information isthen processed by signal transduction networks
which are responsible for integrating the incoming signalsand eliciting the appropriate cellular response.
These networks function in a highly dynamic manner, constantly updating to represent the current environ-
ment. Analysis of such systems can only be carried out through the use of mathematical tools designed
for addressing dynamic behaviour. Such analyses were presented by Levchenko, who presented a model of
cross-talk among various signal transduction pathways andby Chaves, who demonstrated a model for the
receptor-ligand binding which sets such pathways in motion. Elston presented an analysis of the mitogen-
activated protein kinase cascade, a ubiquitous module in signal transduction architecture. He addressed the
importance of stochasiticty in the behaviour of these networks. Ferrell discussed bistability and other phe-
nomena in cell cycle models. Othmer chose signal transduction networks to illustrate work on robustness in
biochemical networks. This is a central issue and was touched upon in a number of presentations.

(v) Control-Theoretic Analysis of Biochemical Networks. The regulation of cellular activity is achieved
through a complex network of interacting components. The reverse-engineering of these self-regulating
systems can be aided by application of the theory that has been developed for the design and synthesis of au-
tomatic feedback systems, namely the theory of systems and control. A number of the participants presented
work in applying expertise in control to problems of biochemical regulation. Some of this work addresses
particular systems – identifying the architecture of key regulatory components and elucidating their intercon-
nections. Such work was presented by Iglesias (chemotaxis of the slime mold Dictyostelium discoidium) and
Khammash (heat shock response in E. Coli). Other work addresses theoretical tools which can be used in
the study of such systems. Doyle presented a sensitivity analysis of oscillating systems using sophisticated
mathematical tools, while Ingalls demonstrated a control-theoretic interpretation of a biochemically-inspired
sensitivity analysis. Work on identification and interpretation of stochasticity in biochemical systems was
presented by El-Samad. Sepulchre presented results on stability of coupled oscillators which has application
to interconnected biochemical systems.

(vi) Monotone Systems. The theory of monotone systems provides one of the foundations of dynamics
in mathematical biology, and Gedeon’s talk described applications to gene regulation models. A recent
extension of the theory allows for the consideration of “open” systems with inputs and outputs, and the talks
by Sontag and Enciso focused in these extensions, which allow one to reconstitute the behaviour of certain
large scale systems by decomposing them into smaller and easier to analyze input/output components. These
two talks covered small-gain and multistability theorems,as well as several applications to gene and protein
network models.
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Combinatorial Hopf Algebras (04w5011)

August 28–September 2, 2004

Organizer(s): Frank Sottile (Texas A&M University), Nantel Bergeron (York Univer-
sity), Louis Billera (Cornell University), Stephanie van Willigenburg (University of British
Columbia)

Recent developments have linked heretofore distinct subjects within combinatorics, algebra, geometry,
and theoretical physics thereby uncovering exciting new avenues for research. Our workshop would bring
together experts in these newly linked subjects, many of whom have not previously interacted, to focus
attention on these topics. We expect to follow a leisurely pace at the workshop, reserving time for consultation
among the participants. The talks would concentrate on new developments and open problems, serving to
define this area and its future directions.

An old theme in algebraic combinatorics initiated by Rota isthat many combinatorial objects possess
natural product and coproduct structures. Enumeration andclassification of these structures often give rise
to an associated graded Hopf algebra. This theme has maturedwith recent work of Ehrenborg, Aguiar, and
others, who give a natural Hopf morphism from these Hopf algebras of combinatorial objects to the Hopf
algebra of quasi-symmetric functions Qsym. This morphism arises from a universal property of the Hopf
algebra Qsym as a terminal object in the category of graded Hopf algebras equipped with a zeta-function.
In particular, many enumerative combinatorial invariants(among them flag f-vectors, Littlewood-Richardson
coefficients, and chromatic symmetric polynomials) are obtained from this universal property. In light of
this, the Hopf algebra Qsym and its sub-structures are boundto play a very important role in algebraic
combinatorics.

The Hopf algebra Qsym of quasi-symmetric functions was introduced by Gessel as a source of generating
functions for Stanley’s P-partitions. Since then, quasi-symmetric functions have appeared in many combi-
natorial contexts. For example, Gessel showed that multiplication in Qsymm is given by a shuffle product,
giving showing that the descent sets of all shuffles of two sequences depends only on the decent sets of the
sequences being shuffled. The relation of Qsym to the ring of symmetric functions was first clarified by
Malvenuto and Reutenauer via graded Hopf duality to the Solomon descent algebras, and then Gelfand, et
al., defined the graded Hopf algebra NC of non- commutative symmetric functions and identified it with the
Solomon descent algebra. Recently, there is a growing interest in symmetric and quasi- symmetric functions
and their non-commutative analogs.

The dual pair NC and Qsym of Hopf algebras are only the first of agrowing number of combinatorial
Hopf algebras which possess interesting structures and arerelated to NC and Qsym. For example, Malvenuto
and Reutenauer studied a non-commutative graded Hopf algebra whose basis is all permutations having a
natural map to Qsym, and which contains NC as a subalgebra. This map factors through a Hopf algebra
of planar binary trees studied by Loday and Ronco, and others. Loday and Ronco discovered the notion
of dendriform algebra studying this Hopf algebra. Other combinatorial Hopf algebras possess interesting
operadic structures, some of which have been elucidated by Loday and Chapoton. Brouder and Frabetti
studied a related (actually isomorphic) Hopf algebra of planar binary trees, linking it to renormalization
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of Quantum Electrodynamics. This is similar to, but different from, the Hopf algebra of rooted trees of
Connes and Kreimer which encodes some renormalization in Quantum Field Theory. Relations between
these algebras have yet to be fully studied, and we believe that special structures of these algebras will have
relevance to the original combinatorics we began with.

To give one important example, the connections uncovered bythe work of Aguiar suggest a number of
exciting possibilities. This includes a unified approach topositivity questions in different realms of enu-
merative combinatorics or using these results as a bridge totransfer ideas and techniques between these
heretofore different realms. For example, both the Schubert calculus and polytope/poset theory have impor-
tant open positivity questions and well-developed techniques to study these (Schensted insertion and geome-
try/representation theory for the Schubert calculus and shelling/homology of posets for polytopes and posets).
It would be very fruitful to connect these techniques or to apply them to other areas.

For example, Billera and Liu considered elements of the algebra NC as flag- enumeration functionals
on all graded posets, and they defined a quotient E of NC consisting of all such functionals on Eulerian
posets. Bergeron, Mykytiuk, Sottile and van Willigenburg showed that the algebra E is dual to Stembridge’s
algebra Pi of peak quasi-symmetric functions. More precisely, they showed that both algebras have natural
coproducts that make them into Hopf algebras, and that theseHopf algebras are, in fact, dual. This duality
links the study of the enumerative properties of Eulerian posets, including associated geometric objects such
as spheres, convex polytopes and hyperplane arrangements,with that of Stembridge’s enriched P-partitions
and related questions having to do with peaks and shuffles in permutations. More recently, Billera, Hsiao,
and van Willigenburg showed a direct connection between thecd-index for Eulerian posets and the standard
basis for the algebra Pi, giving a direct link between natural non-negativity questions in each field. This
line of study also shows an interesting connection between the map relating “descents” to “peaks” and the
classical theory of Zaslavsky relating enumeration in geometric lattices to that of the regions in an associated
arrangement of hyperplanes. This is yet to be completely understood. They also showed this map to define a
random walk on the collection of all peak sets whose stationary distribution is the distribution of peak sets in
the symmetric group. This is a direct outgrowth of a shuffle interpretation for multiplication in Pi.

Another exciting line of study is the investigation of Qsym (in finitely many variables) considered as a
subalgebra of the polynomial algebra. In recent work, Aval and Bergeron and Bergeron have shown that the
quotient of the polynomial ring over the ideal generated by Qsym is linked to Catalan numbers. This new in-
vestigation promises a wealth of research as it is related tothe analogous quotients in invariant theory involv-
ing symmetric polynomials. The later are intensively studied in geometry and representation theory as they
encode cohomology of various (partial) flag manifolds. Its generalization leads to the famous n!-conjecture
of Garsia and Haiman, in relation to the positivity conjecture of the Macdonald symmetric functions. Haiman
recently proved these conjectures. It would be extremely stimulating to construct an analogous theory for the
quasi-symmetric functions.

Because the work connecting these areas is quite recent, itsimplications for future research have only just
begun to be disseminated within the research community. Ourworkshop would foster deeper connections
and enable future collaborations between researchers in these various areas.
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Pluripotential Theory and its
Applications (04w5035)

September 4–9, 2004

Organizer(s): Len Bos (University of Calgary), Eric Bedford (Indiana University), Alex
Brudnyi (University of Calgary), Al Taylor (University of Michigan)

As a relatively new field, the methods and results of Pluripotential Theory are not well known to re-
searchers in other parts of mathematics. In the proposed workshop, it is our intention to bring together
experts in Pluripotential Theory with those who might best benefit from exposure to its methods or have used
similar tools in their work. Conversely, pluripotential theorists would benefit immensely through the learning
of possible new applications and problems that arise from other fields. It is our hope and expectation that
such a workshop will lead to fruitful cooperation across areas. The topics of the workshop will be General
PSH Theory, PSH in Complex Dynamics, PSH Functions on Varieties, Multivariate Potential Theory and
Multivariate Polynomial Inequalities.
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Commutative Algebra: Homological and
Birational Theory (04w5027)

September 11–16, 2004

Organizer(s): Ragnar-Olaf Buchweitz (University of Toronto), Paul Roberts (University
of Utah), Bernd Ulrich (Purdue University)

In this part of the proposal we outline the topics listed above and explain in more detail the current state
of research and why a workshop in this area would be very useful at the present time.

1. Problems in positive and mixed characteristic

For rings of positive characteristic, the Frobenius map, which sends an element of the ring to its pth power,
where p is the characteristic of the ring, is an extremely powerful tool. Many conjectures on the homological
theory of Noetherian rings have been proven using this technique, and more recently these ideas have been
extended in the theory of tight closure. For rings of mixed characteristic, an important line of research has
been to prove these conjectures and to extend these ideas to that case.

Positive characteristic and tight closure

The theory of tight closure was introduced by Hochster and Huneke and is currently a very active area.
Connections have been proven to exist between the concepts which arise naturally in this theory and classical
properties of singularities by Karen Smith, Watanabe, and others, and there is now a considerable amount of
interest in relations with deep properties of local cohomology. Among the current topics of research in this
area are test ideals, preservation under base change, and relations with local cohomology, including work by
Smith, Lyubeznik, and Singh. Much of this work is related to one of the fundamental questions, whether
tight closure commutes with localization. One of the new developments which we intend to include in our
workshop is the connection with mutliplier ideals, a topic we discuss in more detail in the third section.

Mixed characteristic and the homological conjectures

During the last year a major step forward was made in the homological conjectures for rings of mixed char-
acteristic with Heitmann’s proof of the Direct Summand Conjecture in dimension three. This case of the
conjecture had been open and had been the subject of intense investigations for over thirty years. In addition
to solving an important problem, the ideas used in the proof are related to methods using the Frobenius map
and tight closure which have been shown to be very useful in studying problems in the case of equal char-
acteristic. While Heitmann’s results do not quite extend this theory to the mixed characteristic case, they do
show that many of the ideas carry over and can be used successfully.
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The new methods also have counterparts from an unexpected source, that of Arithmetic Geometry. The
results outlined in the previous section have also been studied by Faltings, Gabber, Ramero, and others in
their work on almost etale extensions with different aims but with some very similar results, including a
result on the vanishing of local cohomology similar to that of Heitmann. One of the aims of this workshop
is to invite mathematicians from these different areas to combine the expertise of these groups working on
related questions.

Hilbert-Kunz multiplicities

The third topic is Hilbert-Kunz functions and multiplicities. These invariants are an analogue of traditional
multiplicities in Algebraic Geometry and record the actionof the Frobenius homomorphism on a ring in pos-
itive characteristic. They are related to local Chern classes and other arithmetic invariants. Recent results by
Fakruddin and Trevedi use vanishing theorems by Haboush andAndersen to study cones over elliptic curves
in positive characteristic. In addition, Monsky and his student Teixeira have found an exciting description
in terms of dynamical systems on curves over finite fields thatyields rationality of the Hilbert-Kunz multi-
plicity, and, even better, recursive formulae for the wholeHilbert-Kunz series in terms of ideal class groups.
There are also striking similarities to the Hasse-Weil Zetafunction in arithmetic geometry that are not yet
understood.

2. Homological methods

In addition to the homological questions for rings of positive and mixed characteristic, we intend to include
more general homological topics. We will concentrate upon the study of free resolutions, including the
tremendous amount of work being done on resolutions of special classes of ideals, and how the structure of
the resolution of the coordinate ring of a projective variety reflects the geometry or arithmetic of the variety.

There are in particular two areas of current research activity that we intend to address.

Commutative Algebra and Exterior Algebra

The first of these areas concerns the interplay between classical commutative algebra and exterior algebra.
Although the underlying Bernstein-Gelfand-Gelfand correspondence, which establishes a correspondence
between the derived categories of modules over a polynomialring and a dual exterior algebra, has been known
for 25 years, it is only now that the dictionary is sufficiently well understood to bear fruit on classical problems
such as resolutions of ideals of points in projective space,syzygies of Veronese or Segre embeddings, Chow
forms and resultants. Among the major players in this area are Avramov, Eisenbud, Herzog, S. Popescu, and
Schreyer.

An exciting very recent aspect is the appearance of the Koszul complex in the study of D-branes in String
Theory, and it is reasonable to expect that in the time leading up to this workshop the connections to classical
theory will become clearer and provide for in depth understanding of rather surprising insights into Algebraic
Geometry originating from Physics.

Vanishing results for Ext and Tor functors

A consistent thread in the development of the homological theory of commutative rings has been conditions
for Ext and Tor functions to vanish. Although these topics have been studied extensively, it came as a
major surprise recently that vanishing of Ext over completeintersections is symmetric in its arguments, and
there are strong indications that similar results may hold over general Gorenstein rings. This active area of
research, pursued by Avramov, Buchweitz, Huneke, Claudia Miller and their collaborators, is remarkable
in that it exposes basic questions about the structure of ubiquitous homological functors. Some of these
fundamental problems were raised a long time ago by Auslander and Reiten in connection with the so-called
Generalized Nakayama Conjecture, which states that the vanishing of certain Ext modules forces a module
to be projective. Recent work in representation theory suggests that deeper understanding will require the
study of Hochschild cohomology and concepts related to the fine structure of derived categories and their
equivalences.
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3. Integral dependence and integral closures

The concepts of integral extensions and integral closures of rings are central to much of Commutative Alge-
bra. In this part of the proposal we discuss a generalizationof these concepts to ideals. This defines a closure
operation for which the closure is in general larger than thetight closure discussed in the first section. Integral
closure of ideals is closely related to singularity theory,the study of Rees algebras, and multiplier ideals.

Multiplier ideals and cores

Multiplier ideals are integrally closed ideals that have been defined in complex algebraic geometry using
log resolutions. The theory of multiplier ideals has surprising applications in local commutative algebra, as
shown by Ein, Lazarsfeld and Smith. On the other hand, Hara, Watanabe, and their coauthors have established
a connection to test ideals, a characteristic p notion arising in tight closure theory. The proposed workshop
will help in bringing together the different points of view in this rich subject. Multiplier ideals are also related
to cores of ideals, a topic receiving a great deal of attention lately. A better understanding of cores would lead
to improved versions of the celebrated Briancon-Skoda theorem and solve a conjecture of Kawamata on the
non-vanishing of sections of line bundles. This surprisingconnection was recently discovered by Smith and
her coauthors, and one can expect further exciting developments in the near future.

Rees algebras and singularities

There has been an abundance of new results about Rees algebras and their structure over the past ten years.
Rees algebras are the rings in which integral dependence of ideals can be studied and they are the algebraic
objects that appear in the process of resolution of singularities. Rees algebras have been used in Kawasaki’s
celebrated proof of the existence of Macaulifications, a weak form of resolution of singularities. Kawasaki’s
work, which builds on research of Goto and his school, has notbeen widely disseminated. The proposed
workshop will serve as a forum for discussion of his ideas andtechniques. Another important contribution
in singularity theory is Cutkosky’s work on Abhyankar’s conjecture about local factorization of birational
maps between nonsingular varieties. We plan to bring together many of the leaders in this subject, including
Teissier who has made substantial progress on the problem ofdesingularization by using toric methods.

Multiplicities and computational problems

The concept of integral dependence of ideals and modules is essential in intersection theory and the theory
of multiplicities. It plays an important role in equisingularity theory as well, through the work of Gaffney,
Kleiman and Teissier. On the other hand there is still no efficient algorithm for computing integral closures
of ideals: this computational problem has been a focus of work by Vasconcelos and his coauthors.
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Quantum Computation and Information
Theory (04w5041)

September 18–23, 2004

Organizer(s): John Watrous (University of Calgary), Richard Cleve (University of Cal-
gary), Umesh Vazirani (University of California, Berkeley)

Various sub-fields of quantum information processing have developed, including the sub-fields of quan-
tum information theory and quantum algorithms and complexity. The objective of the workshop is to bring
together outstanding researchers from these sub-fields in order to interact with one another, to share prob-
lems and recent discoveries, to collaborate on problems these areas have in common, and to explore other
connections between these areas. BIRS offers an excellent opportunity to do this.
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Interaction of Finite Dimensional Algebras with other areas of Mathe-
matics

04w5501Vlastimil Dlab (Carleton University), Claus Ringel (Universitaet Bielefeld), Leonard Scott (Univer-
sity of Virginia)September 25–30, 2004

The Workshop will concentrate on several topics reflecting aclose relationship between the theory of fi-
nite dimensional associative algebras and other areas of Mathematics. It will deal, in particular, with relations
between Lie theory and the representation theory of quivers. Methods concerning quivers and their represen-
tations have been used in the past 30 years extensively in order to describe the structure of length categories
(Abelian categories where every object has a finite composition series) which arise very frequently not only in
algebra, but also in geometry and analysis. They enable a better understanding of the indecomposable objects
and allow often a definite presentation of the category by generators and relations. There are several quite
surprising relations to Lie theory: first of all, several length categories play a prominent role in Lie theory
such as the categoryO of categories of Harish-Chandra modules and they can be investigated successfully
using the representation theory of finite dimensional algebras. And second, one may use the representation
theory of special finite dimensional algebras in order to construct Lie algebras and quantum groups.

The Workshop will also reflect the latest work on quasi-hereditary algebras and their generalizations.
These algebras may be viewed as generalizations of quiver algebras more appropriate for understanding the
standard module/irreducible module relationship in the categoryO, perverse sheaves, and categories of repre-
sentations of algebraic groups in positive characteristic. They were introduced by Cline-Parshall-Scott in their
efforts to understand Kazhdan-Lusztig theory, and notablydeveloped further by work of Dlab and Ringel,
both jointly and individually. Some of the most interestinggeneralizations of quasi-hereditary algebras, called
stratified algebras, have been defined in independent (and slightly different) ways by Agoston-Dlab-Lukács
and Cline-Parshall-Scott. In each case, the stratificationinvolved occurs categorically at the derived category
level and internally in terms of particular ideals. Applications include nondescribing characteristic represen-
tations of finite groups of Lie type (Du-Parshall-Scott), topure finite group representation theory (Webb),
and to new generalizations, involving non-highest weight irreducible modules, of characteristic 0 Lie algebra
representation theory (Futorny-Koenig-Mazorchuk).

In other recent developments, Soergel and others have continued to push the model of finite dimensional
modules of cohomology rings as a replacement for relevant perverse sheaf categories, and Ginzburg et al
have announced a re-working of the Kazhdan-Lusztig + Kashiwara - Tanisaki understanding of quantum
group representations at an lth root of 1 in these terms. Tilting modules, an older development originating in
quiver theory, now impact many areas of representation theory, especially characteristic p, through work of
Ringel, Donkin, Soergel and Andersen, for example, and haveeven proved useful for the study of maximal
subgroups of finite groups of Lie type (Seitz, Saxl).

Also, Schur-Weyl duality that was at the heart of the introduction of quantum groups by Drinfeld and
Jimbo is now understood completely in a characteristic-free quantum context (Donkin, Du- Parshall-Scott)
with tilting modules as a major tool. Vesserot, generalizing work of Erdmann, has used this and Ariki’s
work mentioned below to provide a complete equivalence of the problems of understanding representations
of Hecke Algebras representations in type A and corresponding representations of q-Schur algebras. The
latter, introduced by Jimbo for physics and, independently, introduced by Dipper-James for finite groups of
Lie type in nondescribing characteristic, control finite rank representations of quantum enveloping algebras.

The workshop will also focus the attention to the use of the representation theory of special finite di-
mensional algebras in order to construct Lie algebras and quantum groups. The exciting development in the
representation theory of finite dimensional algebras in thelast 30 years was based on the use of very intricate
combinatorial methods (quivers, root systems, posets, integral quadratic forms). The combinatorial approach
has an algebraic counterpart which leads to Hall polynomials and quantum groups. Presently, the investi-
gations use machinery of perverse sheaves (Lusztig), methods of differential geometry (Nakajima) and Hall
algebras (Ringel).

An exciting development has been the realization (by Jie Xiao and others) of non-affine Kac-Moody Lie
algebras in natural terms, not just using abstract generators and relations (an unsolved problem for many
years). In the affine case, especially, through the Fock space representation in type A, many new connections
with known finite dimensional or finite rank Hecke algebras have been discovered by Ariki, who also proved
a conjecture of Lascoux-Leclerc-Thibon in type A, and in other classical types (B and C, extended to type
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D by Jun Hu) successfully parameterized positive characteristic irreducible representations.Older work of
Kleshchev on the modular representation of the symmetric group, proving a conjecture of Millineux, is now
seen as having broader significance in Jun Hu’s work.

The main interest at present lies in an extension of these investigations to Lie algebras defined by in-
tersection matrices or even more general data. It has been outlined already that some of the elliptical Lie
algebras studied by Saito (those of typeD4, E6, E7, E8) can be obtained using tubular algebras and it will
be of interest to deal with those Lie algebras which arise from a general canonical algebra (or, equivalently, a
weighted projective line).

All the references to “representation theory” above shouldbe interpreted in the broadest current sense,
which includes homological as well as geometrical considerations. Note that representations of finite di-
mensional algebras, through translation to quiver or otherproblems, often enter into other geometric issues
beyond those strictly related to Lie representation theory. Though it is not a principal focus of our Workshop,
the connections of representation theory as specific to Lie theory and Lie groups with the general theory of
representations of finite dimensional algebras and of finitegroups is always present in our thinking. The
unification of as much as possible of Mathematics in the areasof these disciplines is an additional goal.

Thus, the scope of the applications of finite dimensional algebras will extend to algebraic geometry,
automorphic forms, finite group representations and mathematical physics along the lines initiated at the
1992 Annual Canadian Mathematical Seminar at Carleton University and published by Kluwer Academic
Publishers as Volume 424 of Series C: Mathematical and Physical Sciences. It should be pointed out that
extensive work is in progress and that significant fresh developments are expected in these areas by 2004.

The timeliness of our proposal should be clear from the abovedevelopments. It is easy to summarize some
of the remaining objectives: 1) Understanding in the broadest infinite-dimensional terms, but through finite
dimensional algebras, the representations of Lie algebrasin characteristic 0, and related geometric structures,
such as perverse sheaves. 2) Understanding representations finite groups of Lie type in characteristic p, and
related theory for the symmetric groups and other Coxeter groups important in finite groups and Lie theory.
3) The use of the representation theory of quivers and species for getting insight into the structure of Kac-
Moody Lie algebras which are not of finite or affine type. 4) Theuse of tubular algebras in order to get insight
into the structure of the so-called elliptical Lie algebras.

In addition to people mentioned explicitly above, the following names should be mentioned as potential
participants - speakers. Mathas, Geck and Hiss to report on Hecke algebras and algebraic groups. Possibly
also Rouquier, Broúe and Rickard, as well as Putcha and Renner whose work could have been mentioned
above. The same applies to Buchweitz, Crawley-Boevey and Reiten who should present the latest develop-
ments in the representation theory of quivers and its interaction with geometry. In addition, there is a quite
large number of more junior mathematicians (Gruber, Brundan, Rui, Hodge, Francis to name a few) who
work in the area of the Workshop and will be interested in participating; a more detailed list of them may be
compiled later.
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Ringel, Claus Michael(Universiẗat Bielefeld)
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Self-Stabilizing Distributed Systems
(04w5531)

October 2–7, 2004
Organizer(s): Lisa Higham (University of Calgary), Anish Arora (Ohio State University),
Faith Fich (University of Toronto), Maurice Herlihy (BrownUniversity), Ted Herman (Uni-
versity of Iowa)

Fundamental synchronization and coordination primitiveslie at the heart of distributed computer systems.
These systems rely on algorithms for synchronization and coordination problems such as mutual exclusion,
dining philosophers, leader election, token-circulationand identifier assignment to manage the use of re-
sources and to control communication. However, as the number of components in these systems grows the
likelihood of some component failure also increases, causing the traditional solutions to these problems to
fail. Hence, algorithm designers seek to make systems more reliable by building fault-tolerance into their
distributed protocols.

Self-stabilization is a particularly robust and appealingmodel of fault-tolerance for distributed compu-
tation. A distributed system is self-stabilizing if, when started from an arbitrary initial configuration, it is
guaranteed to reach a legitimate configuration as executionprogresses, and once a legitimate configuration is
achieved, all subsequent configurations remain legitimate. Thus a self-stabilizing system will recover from
a burst of transient faults (moving the system to some arbitrary configuration) without the need for manual
intervention, as long as no further faults occur. The definition of self-stabilizing systems implies that they
need not be initialized. This is an additional advantage particularly for systems that are physically widely
dispersed. Furthermore, frequently (but not always) the techniques used to make the system converge apply
even when the system can change dynamically. In this case systems need not be reset when a processing node
or communication channel is added, reconfigured or removed.

The possibility of self-stabilizing distributed computation was first pointed out and explored by Edsger
Dijkstra in a paper in 1974 when he asked the question: would it be possible for a set of machines to stabilize
their collective behaviour in spite of unpredictable initial conditions and distributed control? This brief paper
went largely unnoticed until Leslie Lamport’s invited talkat PODC (Principles of Distributed Computing)
1983, where he said: “I regard this as Dijkstra’s most brilliant work — at least, his most brilliant published
paper ... a milestone in work on fault tolerance ... I regard self-stabilization to be a very important concept in
fault tolerance, and to be a very fertile field for research.”Subsequently, there has been a concerted research
effort producing innovative theoretical results that can be used in practice. Some of the tasks that have been
discussed in these result includes topology update, clock synchronization, multiprocessor synchronization,
network flow control, leader election, and many different graph algorithms.

The main challenge associated with self-stabilization is complexity. It is difficult to design and prove cor-
rect protocols for asynchronous distributed systems. It iseven more challenging to provide self-stabilizing
solutions. One direction has been to rely on familiar paradigms of distributed programming — mutual ex-
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clusion, leader election, logical time, snapshots, wave algorithms, and broadcast — all of which now have
stabilizing counterparts that can be combined for application to system design. Another research direction
explores complexity in terms of resource requirements, including memory needed to satisfy particular task
requirements, time needed for stabilization, and size requirements on messages. A third research direction
attacks complexity by automating system design, and efforts along this line include composition methods,
program transformers, program refinement, and systematic proof techniques for self-stabilizing programs.

Considerable progress has been made along all three of directions discussed above. However, there is
still much that is not well understood, the set of known techniques for design of self-stabilizing algorithms is
limited, and there are few practical applications of self-stabilization to existing systems. The BIRS workshop
would focus on progress in these three directions.

A more formal and unified theory for self-stabilization would contribute to a deeper general understand-
ing of the major issues. The existing self-stabilizing algorithms are designed for a plethora of models. Both
shared-memory and message-passing models have been considered. Some shared-memory solutions assume
that a processor can atomically read the entire state of all its neighbours and update its own state in one
un-interruptible step. Others assume that an atomic step consists of just one read or one write to one shared
variable. Design is easier under the first assumption but thesecond is more realistic. Some solutions assume
that the computation proceeds under the control of a centralized scheduler, which selects exactly one pro-
cessor to execute its next action at each step; others, more realistically, assume the scheduler can select any
non-empty subset of processors to execute in each step. In either case, the scheduler may be constrained by
any one of several possible fairness assumptions. Computation may be synchronous or asynchronous; pro-
cessors may have distinct identifiers or may be indistinguishable; the system configuration may be static or
subject to dynamic changes; protocols may be deterministicor may exploit randomization. A self-stabilizing
solution to a specific problem may exist under one set of assumption but not under another. Some work has
addressed the relationships between some of these models. Also, there are now some results that compile a
solution that is correct assuming a strong model to a solution for a weaker model that makes fewer assump-
tions about the underlying system. But the complete pictureof how all of these model properties are related
for self-stabilizing systems is far from complete and frequently imprecise.

The workshop would first focus on constructing a framework capable of capturing the various assumptions
and using the framework to precisely define the various models. Work would proceed to investigate the
relationships between models. The goal is, for a set of modelassumptions A and B, to develop a general
transformation that converts an arbitrary self-stabilizing algorithm for strong model A into a self-stabilizing
algorithm for the corresponding problem for weak model B, orto prove that no such transformation exits.
Proving impossibility or lower bounds on the costs of desired transformations will serve to highlight the
essential differences between models.

A surprising proportion of the existing self-stabilizing algorithms rely on a small collection of ad hoc
techniques or small variants of these techniques. Recently, however, there has been some initial work that
attempts to connect self-stabilization to other well-established research areas. The hope is that we can ex-
ploit the long history of research and the more highly developed insights in these domains to develop more
sophisticated techniques for self-stabilization. Control theory appears to be one possibility. So far, however,
the only progress has been to recast some existing algorithms into the framework of control theory and use
this reformulation to produce a new proof of correctness. The acid test is to find self-stabilizing solutions to
unsolved problems with control theory techniques. As a second example, self-stabilization is closely related
to attractors. One paper has explored the relationship, butthe connection has yet to been exploited for gain.
Randomization is a tool that is now used widely in distributed systems. Typically, when a system has some
costly situations, which a deterministic algorithm may notbe able avoid, randomization is used to make these
bad cases highly unlikely. Thus the expected performance can be quantified and controlled. Randomization
has been used much less by the self-stabilization community, perhaps because its adds another level of diffi-
culty onto an already highly complex situation. We would seek participation at BIRS from experts in all these
research domains as an efficient way to get up to speed in thesepotentially valuable related research areas.

Finally, there has not yet been enough progress in moving theexisting self-stabilization research into
practice. Now, however, interest in robust systems that have built-in fault tolerance is high. So new activity
is emerging that seeks to add fault-tolerance to several applications. Particularly obvious targets include
embedded systems and Internet applications. To profitably apply self-stabilization to these areas, we need to
combine self-stabilization with other practical goals. For example, it may be necessary to provide conditional
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safety properties during the period of convergence before asystem stabilizes. It may be desirable to relate
the cost of convergence to the scope of transient faults, by showing how self-stabilizing systems can confine
repair to greater locality in time (faster repair) and space(fewer processes) for initial system states that
represent only a “small” fault. In cases where self-stabilization is too costly, there may be practical ways to
weaken the self-stabilization requirement to a realistic and achievable compromise. In other cases, it may be
necessary to combine self-stabilization with other notions of fault-tolerance for even more robustness. Our
list of proposed attendees contains a good balance between researchers with theoretical expertise and expert
practitioners to ensure the best climate for progress toward this final goal.
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Introduction

Free probability theory is a line of research which parallels aspects of classical probability, in a non-commutative
context where tensor products are replaced by free products, and independent random variables are replaced
by free random variables. It grew out from attempts to solve some longstanding problems about von Neu-
mann algebras of free groups. In the twenty years since its creation, free probability has become a subject in
its own right, with connections to several other parts of mathematics: operator algebras, the theory of random
matrices, classical probability and the theory of large deviations, algebraic combinatorics. Free probability
also has connections with some mathematical models in theoretical physics.

The BIRS workshop on free probability brought together a very strong group of mathematicians repre-
senting the current directions of development in the area. This continued a sequence of very successful 5-day
workshops organized on these lines, like the ones at the Fields Institute in March 1995, at CIRM Luminy in
January 1998, and at MSRI in January 2001.

In this report we look in more detail at what are the current directions of development in free probability,
with an emphasis on how they were represented in the BIRS workshop.

Developments related to operator algebras and random matrices

Free probability has far-reaching connections both with the field of operator algebras (where the subject is
originally coming from) and with the one of random matrices.Since the interactions between free probability
and these two fields are closely related to each other, we willdiscuss them together.

Background and general overview

Let L(G) denote the von Neumann algebra (that is, the weakly closed subalgebra ofB( l2(G) )) generated
by the left regular representation of the discrete groupG. The so-called “isomorphism question” for von
Neumann algebras of free groups asks: denoting byF andF ′ the free groups with 2 and respectively 3
generators, is it true or not thatL(F ) is isomorphic toL(F ′)? This outstanding problem (still open today) was
the original motivation for the birth of free probability. We should mention here that several other questions
raised in the 60’s about the von Neumann algebras of free groups were still open when free probability was
born — e.g. questions about the so-called fundamental groups of these algebras, or the question of whether
they admit (a von Neumann algebra version of) Cartan subalgebras.
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Substantial progress was brought in these old problems by the development of free probability and of
its connection with random matrices. The first such connection appeared with the “random matrix model
for freeness” established in [53]; this model very quickly was found to have groundbreaking applications
concerning the fundamental groups of the free group von Neumann algebras (see e.g. [42]). Also, random
matrix model techniques showed that, withF andF ′ as above, the von Neumann algebrasL(F ) andL(F ′)
do become isomorphic when the natural stabilization operation of tensoring withB(H) is applied to them.
(This was seeming to suggest thatL(F ) andL(F ′) might be, after all, isomorphic to each other!)

On the other hand there was another, very penetrating, line of attack, which came with the appearance of
the concept of free entropy forn-tuples of non-commutative random variables. The developments related to
free entropy are gathering arguments in the support of the idea that (withF andF ′ as above)L(F ) andL(F ′)
are not isomorphic. At the current stage, free entropy arguments limit the possibilities on how a hypothetical
isomorphism betweenL(F ) andL(F ′) could go; further technical progress in free entropy may completely
rule out the existence of such an isomorphism. Free entropy is discussed in the next subsection.

It is worth pointing out that, beyond the drive for solving the celebrated isomorphism question, free
probability has built a solid theory of the free group von Neumann algebras, which parallels the one going
on in the hyperfinite case. Among von Neumann algebras, the hyperfinite ones are by far the ones with
the richest theory, and the free group von Neumann algebras are considered as the “best” among the non-
hyperfinite ones. It has become clear that the parallelism between the hyperfinite and and the free case goes
deep, and it includes, for example, the development of a typeIII theory (for infinite von Neumann algebras),
see e.g. [22], [46].

Moreover, free probability has also found outstanding applications inC∗-algebra theory, and in relation to
the invariant subspace problem. This was done in work by Haagerup and collaborators ([24],[25], [28]–[31]),
and was an important topic of the workshop – cf. the discussion in the subsections 2.3 and 2.4 below.

Finally, the subsections 2.5 and 2.6 of this section discusstwo other operator algebra topics that were
addressed in the workshop. One is in connection to the Connesembedding problem, and the other is in
connection to aq-deformation of the von Neumann algebra of a free group.

Free entropy

Free entropy is an invariant forn-tuples of non-commutative random variables. There are in fact two versions
(both well-motivated) of this concept: the “microstates” free entropy, and the “non-microstates” one.

The microstates free entropy was introduced in [54]. The keyidea for this concept is to look at sets of
n-tuples of matrices of large size (the “matricial microstates”) which approximate in distribution a givenn-
tuple of non-commutative random variables. Very soon afterbeing introduced, the microstates free entropy
found powerful applications to free group von Neumann algebras. One such application was the proof (in
[55]) of the fact that these von Neumann algebras do not have Cartan subalgebras. Another application was
the so-called primality of the free group von Neumann algebras (in the sense that they cannot be decomposed
as tensor products in a non-trivial way), see [26].

The non-microstates free entropy was introduced in [56], and uses an approach where one first considers
the free analogue for the concept of Fisher information. There are a number of particular cases when the
two approaches to free entropy (via matricial microstates and via the free Fisher information) are known to
coincide; it is in fact believed that this should be true in general. Finding bridges between the two approaches
to free entropy is at present one of the central problems in free probability. A notable progress on this line
was made in [10]; by using large deviation techniques forn-tuples of matrices, it was shown there that one
always has an inequality between the two free entropies (thefree entropy defined with microstates can never
exceed the one defined via free Fisher information).

An invariant related to free entropy is the free entropy dimension. In the microstate approach this is, very
roughly, a normalized dimension of Minkowski type for the sets of matricial microstates. There now exist
several versions of the the free entropy dimension; in particular we should mention that a surprising facet
of this invariant has recently occurred in a von Neumann homological context, in the work of Connes and
Shlyakhtenko [21].

For a survey on free entropy and free entropy dimension, see [58].
Free entropy was a central topic at the BIRS workshop. In the opening talk of the workshop, Dima

Shlyakhtenko presented his work on estimates for free entropy dimension (cf. [21], [47]). The talk by Kenley
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Jung addressed the issue of free entropy dimension inequalities for subfactors (cf. [35]). The talk by Fumio
Hiai was devoted to presenting his work in [28] on the free analogue of pressure, a concept which is dual via
a Legendre transform to a free entropy type of invariant. Related to that, the talk by Denes Petz presented the
work in [34] on free transportation cost inequalities via random matrix approximation.

The invariant subspace problem

Let A ⊂ B(H) be a von Neumann factor (i.e. a von Neumann algebra such that the centre ofA is reduced
to C1A). The invariant subspace problem forA asks if every elementa ∈ A has an invariant subspace of
the form Ran(p) with p = p∗ = p2 ∈ A. In the case whenA = B(H), this is the “classical” invariant
subspace problem; but the problem is also very interesting (and still open) for other von Neumann factors –
in particular for those of type II1 (a class of von Neumann factors which includes the von Neumann algebras
of free groups).

Significant progress in the invariant subspace problem in the type II1 case was made in the last few years,
by using the concept of Brown measure for an element of a II1 factor; this was introduced by L. Brown [16],
and is a generalization (defined via subharmonic function theory) for the notion of spectral distribution for
normal elements. The very recent groundbreaking work of Haagerup and Schultz [29] shows that an element
of a II1 factor has invariant subspaces whenever the support of its Brown measure is not reduced to a single
point. This is the the culmination of intense work building in this direction, by Haagerup [28] (proving the
same result under a restriction related to the Connes embedding problem mentioned in Section 2.5), and by
several authors ([24], [25], [49]) who studied Brown measures and invariant subspaces in examples occurring
naturally in free probability.

The recent progress in the invariant subspace problem was one of the highlights of the BIRS workshop,
and was reflected in the combined talks given by Uffe Haagerupand Hanne Schultz.

Applications to C*-algebra theory

Free probability considerations can also be made in aC∗-algebra (rather than von Neumann algebra) frame-
work. In theC∗-algebra universe, the counterpart ofL(G) is C∗

r (G), the reduced C*-algebra of the group
G.

In the recent paper [31], Haagerup and Thorbjornsen obtain asweeping generalization to several matrices
for a number of results concerning the largest eigenvalue ofa Gaussian random matrix. This has strong
consequences for the reducedC∗-algebras of free groups. In particular, they obtain that, for G a free group
on 2 or more generators, the Ext semigroup ofC∗

r (G) is not a group (this has been one of the most popular
open questions inC∗-algebra theory since the late 70’s).

In the BIRS workshop, Steen Thorbjornsen presented anotherapplication of random matrices to reduced
C∗-algebras of free groups – a new proof for the fact that theseC∗-algebras have no non-trivial projections
(cf. [30]).

Connes embedding problem

The Connes embedding problem [20] asks whether every type II1 factor can be embedded into an ultraproduct
of the hyperfinite II1 factor. The problem has several equivalent reformulations, one of them being that every
n-tuple of elements of a II1 factor has matricial microstates.

The BIRS workshop had a talk on this topic, given by Florin Radulescu. He presented his work in [43]
showing that the Connes embedding problem is equivalent to astatement on matrix trace inequalities which
is, in a certain sense, an analytic version of Hilbert’s 17thproblem (formulated in a von Neumann algebra
framework).

q-deformations of the free group factors

A basic way of producing examples of free families of random variables goes by using creation and annihila-
tion operators on the full Fock space. The most important such example is the “free semicircular system” of
Voiculescu, which is the analogue in free probability for a family of independent Gaussian random variables.
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The von Neumann algebra generated by a semicircular system with n elements is isomorphic toL(Fn), where
Fn is the free group onn generators.

In [14], Bozejko and Speicher put into evidence a deformation, depending on a parameterq ∈ (−1, 1),
for the creation and annihilation operators on the full Fockspace. The correspondingq-deformation of a free
semicircular system is called “q-Gaussian family”. In the case whenq = 0 one has the full Fock space and
the semicircular families, while in the limitq → 1 one gets back to the classical objects, independent families
of Gaussians. The von Neumann algebra generated by aq-Gaussian family was given quite a bit of attention
in the last few years, but remains fairly mysterious. In facteven the basic question of whether this algebra
has trivial centre was only partly solved until the recent work of Ricard [45]. In his talk at the workshop, Eric
Ricard presented this work, showing the factoriality of thevon Neumann algebra generated by aq-Gaussian
family with n elements, for alln ≥ 2 and allq ∈ (−1, 1).

Relations to probability theory

An important insight brought by free probability is that theconcept of freeness for a family of non-commuting
random variables in a von Neumann algebra should be treated as an analogue of the notion of independence
from classical probability. Acting on this line, one is prompted to start a programme of developing free
counterparts for fundamental theorems of classical probability.

It is remarkable how far this programme can go. There exist now quite a few deep theorems about
the internal structure of free probability, inspired (though certainly not following from!) developments in
classical probability.

For example, there exists a notion of free convolution of distributions, and a well-developed analytic
machinery (replacing the classical machinery of the Fourier transform) for dealing effectively with this new
type of convolution. We have characterizations for freely infinitely divisible distributions, also for freely
stable distributions and their domains of attraction [8]. On the other hand there exists a well-developed
theory of stochastic integration and of stochastic analysis for the free Brownian motion [12]. Quite a few
talks at the BIRS workshop addressed free analogues of the classical situation.

Analytic properties of free convolution

Free convolution is a binary operation on probability measures on the real line which corresponds to the
sum of two free random variables (in the same way as the usual convolution corresponds to the sum of two
independent random variables). There exists also a multiplicative version of the free convolution, which goes
with the product of free random variables. Many theorems about classical convolution have free counterparts,
see e.g. [57], [59]. The analytic treatment of such questions relies on a good understanding of the Cauchy
transforms of the convolved probability measures, and of a couple of other transforms specifically used by free
probability, the R-transform and the S-transform. Thus on one hand many questions about free convolution
result in interesting new statements about analytic functions, and on the other hand complex analysis is an
important tool for investigating properties of the free convolution. It should be pointed out that although
free convolution and classical convolution have many properties in common, there are also differences – in
particular, free convolution has better regularity properties than classical convolution. Whereas the basic
analytic theory of free convolution is by now a well-established theory, there are many questions in this
context which are still open, giving rise to interesting investigations.

The BIRS workshop had two talks about recent developments inthis direction: by Hari Bercovici, on
Hincin’s theorem for multiplicative free convolution and by Serban Belinschi, on the regularity properties of
the free convolution. It is a remarkable fact (first noticed in [40]) that any probability measureµ on the real
line belongs to a partial semigroupµt (t ≥ 1) relative to the free additive convolution. In their work, Belinschi
and Bercovici proved similar results for free multiplicative convolution of measures supported on the positive
half-line and (in a slightly less general context) on the unit circle. They also investigated regularity properties
of measures in these semigroups, and connections with additive and multiplicative Boolean convolutions of
probability measures. See [5]–[7].



Free Probability Theory 171

Free extreme values, free transport inequalities, and freede Finetti’s theorem

As mentioned above there are quite a few parts of classical probability theory which have a free counterpart
– well established are by now, e.g., the theory of free convolution (as addressed in 3.1) or the basic theory
of free stochastic processes and free stochastic integration. The BIRS workshop had several talks about new
analogues of classical theories.

• Gerard Ben-Arous talked about free extreme values; in recent joint work [4] with Dan Voiculescu, they
obtained free probability analogues of the basics of extreme value theory, based on Ando’s spectral order.
This includes classification of freely max-stable laws and their domains of attraction, using free extremal
convolutions on the distributions.

• A recent development in free probability theory is to look for analogues of cost of transportation in-
equalities in the free setting. A free Wasserstein distancewas introduced and investigated by Biane and
Voiculescu [13]. In particular, they proved a free version of Talagrand inequality. In her talk titled “About
optimal transport for non-commutative variables”, Alice Guionnet reported on her ongoing joint work with
Cedric Villani on how to develop this program even further.

• Franz Lehner reported on his free version of de Finetti’s theorem, characterising amalgamated free
products as noncrossing exchangeability systems which satisfy a so-called weak singleton condition, see
[36].

Free probabilistic aspects of random matrices

Whereas the above developments show that free probability really deals with a beautiful and rich structure,
it happens at the same time that the framework created by freeprobability may indicate new conceptual
approaches to problems from other fields. This was in fact themain theme in the section 2 above, where
the other field was the one of operator algebras. Another outstanding illustration of how this can happen is
provided by work of Ben-Arous, Guionnet, and Cabanal-Duvillard (see e.g. [3], [17], [57]), who showed that
free entropy is useful in the study of the rate functions of large deviation principles.

In the BIRS workshop, James Mingo talked about fluctuations of random matrices and second order
freeness. He reported his joint work with Speicher [37] and with Sniady and Speicher [38], where they
extend the relation between random matrices and free probability theory from the level of expectations to the
level of fluctuations by introducing the new concept of second order freeness.

Another connection between special random matrix ensembles and concepts from free probability was
made in the talk of Benoit Collins. He considered the productof two independently randomly rotated projec-
tors, the square of whose radial part turns out to be distributed as a Jacobi ensemble, and studied its global
and local properties in the large dimension scaling relevant to free probability theory, see [19].

Other versions of non-commutative probability theory

Free probability theory is a prominent example of a non-commutative probability theory, where one tries to
extend notions and ideas from classical probability theoryto a non-commutative setting (by replacing the
commutative algebra of random variables by a non-commutative algebra). Free probability theory is that
part of non-commutative probability theory where the notion of freeness (as a replacement for independence)
plays a crucial role. However, there are also some other possibilities for non-commutative versions of inde-
pendence; in particular, we have the theories of conditional freeness (which is a generalization of freeness),
of boolean independence, and of monotonic independence.

At the BIRS workshop, Marek Bozejko talked about a relation between conditional freeness and some
classes of free Levy processes. In joint work with W. Bryc, they have shown a relation with free pairs of
random variables which have linear regressions and quadratic conditional variances when conditioned with
respect to their sum, see [15].

There exist also more general axiomatic notions for non-commutative independence. The investigation of
processes with independent increments in such a general frame was presented in the talk of Claus Koestler.
In joint work with J. Hellmich and B. K̈ummerer [32], they introduced a non-commutative extensionof
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Tsirelson-Vershik noises, which they call continuous Bernoulli shifts, and they established a bijective corre-
spondence between additive and unital shift cocycles in this setting.

Combinatorial aspects of free probability

Cumulants and R-transforms

Even when restricted to a purely algebraic framework, free random variables have an interesting combina-
torics, which stems from their non-commuting character. The combinatorics of free probability turns out to
be governed by the theory of Moebius inversion in lattices (as developed by Rota and collaborators), applied
to lattices of non-crossing partitions. The specific way howthe lattices of non-crossing partitions show up
in this framework is via the non-crossing cumulant functionals associated to a non-commutative probability
space – see e.g. the survey paper [51].

The combinatorial study of freeness had an important impactin the development of the R-transform,
which is the free probabilistic counterpart of the Fourier transform from classical probability. The R-
transform for one bounded selfadjoint random variable has both an analytic and a combinatorial incarnation,
and each of these two incarnations generated its own direction of research. A success of the combinatorial
approach to the R-transform was that it could be extended (byusing non-crossing partitions) to the case when
joint R-transforms for several non-commuting random variables are considered. Moreover, the pursuit of the
multivariable R-transform lead to a whole collection of combinatorial tools, which can often streamline and
make transparent complicated algebraic computations involving freeness. A nice illustration of the power of
the combinatorial method is provided for instance by the solution to the problem of computing the distribution
of a free commutator, see [41].

The basic theory of non-crossing cumulants has inspired a number of variations. For instance: by starting
from the fact that the lattices of non-crossing partitions have analogues of type B (cf [44]), one can work
on developing an analogue of type B for the theory of non-crossing cumulants – see [11]. Another very
interesting variation was presented at the workshop by Mireille Capitaine; in a very recent joint work with
Muriel Casalis [18], they have introduced a concept of “cumulants forN × N random matrices”, where
lettingN →∞ gives back the non-crossing cumulants used in free probability.

Last but not least let us mention that a substantial part of the theory of the non-crossing cumulants and
R-transforms can be extended to an “operator-valued” version, where we talk about free independence with
amalgamation over a subalgebraB (rather than overC). For a survey of non-crossing cumulants in this more
general framework, see the memoir [52]. At the BIRS workshop, the operator-valued R-transform was the
main tool used by Ken Dykema in his talk on nearest neighbour random walks on amalgamated free product
groups (cf [23]).

Asymptotic representation theory for symmetric groups

The combinatorial machinery of free probability has found powerful applications in the asymptotic represen-
tation theory of symmetric groups. The study of limit shapesof Young diagrams goes back to the 70’s, and
was well-developed in a sequence of papers by S. Kerov in the 90’s. The connection with free probability
came with the paper [9], where P. Biane showed how the non-crossing cumulants of the transition measure
of a limit diagram can be used to study asymptotics for characters and for natural operations with represen-
tations. Research on this topic was presented at the BIRS workshop in a survey talk given by Aikihito Hora,
and in a talk by Piotr Sniady, presenting his work in [48].

Other combinatorial connections

There were several other talks at the BIRS workshop which touched on combinatorial aspects pertinent to
developments in free probability.

• Michael Anshelevich presented his work [1] where he puts thebasis for a theory of orthogonal poly-
nomials in several non-commuting indeterminates, and where some non-trivial examples are obtained by
looking at free analogues for the classical Meixner systems.
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• A new possible direction of development was addressed in thetalk by Ed Effros, on the relations
between non-crossing cumulants and combinatorial Hopf algebra theory.

• The talk by Ian Goulden discussed the well-known formula of Harer and Zagier (which is directly
related to the moments of a GUE random matrix), and presenteda direct combinatorial way of deriving this
formula, via tree enumeration (cf. [27]).

• The talk by Michael Neagu discussed another occurrence of free independence in connection to the
symmetric groups – random permutation matrices are asymptotically free from GUE or Wishart matrices (cf.
[39]).

Reaching out to new directions

The organizers of the BIRS workshop found it important to invite also some participants who do not work in
free probability, but are interested in it and whose areas ofinterest indicate possible new connection points and
new directions of development for free probability. The talks of those participants did not report on genuine
free probability results, but gave some kind of introduction to questions and results in their respective areas.

• Robert Bauer gave a survey talk on conformal invariance and stochastic Loewner equations. In [2], he
showed, using concepts of noncommutative probability, that Loewner’s evolution equation can be viewed as
providing a map from paths of measures to paths of probability measures, whose fixed point is the convolution
semigroup of the semicircle law.

• Michael Pimsner gave a talk about graded groups in KK-theory, with emphasis on an application to
computing the K-theory groups for a crossed-product by an action of a symmetric group.

• Alexander Soshnikov talked about Poisson statistics for the largest eigenvalues of Wigner and Wishart
random matrices with heavy tails. He considered large Wigner random matrices in the case when the marginal
distributions of matrix entries have heavy tails and provedthat the largest eigenvalues of such matrices have
Poisson statistics, see [50].
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Braid Groups and Applications
(04w5526)

October 16-21, 2004
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Dale Rolfsen (University of British Columbia), Roger Fenn (University of Sussex), Vaughan
Jones (University of California, Berkeley)

The braid groupsBn were introduced by E. Artin in 1926 [1] (see also [2]). They have been of importance
in many fields – algebra, analysis, cryptography, dynamics,topology, representation theory, mathematical
physics – and many of these aspects were represented in the BIRS workshop. This workshop involved not
only leading experts in the field, but also, importantly, a number of young researchers, postdoctoral fellows
and several graduate students. This made for an exciting andinformative mix of ideas on the subject.

The importance of the braid groups is based, in part, on the many ways in which they can be defined. This
is outlined in the following introductory section.

Six Definitions of the Braid Groups

Definition 1: Braids as particle dances.Considern particles located at distinct points in a plane. To be
definite, suppose they begin at the integer points{1, . . . , n} in the complex planeC. Now let them move
around in trajectories

β(t) = (β1(t), . . . βn(t)), βi(t) ∈ C, 0 ≤ t ≤ 1.

A braid is then such a time history with the proviso that the particles are noncolliding:

βi(t) 6= βj(t) if i 6= j

and end at the spots they began, but possibly permuted:

βi(0) = i, βi(1) ∈ {1, . . . , n}, i = 1, . . . , n.

If one braid can be deformed continuously into another (through the class of braids), the two are considered
equivalent – we will say equal.

Braidsα andβ can be multiplied: one dance following the other, each at double speed. The product is
associative but not in general commutative. The identity dance is to stand still, and each dance has an inverse;
doing the dance in reverse time. These (deformation classesof) dances form the groupBn.

A braidβ defines a permutationi→ βi(1) which is a well-defined element of the permutation groupΣn.
This is a homomorphism with kernel, by definition, the subgroupPn of purebraids.Pn is sometimes called
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the colouredbraid group, as the particles can be regarded as having identities, or colours.Pn is of course
normal inBn, of indexn!, and there is an exact sequence

1→ Pn → Bn → Σn → 1.

Definition 2: Braids as strings in 3-D.This is the usual and visually appealing picture. A braid canbe
viewed as the graph, or timeline, of a braid as in the first definition, drawn in realx, y, t-space, monotone in
thet direction. The complex part is described as usual byx + y

√
−1. The product is then a concatenation of

braided strings.
This viewpoint provides the connection with knots. A braidβ defines a knot or link̂β, its closure, by

connecting the endpoints in a standard way so that no new crossings are introduced. J. W. Alexander showed
that all knots arise as the closure of some braid and by a theorem of Markov (see [4] for a discussion and
proof) two braids close to equivalent knots if and only if they are related by a finite sequence of moves and
their inverses: conjugation in the braid group and a stabilization, which increases the number of strings.

Definition 3: Bn as a fundamental group.In complexn-spaceCn consider the big diagonal

∆ = {(z1, . . . , zn); zi = zj , some i < j} ⊂ Cn.

Using the basepoint(1, 2, . . . , n), we see that

Pn = π1(Cn \∆).

In other words, pure braid groups are fundamental groups of complements of a special sort of complex
hyperplane arrangement, itself a deep and complicated subject.

To get the full braid group we need to take the fundamental group of theconfiguration space, of orbits of
the obvious action ofΣn uponCn \∆. Thus

Bn = π1((Cn \∆)/Σn).

Notice that since the singularities have been removed, the projection

Cn \∆ −→ (Cn \∆)/Σn

is actually a covering map. As is well-known, covering maps induce injective homomorphisms at theπ1

level, so this is another way to think of the inclusionPn ⊂ Bn.
Finally, we note that the space(Cn \∆)/Σn can be identified with the space of all complex polynomials

of degreen which are monic and haven distinct roots

p(z) = (z − r1) · · · (z − rn).

This is one way in which the braid groups play a role in classical algebraic geometry, as fundamental
group of the space of such polynomials.

Definition 4: The algebraic braid group. Bn can be regarded algebraically as the group presented with
generatorsσ1, . . . , σn−1, whereσi is the braid with one crossing, with the string at leveli crossing over the
one at leveli + 1 and the other strings going straight across.

These generators are subject to the relations

σiσj = σjσi, |i− j| > 1,

σiσjσi = σjσiσj , |i− j| = 1.

We can take a whole countable set of generatorsσ1, σ2, . . . subject to the above relations, to define
the infinite braid groupB∞. If we consider the (non-normal) subgroup generated byσ1, . . . , σn−1, these
algebraically defineBn. Notice that this convention gives “natural” inclusionsBn ⊂ Bn+1 andPn ⊂ Pn+1.

Definition 5: Bn as a mapping class group.Going back to the first definition, imagine the particles are
in a sort of planar jello and pull their surroundings with them as they dance about. Topologically speaking,
the motion of the particles extends to a continuous family ofhomeomorphisms of the plane (or of a disk,
fixed on the boundary). This describes an equivalence between Bn and the mapping class ofDn, the diskD
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with n punctures (marked points). That is,Bn can be considered as the group of homeomorphisms ofDn

fixing ∂D and permuting the punctures, modulo isotopy fixing∂D ∪ {1, . . . , n}.
Definition 6: Bn as a group of automorphisms.A mapping class[h], whereh : Dn → Dn, gives rise

to an automorphismh∗ : Fn → Fn of free groups, becauseFn is the fundamental group of the punctured
disk. Using the interpretation of braids as mapping classes, this defines a homomorphism

Bn → Aut(Fn),

which Artin showed to be faithful, i. e. injective.
The generatorσi acts as

xi → xixi+1x
−1
i ; xi+1 → xi; xj → xj , j 6= i, i + 1.

ThusBn may be considered a group of automorphisms ofAut(Fn) satisfying a condition made precise
by Artin.

Representations of Braid Groups

One of the most active aspects of braid theory is the study of linear representations. A major breakthrough
has been the proof in 2000 by S. Bigelow [3] and D. Krammer [12]of the long-standing conjecture that
Artin’s braid groupsBn are linear groups. That is, there exists a faithful representation of Bn in a finite-
dimensional linear group. The Lawrence–Krammer representation that provides a linear representation of
Bn has dimensionn(n − 1)/2. After the result was established, considerable efforts have been made to
better understand the algebraic underlying socle on which the representations arise. The general question is
to identify the non-trivial finite-dimensional quotients of the group algebraCBn, on the shape of the Iwahori–
Hecke algebra investigated in the past decades. The generalphilosophy is: the bigger the quotient algebra,
the better the results. Until recently, the biggest known algebra was the Birman–Murakami–Wenzl algebra
[6].

An exciting development presented during the workshop is the description by Stephen Bigelow of a new
family of finite-dimensional quotients of the algebraCBn that naturally extends the Iwahori–Hecke and
the Birman–Murakami–Wenzl algebras. The latter are just the first two steps in the new family. The new
algebras, called “Zipper algebras” and denotedZn(q, r), depend on two nonzero complex parameters, and
they are defined using a diagrammatic approach. The principle is to introduce an additional generatorBoxk

visualized by a box withk +1 input andk +1 output strands, and to extend the usual skein relation declaring
that aq-twisted combination of opposite crossings is 0 (case of Hecke algebra), or is the 2-2-tangle (case of
BMW) into the relation declaring theq-twisted combination of opposite crossings is the new free generator
Box2. Then, inductively, one adds a similar skein relation relating the diagrams with ak-box and the two
possible positions of an additional strand with ak + 1-box. What Bigelow proves so far is that the algebras
Zn(q, r) have finite dimension, and make a proper extension of the BMW algebra. What remains open is the
exact dimension of the Zipper algebra, as well as the degeneracy atq = 1.

A graduate student from China, Hao Zheng, also discussed a topological approach to representations of
Bn, much in the spirit of Bigelow’s earlier work.

One of the best-known (but unfaithful) representations of braid groups is the Burau representation. Jones
noted that this representation can be interpreted in terms of probabilities related to a particle jumping from
one string to another at a crossing in a braid picture. X. S. Lin expanded on this basic idea to produce a new
representation ofBn, using ideas related to probability, which is closely related to the coloured HOMFLY
polynomial.

The student Holly Hauschild presented a concrete tangle-theoretic approach to the Birman–Murakami–
Wenzl algebra. Morton and Wasserman had shown that the BMW algebra is isomorphic to a Kauffman tangle
algebra. Haushchild described an extension of this isomorphism to give a similar correspondence between
the affine BMW algebra and a corresponding algebra of tanglesin the solid torus.

Taking a more abstract approach, Hans Wenzl described how representations of braid groups can be used
to construct and classify certain braided tensor categories which are useful in low dimensional topology,
physics and operator theory. In particular, he has classified all representations ofB3 up to dimension five.
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The talk of Ivan Marin also considered representation theory of braid groups and their generalizations.
He discussed representations obtained in a systematic way from the representations of “infinitesimal braids.”
This approach sheds new light on the decompositions of tensor products and the unitarisability properties of
braid representations, as well as the actions of the universal Galois group involved in this setting.

Thus it is fair to say that great strides were made in the BIRS workshop toward the understanding of the
representation theory of braid groups and the many applications of these ideas. Of course, much remains to
be understood in this important subject.

Applications to Knot Theory and Topology

The Jones Polynomial

The most obvious applications of braid theory are to the study of knots. About two decades ago, work of V.
Jones [11] established a new powerful knot invariant via representations ofBn. This work led to exciting
and unsuspected connections with operator theory, statistical mechanics and other aspects of mathematical
physics. It was also generalized to the so-called HOMFLY polynomial, the Kauffman polynomial and a
plethora of other knot invariants.

An outstanding open question is whether the Jones polynomial detects the unknot. In other words, if the
Jones polynomialVK(t) of a knotK is trivial, does it imply thatK is unknotted? The corresponding question
for links of two or more components was settled very recentlyby Eliahou, Kauffman and Thistlethwaite
[9], who displayed infinite families of links with the same Jones polynomial as the unlink, but which are
nontrivially linked.

It is also well-known that there are many examples of distinct knots with the same Jones (and HOMFLY)
polynomial, using various techniques: Conway mutation, a construction of Kanenobu (producing an infinite
family with common Jones polynomial), etc. A new technique was discussed at the workshop by the student
Liam Watson, which employs the idea of a braid group action onConway tangles in a knot diagram to produce
distinct knots with the same Jones polynomial, which nevertheless are not Conway mutants. A consequence
of his work is that, given any Conway tangle, there exist distinct knots containing that tangle as part of their
diagrams, and having the same Jones polynomial. Watson’s techniques (unlike Conway mutation) have the
possibility of settling the question of whether the Jones polynomial detects the unknot.

Hitoshi Murakami gave a fascinating lecture on the current state of the art of the so-called volume conjec-
ture, which relates the volume of the complement of a hyperbolic knot K with limits of values of the coloured
Jones polynomial. Originally posed by Kashaev, and following work of J. Murakami and H. Murakami, this
conjecture can be made precise:

V ol(S3 \K) = 2π lim
N→∞

log |JN (K; exp(
2π
√
−1

N
)|,

whereJN (K; t) denotes theN th coloured Jones polynomial of the knot or linkK.
This conjecture has been verified for various special cases –the knots41 and52, the Whitehead link and

the Borromean rings – by various authors, but remains open ingeneral and is the focus of considerable atten-
tion by topologists. Murakami also discussed a complexifiedversion of the formula, in which the absolute
value signs in the above equation are removed, and one has theimaginary part of the left-hand side expressed
as the Chern-Simons invariant of the complement.

Three-dimensional Manifolds and TQFT’s

One of the most important new tools in the study of3-manifolds is the Casson invariantλ(M), defined by A.
Casson for any integral homology3-sphereM . The original definition by Casson in 1984 involved counting
SU(2) representations of the fundamental group ofM . Greg Kuperberg and Dylan Thurston showed, in
1999, how to expressλ(M) as a configuration space integral. A very interesting new approach was explained
in the BIRS workshop by Christine Lescop. She showed that6λ(M) is the algebraic intersection of three
codimension 2 manifolds in the 6-dimensional space of two-point configurations ofM , for any integral
homology sphereM . Lescop went on to show it extends to the Walker generalisation of the Casson invariant
to rational homology spheres, giving a topological characterisation of the Walker invariant.
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Partly inspired Jones’ lead in connecting braid theory withmathematical physics, and subsequent work
by Atiyah, Witten and many others, topological quantum fieldtheories have become an important new field of
study. Several of the lectures in the BIRS workshop concentrated on aspects of TQFT’s and their application
to 3-manifolds.

Gregor Masbaum discussed joint work with P. Gilmer regarding naturally defined lattices in the vector
spaces associated to surfaces, by the SO(3) TQFT at an odd prime. These lattices, whose existence comes
from the fact that the associated quantum invariants of 3-manifolds are algebraic integers, form an “Integral
TQFT” in an appropriate sense. Masbaum defined an explicit basis for this lattice.

In a talk entitled “Braids and hypergeometric integrals,” Toshitake Kohno discussed two approaches to
braid group representations: the homological approach of Laqwrence, Krammer, Bigelow, et. al. and a more
physically motivated approach involving monodromy of flat connections. The latter involves, in particular,
solutions to the Khizhnik-Zamolodchikov equations and conformal blocks, as well as the Drinfel’d approach
using quantum groups. In his lecture, Kohno related the theory of conformal blocks to certain hypergeometric
integrals. This deep subject promises to enrich both the theory of braid representations, as well as questions
of interest to mathematical physicists.

Related to the above, the postdoctoral fellow Alissa Crans discussed new methods for finding solutions
to the Zamolodchikov tetrahedral equations. In particular, after a discussion of 2-categories, she showed that,
just as any Lie algebra gives a solution of the Yang-Baxter equation, any Lie 2-algebra gives a solution of the
Zamolodchikov tetrahedron equation.

Braids and Homotopy Theory

Fred Cohen spoke on some striking connections between braidtheory and deep questions of homotopy theory.
He related questions some elementary constructions in the pure braid groups, such as string doubling and
forgetting strands, with open questions in homotopy theory. As an example, the homotopy groupsπN (S2)
have not been calculated for high values ofN , and settling questions regarding the constructions on pure
braids would determine those groups.

Braids, Combinatorics and Algorithms

A very active area which was well-represented at the conference concerns ideas surrounding Garside’s 1969
solution to the word and conjugacy problems in the braid groups [10]. Three talks (by Gonzalez-Meneses,
by Gebhardt and by Krammer) related directly to this circle of ideas, with Gonzalez-Meneses and Gebhardt
focussing on ways to understand and simplify the combinatorics, while Krammer’s efforts were directed
toward extending it to surface mapping class groups. The discussions that followed these talks were broadly
based, because at least some number of the other participants (e.g. Dehornoy, Paris, Michel, Birman and
Brendle) had themselves made important contributions to what have become known as “Garside structures”,
so that the workshop was a major event for workers in the area.

Another very exciting development was presented by Daan Krammer. Building on the seminal work by
Garside, many authors have developed a general theory of Garside groups, which are groups of fractions
of monoids in which divisibility has a lattice structure. The braid groups have several Garside structures,
namely (at least) the one originally defined by Garside, and the one associated with the recent Birman–Ko–
Lee monoid. Krammer proposes new developments that seem to go far beyond the previous attempts. The
point is to weaken the condition that the group is the group offractions of a lattice into the weaker one that
the group acts on a lattice, by an action that need not be transitive.

An equivalent way of describing the framework is to introduce the notion of a Garside groupoid (small
catgeory where all arrows are invertible). Technically, anextended Garside structure is specified by axiom-
atizing the intervals[a, a∆] of a Garside monoid, where∆ is a Garside element. The main interest of this
extended framework is to make it possible to define completely new Garside structures on braid groups —
and, possibly, on more general mapping class groups, but this remains a conjecture. The construction starts
with considering the braid groupBn as acting on a disk withn punctures, as in Definition 5 above.

Now, the new ingredient is to addq marked points on the boundary circle. By considering certain cell
decompositions of such “bi-punctured” disks (punctures inthe interior and on the boundary) up to isotopy,



Braid Groups and Applications 183

one obtains a lattice and, under a convenient version of Dehn’s half-twist in which the boundary punctures
are shifted, one obtains an action of the braid groupBn on that lattice. In the caseq = 2 (only the North
and the South poles of the disk are marked), the action is simply transitive, and one obtains the standard
Garside structure ofBn. Forq ≥ 3, the action is not transitive, and one obtains a completely new structure.
In particular, forq = 3 (3 punctures on the boundary disk), the lattice can be described explicitly, and,
surprisingly enough, the famous MacLane pentagon shows up,and, more generally, the intervals[a, a∆] are
closely related with the Stasheff associahedra. This opensa new, fascinating connection between Artin’s
braid group and Richard Thompson’s groups, and certainly much more is still to come.

The word and conjugacy problems in the braid groups have importance for their role in public key cryp-
tography. It is well known that the complexity of the word problem in the braid groupBn is (|W |2n), where
|W | is word length andn is braid index, whereas all solutions to the conjugacy problem known at this time
are exponential. Codes have been designed which are based onthe assumption that the conjugacy problem is
fundamentally exponential, so a polynomial solution to theconjugacy problem would be of major importance.

A new idea was to apply the partial solutions to the same problems by Thurston, by treating braids
which are“reducible, finite order and pseudo-Anosov” separately. This proved to be very fruitful as regards
the combinatorics of Garside’s work in the braid groups. Since Thurston’s ideas apply to all mapping class
groups, not just to the braid groups, it was then very interesting when Daan Krammer presented his fascinating
talk, which aimed to go the other way and introduce Garside-like combinatorics into the study of surface
mapping class groups.

It can be mentioned that a different connection between Artin’s braid group and Richard Thompson’s
groups was discussed in Dehornoy’s talk in the workshop, devoted to Bar Natan’s parenthesized braids. The
latter can be made into a group which contains both the braid groups and the Thompson groups, and some
new results about self-distributive operations on that newgroup are quite intriguing. This group also enjoys
a left-invariant ordering extending the well-known ordering ofBn.

Another connection with combinatorics was given by Christian Kassel. In joint work with Christophe
Reutenauer, they considered the classical idea of Sturmiansequences of two symbols, which occur in fields
such as number theory, ergodic theory, dynamical systems, computer science and crystallography. They
show that the class of special Sturmian sequences (a submonoid of Aut(F2)) can be realized naturally as a
submonoid of the four strand braid groupB4. As an application, this leads to a new criterion for determining
when two words form a basis for the free groupF2.

The Markov theorem without stabilization (MTWS) of J. Birman and W. Menasco established a calculus
of braid isotopies that can be used to move between closed braid representatives of a given oriented link
type without having to increase the braid index by stabilization. Although the calculus is extensive there are
three key isotopies that were identified and analyzed— destabilization, exchange moves and braid preserving
flypes. One of the critical open problems left in the wake of the MTWS is therecognition problem— de-
termining when a given closedn-braid admits a specified move of the calculus. Bill Menasco described an
algorithmic solution to the recognition problem for three isotopies of the MTWS calculus—destabilization,
exchange moves and braid preserving flypes. The algorithm is“directed” by a complexity measure that can
bemonotonic simplifiedby the application ofelementary moveson a modified braid presentation.

Generalizations of the Braid Groups

Because of the many definitions of the braid groups, there arevarious natural ways to generalize them, some
of which have far-reaching applications. Several such generalizations were considered in the BIRS workshop,
namely Artin groups (an algebraic generalization), mapping class groups (also known as modular groups),
configuration spaces and their algebraic properties

Artin Groups

Deligne [7] and Brieskorn-Saito [5], introduced a family now referred to as Artin groups, which generalizes
the braid groups and is also closely related to the so-calledCoxeter groups which arise in the study of Lie
groups and symmetries of Euclidean space. For a fixed positive integern, consider ann by n matrix M =
{mij}, wheremij is a positive integer or∞, with the assumption thatmij = mji ≥ 2 andmii = 1. The
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corresponding Artin group has a presentation with generators x1, . . . , xn and, for each pairi, j there is a
relation:

xixjxi · · · = xjxixj · · ·
where the product on each side has lengthmij (mij = ∞ indicates no relation is present). If one adjoins
relationsx2

i = 1, the result is the so-called Coxeter group corresponding tothe given matrix.
In this context, then + 1 by n + 1 matrix with entries equal to 3 just above and below the diagonal, and

2 in entries farther from the diagonal, corresponds exactlyto the braid groupBn; in this case the Coxeter
group is the symmetric groupΣn. The Artin groups for which the corresponding Coxeter groupis finite are
an important subclass, referred to as “spherical.” As with the braid groups, Artin groups of spherical type
correspond to fundamental groups configuration spaces associated to hyperplane arrangements.

Fundamental to the understanding of semisimple Lie groups is the well-known classification of finite
Coxeter groups into several infinite families and certain sporadic typesE6, E7, E8, F4, etc. These Coxeter
groups are well known to be distinct, but the corresponding question for the associated Artin groups had been
open until now. This question was finally settled by L. Paris,as announced in the BIRS workshop. He used
various group-theoretic invariants to establish that the spherical Artin groups of (apparently) different type
really are non-isomorphic.

In a different approach to the subject, Dan Margalit discussed embeddings of three infinite families of
Artin groups (modulo their centres) as finite index subgroups of the mapping class group of a punctured
sphere. As a corollary Margalit, in joint work with Bob Bell,was able to classify all injections of these Artin
groups into each other.

Reflection Groups

The finite Coxeter groups can be considered as groups of reflections ofRn, acting on configuration spaces,
as described in Definition 3 for the case of the braid groups. Several talks focussed on this aspect, as well as
natural generalizations to complex reflection groups

The lecture of Gus Lehrer dealt with the cohomology of these configuration spaces, with local coefficients.
For the case of the braid groups, this calculation was accomplished by Arnol’d in 1969, with further progress
made by Brieskorn, F. Cohen, Orlik-Solomon and others. In particular, the rank of the cohomology in various
dimensions is encoded in a Poincaré polynomial, a sort of generating function. Lehrer’s lecture gave a
method of calculating these polynomials usingZ-functions, defined using centralizers, and related this work
to varieties defined over number fields.

In the lecture “Hurwicz action on euclidean reflections,” Jean Michel discussed a theorem of Dibrovin
and Mazocco that, if the Hurwicz action of the braid group on atriple of Euclidean reflections inR3 has a
finite orbit, then the group generated by these reflections isfinite. Michel extended this result to the case of
Rn, correcting an erroneous proof which had appeared recentlyin the literature and simplifying the Dibrovin
and Mazocco proof as well.

Mapping Class Groups

The mapping class groupMod(S) of an orientable surfaceS is well-known to be generated by Dehn twists
about simple closed curves inS. An important subgroup of this is the Torelli subgroup, consisting of (classes
of) homeomorphisms which induce the identity on the homology of S. In particular, the subgroupK of
Mod(S) generated by twists along separating curves ofS, called the Johnson kernel, lies in the Torelli
subgroup. Tara Brendle, in joint work with Dan Margalit, outlined a proof that the abstract commensurator
of K satisfiesComm(K) = Aut(K) = Mod(S), thus verifying a conjecture of Benson Farb.

In the interpretation of braid groups as mapping class groups of a punctured disk, one notes that the
homeomorphisms involved may be taken to be smooth and area-preserving. ThusBn is related to the group
G of area-preserving diffeomorphisms of the disk. The study of G is also important in understanding flows
related to magnetic fields in the solid torus. This was the subject of a fascinating talk by Elena Kudryavtseva,
which concentrated on the so-called Calabi invariant, the averaged linking number for pairs of orbits of the
magnetic flow in the solid torus. Her main result is that anyC1-smooth function onG is, in fact, a function
of the Calabi invariant. This has the consequence that higher-order knot and braid invariants cannot be
generalized to invariants of magnetic fields in the solid torus.
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Thus we have three classes of groups: the braid groups, mapping class groups of more general surfaces
and Artin groups, and while it has been known since the early 1970’s that they are interrelated, the full
richness of the interrelationship is just now beginning to be made clear. The last word on this fascinating
subject does not appear to have been said.
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Chapter 32

Mathematical Image Analysis and
Processing (04w5512)

October 23–28, 2004
Organizer(s): Selim Esedōglu (UCLA), Sung-Ha Kang (University of Kentucky), Mary
Pugh (University of Toronto), Jackie (Jianhong) Shen (University of Minnesota)

Scientific Statement of the Workshop

Thanks to technological breakthroughs in the past few decades, mankind is now able to see images of worlds
without (distant planets, galaxies, and the surface terrain of the Earth) and worlds within (human organs,
geological imaging, and atomic and molecular structures atthe nanoscale level). See Figure 32.1.

As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at
unprecedented detail and volume, the need to process and interpret all the data has made image processing and
computer vision also increasingly important. Sources of data that have to be routinely dealt with today include
video transmission, wireless communication, automatic fingerprint processing, from massive databanks, non-
weary and accurate automatic airport screening (e.g., the USA Federal government’s experiment of retina-
image based automatic screening at the Minneapolis-St. Paul International Airport), robust night vision for
civilian rescue workers or battlefield soldiers, and visionrepair for patients with vision defects.

Input from mathematicians has had a fundamental impact on many scientific disciplines. When accurate,
robust, stable, and efficient tools were required in more traditional areas of science and technology, mathe-
matics often played a role in helping to supply them. No doubtthe same will be true in the case of imaging
and vision sciences.

The workshopMathematical Image Analysis and Processingwas motivated by both the imminence of

Figure 32.1: (a) Images from Mars’ explorer, (b) Brain MRI image.
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(a) (b)

Figure 32.2: Example of image restoration (a) deblurring, and (b) image segmentation

vision sciences, and this principle about the role of mathematics. With the support of BIRS, it provided a
solid platform for enthusiastic mathematicians to furthertheir research in imaging and vision sciences, and
start collaborations that will lead to new discoveries.

Mathematical Statement of the Workshop

Mathematical Image Processing is a rapidly growing field. Assuch, there are many different approaches for
addressing similar questions. The main task of our workshophas been to concentrate on a few mathemati-
cally intriguing problems, and to allow researchers to present the state-of-the-art in their approaches to these
problems. In this way, the workshop has achieved two goals. First, it has provided a forum where results from
different approaches can be systematically compared as well as integrated. Second, by making sure a variety
of mathematical areas (from pure theoretical analysis to practical computational techniques) are represented,
the workshop will encourage more mathematicians to work on imaging and vision problems.

The scientific structure of the workshop was based upon the following intrinsic principle: from image
analysis to image processing. Designing a successful processing technique relies on having a successful
model for images themselves. Image analysis mainly focuseson image spaces and efficient ways to represent
images, such as spectral analysis, wavelets, statistics, level-sets and PDEs. Image processing involves modi-
fying the original images in order to improve the visual qualities or to extract valuable information for further
higher-level processing. Some familiar processing tasks are image restoration, compression, segmentation,
shape analysis, and texture extraction (see Figure 32.2).

The three crucial ingredients of image analysis and processing are: modelling, analysis, and computa-
tional implementation. In the past couple of decades, mathematicians have been able to make substantial
contributions in all these areas. Our workshop was instrumental in helping both active and newly interested
mathematicians to refine and further existing ideas, as wellas to highlight and concentrate on challenging
problems.

Participants

The glowing reputation of BIRS allowed us to attract a highlydiverse group of participants for our workshop.
Disciplinary Diversity. The themes and missions of the workshop successfully attracted not only math-

ematicians, but also scientists from closely connected areas of electrical engineering, computer science, in-
formation sciences, biomedical engineering, industrial engineering, psychology, as well as from national
research labs. Such multidisciplinary interaction and collaboration is a characteristic of mathematical image
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Figure 32.3: Some of our participants.

analysis and processing as a growing field in applied mathematics, and is a solid foundation for long-term
healthy development.

Global Diversity. The majority of the thirty-eight participants came from Canada, Mexico, and the USA.
In addition, there was representation from Austria, Finland, France, Germany, Israel, Italy, and Norway. Such
global collaboration will make it easier for researchers tocommunicate, coordinate, and optimize their scien-
tific and academic resources (e.g., funding or holding future conferences on mathematical image processing,
training and exchanging research assistants or postdocs, and collaborating on and unifying research projects).

Visible Minorities. There were eight female participants and eleven participants from racial groups that
are under-represented in North American science.

Level Diversity. There was a good mixture of participants from all levels: graduate students, post-
doctoral researchers, tenure-track professors, and senior scientists. Senior scientists who participated are: Bill
Allard, Andrea Bertozzi, Tony Chan, Gerardo E. Garcı́a Almeida, Jim Little, Brad Lucier, Riccardo March,
Dimitris Metaxas, Mila Nikolova, John Oliensis, Mary Pugh,Martin Rumpf, Fadil Santosa, Otmar Scherzer,
Volker Schmidt, Jayant Shah, Kaleem Siddiqi, Xue-Chang Tai, Baba Vemuri, Luminita Vese, Curt Vogel, and
Ross Whitaker. Post-docs and tenure-track assistant professors who participated are: Mimi Boutin, Selim
Esedoglu, John Greer, Sinan Gunturk, Sung-Ha Kang, Stacey Levine, Kirsi Majava, Francois Malgouyres,
Jackie Shen, Richard Tsai, Kevin Vixie, Lior Wolf, and Haomin Zhou. There were three advanced graduate
students present: Toni Buades-Capo, Fred Park and Alon Spira. This range of levels demonstrates the strength
of mathematical image analysis and processing in both contemporary scientific arenas and its potential in
future ones.

Scientific Overview of the Workshop:

The workshop covered a variety of topics and methodologies in contemporary image and vision analysis.
In terms of scientific areas, the workshop touched upon:

(a) computer vision, especially shape analysis and scene reconstruction;

(b) theoretical image analysis;

(c) general image processing including edge detection, denoising, deblurring, inpainting, registration, and
segmentation;

(d) biomedical image processing including diffusion tensor imaging, tumour detection, and retinal move-
ment quantification.

(e) industrial image processing, including the automobileand printer industries.

(f) information and communication sciences, including efficient image data compression, coding, and
error concealment.
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(a) (b)

Figure 32.4: (a) Dr. Martin Rumpf and (b) Dr. Tony Chan givingtalks at the workshop.

The following mathematical methodologies were represented at the workshop:

(1) variational optimization, especially on non-quadratic, non-convex, geometry-oriented, and data adapted
“energy” functionals;

(2) inverse problems for ill-posed problems and regularization;

(3) nonlinear partial differential equations (PDE), to model, simulate, or achieve equivalent physical ac-
tions such as diffusion, convection, free-boundary interface motions, and phase transitions;

(4) differential geometry, for processing data information on general Riemannian manifolds and embedded
surfaces, as well as for processing generic geometric information such as total curvatures and principle
curvatures;

(5) Lie groups and invariant theory, for studying affine or projective invariants of image acquisition from
camera motions and different views;

(6) quantum information theory, especially using the quantum probabilistic view to develop novel ap-
proaches to mathematical learning theory;

(7) statistical and information theory, to process data features or patterns that are beyond the effective
description of deterministic models such as PDEs and variational energies;

(8) harmonic analysis, on analyzing wavelets compressing and coding schemes, as well as investigating
the interaction between such atomic decompositions and variational/PDE methods;

(9) real and functional analysis, such as using distributions and oscillatory functional spaces (e.g., BMO)
to model textures;

(10) computational logic, e.g., how to make sound Boolean decisions for noisy or multi-channel data;

(11) numerical analysis, including the stability and accuracy of high-order nonlinear PDE schemes;

(12) scientific computation, including the level-set method, numerical PDE,Γ-convergence regularization,
thresholding dynamics, iterative algorithms, as well as multiphase computation.

The applications of theories and methodologies of the workshop have been found in:

(i) medicine and the health sciences, including tumour detection and robust nerve fibre tracing in the brain;
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(ii) industrial engineering, such as designing an automatic feed-back control (vision) system in the auto-
mobile industry and improving the quality of inkjet printers;

(iii) astronomy, such as enhancing and improving the quality of telescope observations by adaptive denois-
ing, deblurring, and repairing;

(iv) communication technologies, including efficient datacoding and error concealment for noisy or lossy
channels;

(v) artificial intelligence, including parameter-free learning processes;

(vi) movie and art restoration, and computer graphics;

(vii) surveillance video and airport security;

(viii) robot vision system, including object and scene perception;

(ix) military applications, such as for autopiloting planes to automatically track enemy vehicles and moving
information.

Such a broad scope and range made Mathematical Image Analysis and Processing’04 a unique work-
shop. The participants found themselves in an ideal environment where they could freely communicate their
research ideas as well as be nourished with fresh ideas from other participants.

Highlights of Presentations

The following are not merely summaries of the presentations, but also highlight how the researchers have
made novel contributions as well as what new important trends they represent. (The summaries are given in
presentation order.)

Dr. Baba Vemuri, from the University of Florida, proposed novel metrics for measuring the distances
between tensors, as motivated by the application of diffusion tensor imaging in medical MRI. The talk
showed the power of combining knowledge and tools from different areas, such as the probabilistic view
of diffusion tensors (e.g., Gaussian distributions, the Kullback-Leibler distances between distributions, etc.),
variational/PDE methods like region based active contour models, and restoration of Riemannian features
(e.g., unit vectors on the spheres or orthonormal frames). The talk also demonstrated the growing realization
that any imaging model or computational scheme often crucially depends upon using the proper metrics or
measures.

Dr. Stacey Levine, from Duquesne University, presented herwork on applying non-standard growth
functionals for image denoising and image decomposition. Inspired by the previous works of Chambolle and
Lions (1997), You and Kaveh (2000), and Chan et al. (1998), Dr. Levine studied the following functional on
a given image domainΩ: ∫

Ω

φ(x,∇u)dx,

where, unlike the conventional uniform Sobolev normφ(x,p) = |p|2 or the Total Variation Radon measure
φ(x,p) = |p|, a non-standard growth exponentq(x) is incorporated by

φ(x,p) =
1

q(x)
|p|q(x), |p| < 1; |p| − 1 +

1

q(x)
, otherwise.

The spatially dependent growth exponentq(x) is assumed between1 + ε and 2 in order to ensure convexity.
Dr. Levine studied both the mathematical theory (e.g., existence and uniqueness) and the computational
performance of such models. The experiments showed noticeable improvement over conventional models for
denoising and texture extraction.

Dr. Otmar Scherzer, from the University of Innsbruck, talked about studying illposed inverse problems
using general nonlinear, non-differentiable, or non-convex regularizers. One particular problem is to restore
an image whose pixels have been randomly (and blindly) switched. When the random displacement is local,
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a Taylor expansion inspired the following degenerate, nonlinear, and non-convex functional for solving such
an ill-posed inverse problem:

min
u

∫

Ω

|Du|+
∫

Ω

λ(x, u,∇u)(u− u0)
2dx,

whereλ(x, u,∇u) = λ + |∇u|−2, with the constantλ also handling potential intensity noises. The non-
convex and singular dependence ofλ(x, u,∇u) on∇u leads to analytical difficulties. Dr. Scherzer showed
how to resolve these issues.

Alon Spira, from the Technion, discussed a general framework for evolving images and curves on parametrized
Riemannian manifolds. Of particular interest for image processing and vision tasks are the Eikonal equations
and Beltrami flows on Riemannian manifolds. The computational efforts presented in the work are rep-
resentative of the literature for robustly and efficiently handling geometry while performing certain image
processing tasks.

Dr. Martin Rumpf, from the Gerhard Mercator Universität-Gesamthochschule, focused on his work on
high-order geometric flows for anisotropic images and surface processing, as motivated by Willmore-type
energies and anisotropic surface functionals, e.g.,

Aγ(M) =

∫

M

γ(n)da,

whereM denotes an embedded surface inR3, n its unit normal, andda the surface element. The anisotropy
comes from the choice ofγ. If γ has the general form ofγ(x, n, H, K) with mean curvatureH and Gaussian
curvatureK, then the resulting Euler-Lagrange equations are inevitably of high order (e.g., 4th order). Dr.
Rumpf also presented efficient numerical methods for handling such high order geometric flows.

Dr. Lior Wolf, from MIT’s Center for Biological and Computational Learning, presented his recent work
on a novel learning theory inspired by the Born Rule from Quantum Mechanics. LetΨ be a pure quantum
state (represented by a column vector for simplicity) andρ = ΨΨT be its associated projection. LetM be a
rank-one observable, i.e.,M = aaT for some column vectora. Then the Born Rule claims that the expected
value of the observableM is given by

trace(Mρ) = ΨT MΨ = |〈a, Ψ〉|2.

Dr. Wolf explained how one can design novel learning algorithms based on the Born Rule, especially for data
clustering (either two-class or multiple-class).

Dr. Mila Nikolova, from the Ecole Normale Superieure de Cachan, presented her work on edge recov-
ery via nonconvex regularized least-squares. The properties of restored images and signals were carefully
investigated based on the shape information of the regularization function. One remarkable result revealed a
major difference between the edge-preserving convex functionals and non-convex regularizers: in the latter
case, given a (local) minimizer the (intensity) differencebetween adjacent pixels are either suppressed or
enhanced.

Toni Buades-Capo, from the Ecole Normale Superieure de Cachan, presented his work on rigorously
comparing the performance of different image denoising algorithms and models. Work of this nature is of
paramount importance to the imaging and vision literature,since for any given task, different research groups
often develop different models and algorithms. Image denoising is a well-known example. Popular denoising
methods include spectral methods, Wiener filtering, wavelet thresholding, adaptive filtering, anisotropic dif-
fusions, etc. The key issue in developing rigorous comparative criteria is how to properly define performance
measures, and how to properly interpret them from both vision and information theoretic points of view.
That is; how to move beyond the “eyeball metric” in which the researcher visually judges the quality of the
method, risking the possibility of bias.

Dr. Brad Lucier, from Purdue, investigated the variationalsmoothing of a class of Besov imagesB1
∞(L1)

based on both a wavelet representation and on direct pixel-domain smoothing. This work reflects a growing
need and trend for hybridizing different methodologies in image processing. Lucier’s earlier works with
Chambolle and DeVore in 1998 initiated the interaction between the variational formulations and wavelet
algorithms. The present work further expands this direction by comparing the performance using different
(but equivalent) formulations of the Besov semi-norms.
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Dr. Ross Whitaker, from the University of Utah, presented impressive computational results for image de-
noising and other applications, based on an information-theoretic approach for adaptive filtering. The results
appear superior to those in the variational literature which often implicitly assume that the underlying ideal
images belong to the space of functions of bounded variation, BV(Ω), or to some Sobolev spaceWα,p(Ω).
The information-theoretic and statistical nature of Dr. Whitaker’s new approach enables more robust and gen-
eral prediction of individual pixel values based on local information as well as on suitable entropy measures.
The work reflected the benefit of applying information-theoretic tools (often developed for the information
and communication sciences) to image and vision analysis.

Dr. Luminita Vese, from UCLA, explored tools from real and functional analysis to study image de-
composition. The primary goal of image decomposition is to separate a given imageu0 into visually or
functionally meaningful components. A popular framework,initiated by Yves Meyer, is to decomposeu0

into u + v + w, whereu ∈ BV, w is Gaussian white noise, andv is an oscillatory pattern indiv(L∞).
The goal of solving such a model is to perform three functionsat once — to denoise the image (findw), to
segment the image (findu), and to find the textures of the various surfaces (findv). Dr. Vese presented her
work on how to compute her new model usingdiv(BMO) to modelv, where BMO denotes all the locally
summable functions with bounded mean oscillations.

Dr. Xue-Cheng Tai, from the University of Bergen, discussedhow to develop computational and numeri-
cal analysis on piecewise constant level-set methods. Unlike the level-set setting of Osher and Sethian (1987)
for which the level-set functions are Lipschitz continuous, Dr. Tai proposed employing piecewise constant
level-set functions. The range of the level set function is preassigned, e.g., a finite set of integers, or merely
binary values of−1 and+1. Dr. Tai also presented the successful applications of his methods to digital
image processing as well as to solving ill-posed inverse problems.

Dr. Bill Allard from Duke presented his new results on the regularity of level sets of minimizers to total
variation based image denoising models. These results, which draw on tools from geometric measure theory,
apply to a wide range of models that have been considered in the image processing literature. Dr. Allard’s
results thus elucidate common features of these models, especially in regard to the bias that these models
introduce (because of their regularization terms) into image reconstructions. Dr. Allard’s results also allowed
him to construct relevant and nontrivial exact solutions toseveral of these total variation based models. Such
exact solutions are valuable in that they allow us to rigorously contrast the behaviour of competing variational
models. They also constitute test cases for numerical algorithms, so that the algorithms’ performance can be
scientifically measured instead of judging them solely on whether their results are visually pleasing or not.

Dr. Kevin Vixie, from Los Alamos National Lab, discussed hiswork investigating exact solutions to a
variational denoising model based on the TV regularizer with L1 fidelity. When the given target image is an
indicator function of some set, under certain conditions the exact solutions can be characterized in terms of
disks with appropriate radii.

Dr. Jayant Shah, from Northeastern University, a pioneer inmathematical image and vision analysis,
presented some new developments on processing the skeletoninformation of generic shapes. The skeleton of
a given closed shape with Lipschitz boundary is the locus along which the distance function of shape boundary
has first order singularities, like the ridge of a mountain range. In computer vision, skeleton information has
been used for object recognition, detection, and differentiation. The advance in Dr. Shah’s work is to study
gray skeletons instead of conventional binary ones.

Dr. Riccardo March, from the Istituto per le Applicazioni del Calcolo, presented his work on the curvature-
dependent nonlinear and nonconvex functionals emerging from recent works in image processing. In order to
more faithfully process edge information in models, Dr. March proposed to incorporate the information about
endpoints, length, and curvature into the variational formulation. AΓ-convergence theory is then developed
for such geometric functionals. It allows approximating the original functional by ones that are numerically
much more convenient. Dr. March then explained the main ideas of the proof that establishes the convergence
of approximate functionals to the original one. The work presented was an example of how rigorous mathe-
matics helped solve some very practical problems encountered in image processing and computer vision.

Fred Park, from UCLA, presented his work on a total variationbased model for simultaneous image
inpainting and blind deconvolution. Blind deconvolution is used for recovering information from telescope
images such as that in Figure 32.2; image inpainting is how scratches are “removed” from old photographs.
He demonstrated that these tasks are best treated as a coupled image processing task. This allows him to
take boundary conditions for the deconvolution that are naturally generated by the inpainting; thus reducing
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ringing effects that can arise from a poor choice of boundaryconditions.
Dr. Haomin Zhou, from Georgia Tech, spoke about his efforts to combine PDE ideas and methods with

wavelet techniques. A new class of singularity-adapted andmore efficient wavelet transforms are invented
by using shock-capturing schemes from computational fluid dynamics. Dr. Zhou also discussed how to
use variational approaches and well-chosen functionals inthe pixel domain to help improve the quality of
wavelet compression and interpolation. Such work represents the exciting and necessary trend of combining
the variational/PDE methodology with harmonic analysis.

Dr. Richard Tsai, from the UT Austin, presented a fast algorithm for constructing minimizing sequences
for the Mumford-Shah segmentation functional. Inspired byearlier works of Merriman, Bence, and Osher
on threshold dynamics for geometric curve evolution, Dr. Tsai discussed how the new fast algorithm was
discovered and should be understood, and presented numerical results illustrating its effectiveness.

Dr. Kaleem Siddiqi, from McGill University, discussed a novel approach to shape analysis. Given the
distance function of a shape, one computes its gradient. Loosely speaking, Dr. Siddiqi then views this
gradient as a flux, reducing the problem of finding the Blum skeleton of a shape to finding sources in the flux.

Dr. Curt Vogel, from Montana State University, presented a new image processing problem which is
markedly different from most. His goal is to robustly estimate and track the motion of the retina, based on
high resolution scan data produced by laser devices. Retinal tracking is a crucial step in understanding the
early human visual system. The major challenge is to distinguish irrelevant eye motion from the intrinsic
motion of the retina, and to properly determine the optical properties. This work signifies the importance of
image and vision processing in biological data probing and analysis.

Dr. Tony Chan, from UCLA, presented a new framework of logical segmentation for multichannel im-
ages as well as logical tracking for video images. This work improves the applicability of the conventional
Mumford-Shah segmentation model by incorporating Booleanalgebra. The work is especially relevant when
information from multiple sources (such as different colour channels, or even different imaging modalities)
needs to be combined for the segmentation task.

Dr. Dimitris Metaxas, from Rutgers University, presented work in deforming shapes and interior tex-
tures (Metamorphs) as applied to medical imaging of the human heart. He also presented work in computer
animation of breaking water waves. A major advantage of his algorithms was their computational efficiency.

Dr. Kirsi Majava, from the University of Jyv̈askyl̈a, discussed her work on applying the active-set algo-
rithm for nonsmooth variational optimization problems like

min
u

∫

Ω

|u− u0|sdx + β

∫

Ω

|∇u|rdx,

commonly seen in image denoising and restoration. She presented computational results suggesting this new
algorithm is very promising. Potential connections to discretized active contour algorithms were suggested
by the audience and further investigation into this novel algorithm is a hot topic.

Dr. Francois Malgouyres, from the Universite Paris 13, presented his work on achieving good image
compression schemes through projections on polyhedral sets, extending his earlier work on image restoration.

Dr. Fadil Santosa, from the University of Minnesota, presented an interesting inverse problem arising
from the imaging of spotwelds. A typical car has more than 20,000 spotwelds holding together metal sheets.
The evaluation and monitoring of their quality is achieved by noninvasive thermal imaging devices. Dr.
Santosa has been able to develop models, analyze the resulting illposed inverse problems, as well as compu-
tationally simulate the models based on regularization techniques.

Dr. Sinan Gunturk, from New York University, explored the mathematics behind a well-known class
of analog-to-digital converters in signal processing (Σ∆-transition) as well as a similar type of converter in
modern inkjet printers, called digital halftoning algorithms. Dr. Gunturk also discussed how to use modern
multiscale ideas to develop novel and more accurate halftoning algorithms.

Dr. Andrea Bertozzi from UCLA, and Dr. John Greer, from New York University, both presented inter-
esting work applying high-order PDE to image denoising, regularization, and image inpainting. High order
PDE have emerged in the recent literature of image processing, such as the inpainting model of Bertalmio et.
al. (2000):

ut + (∇u)⊥ · ∇(∆u) = 0

and the LCIS (low-curvature image simplifier) equation:

ut +∇ · (g(|∆u|)∇∆u) = 0.
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Rigorous study of the existence, uniqueness, and proper boundary conditions is highly challenging and is
needed in the image processing literature. The works of Dr. Bertozzi and Dr. Greer shed fresh light on both
the analytical and algorithmic structures on these equations.

Dr. Mimi Boutin, from Purdue, presented work on applying invariant theory and the moving-frame
method to the reconstruction of 3-D scenes from 2-D image projections. These tools from Lie Groups can
extract valuable information parameters while discardingsuperfluous unknowns, and thus lead to a simple
and robust scene reconstruction theory.

Dr. Gerardo Garcia Almeida, from the University Antonoma deYucatan, presented his work on integral
equations of the first kind. He presented anisotropic generalizations of the Tikhonov regularization and then
sought the optimal value for the regularization parameter.The choice of the image space is particularly
important for this analysis. He considers anisotropic Nikol’ski-Besov space to give more possibilities for
applications of this method. His methods are from harmonic analysis.

Dr. Volker Schmidt, from the Universität Ulm, presented a new method for the statistical analysis of
binary features. By using tools such as convex and stochastic geometry, the morphological image charac-
teristics are robustly estimated statistically. This was alovely piece of work in which he was able to extract
topological features of all degrees (points, edges, facets, etc.)
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Chapter 33

The Structure of Amenable Systems
(04w5045)

October 30–November 4, 2004
Organizer(s): George Elliott (University of Toronto), Andrew Dean (Lakehead Univer-
sity), Thierry Giordano (University of Ottawa), Guihua Gong (University of Puerto Rico),
Huaxin Lin (University of Oregon), N. Christopher Phillips(University of Oregon)

The subject matter of the recent BIRS workshop on amenable systems could be roughly divided into
four broad categories: classification of amenableC∗-algebras and related topics,C∗-algebras associated to
directed graphs and related objects, commutative dynamical systems andC∗-algebras, and non-commutative
dynamical systems. The state of research in amenable systems and the results presented at the workshop are
discussed below under these headings.

1. Classification of Amenable C*-algebras and Related Topics

Classification of amenableC∗-algebras was only a dream some 16 years ago, a dream that started with
Elliott’s classification of AF-algebras. The Elliott program could be simply described as classification of
amenableC∗-algebras by aK-theoretical invariant (the Elliott invariant). Today, the Elliott program of
classification of amenableC∗-algebras has become a very successful and continuing story. To name a few
break-through results in the program we mention: the Elliott-Gong theorem, which classified simple AH-
algebra of real rank zero with local spectra of dimension at most three; the Kirchberg-Phillips theorem on
classification of separable, amenable, purely infinite, simple,C∗-algebras which satisfy the Universal Coef-
ficient Theorem; and the Elliott-Gong-Li classification theorem for simple AH-algebras with no dimension
growth.

On the other hand, Villadesen’s amazing construction of simple AH-algebras with higher stable rank
opened a whole new horizon, as well as indicated new difficulties in the Elliott program. During the work-
shop, A. Toms exploited Villadesen’s construction further. He reported that one can construct a class of
simple AH-algebras whose isomorphic invariant set must include something other than the conventional El-
liott invariant. This mystery injects new excitement into the Elliott program.

Z. Niu demonstrated possibilities of attacking general simple ASH-algebras which are not simple AH-
algebras.

Interesting results on classification of non-simpleC∗-algebras were also given in the work shop, for
example, by Dadalart and Pasnicu.

Closely related to dynamical systems, H. Lin and N. C. Phillips reported that simple crossed products
arising from minimal dynamical systems on finite dimensional compact metric spaces have zero tracial rank
and therefore are classifiable if the ranges of theirK0-groups are dense in the affine functions on their tra-
cial spaces. This result, together with Lin’s work on amenable simpleC∗-algebras with lower tracial rank,
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demonstrated that the above mentioned classification theorem of Elliott-Gong (as well as the result of Elliott-
Gong-Li) can be applied to many naturally arisingC∗-algebras, in particular, as the title of this work shop
suggests, thoseC∗-algebras arising from amenable dynamical systems.

Other related topics were discussed during the work shop.
A C∗-algebra is said to be self-absorbing ifA⊗ A is isomorphic to itself. W. Winter reported that there

are only a few such amenable simpleC∗-algebras.
D. Kucerovski and P-W. Ng reported a number of absorbing theorems which are closely related to the

classification of amenableC∗-algebras.
M. Dadarlat reported a new development regarding the Universal Coefficient Theorem. He revisited the

topology on the Kasparov groups and showed that for two separable amenableC∗-algebras, KL-equivalence
is the same as KK-equivalence. One may hope that all separable amenableC∗-algebras satisfy the UCT.

2. C*-algebras Associated to Directed Graphs and Related Objects

A directed graph is a combinatorial object consisting of vertices and oriented edges joining pairs of vertices.
We can represent such a graph by operators on a Hilbert spaceH: the vertices are represented by mutually
orthogonal closed subspaces, or more precisely the projections onto these subspaces, and the edges by opera-
tors between the appropriate subspaces. The graph algebra is, loosely speaking, theC∗-algebra generated by
these operators.

When the graph is finite and highly connected, the graph algebras coincide with a family ofC∗-algebras
first studied by Cuntz and Krieger in 1980 [3]. The Cuntz-Krieger algebras were quickly recognised to be a
rich supply of examples for operator algebraists, and also cropped up in unexpected places [13], [16]. In the
past 10 years there has been a great deal of interest in graphC∗-algebras associated to infinite graphs, and
these have arisen in new contexts: in non-abelian duality [12], [5], as deformations of commutative algebras
[17],[7], in non-commutative geometry [4], [15], and as models for the clasification of simpleC∗-algebras
[8].

Graph algebras have an attractive structure theory, in which algebraic properties of the algebra are related
to combinatorial properties of paths in the directed graph.The fundamental theorems of the subject are
analogues of those proved by Cuntz and Krieger, and include uniqueness theorems and a description of the
ideals in graph algebras. But we know so much more: just aboutanyC∗-algebraic property a graph algebra
might have can be determined by looking at the underlying graph.

Higher-rank graphs are, as the name suggests, higher dimensional analogues of directed graphs. They
were introduced by Kumjian and Pask [11], and have recently been attracting a good deal of attention.
Uniqueness theorems have been proved, and though they are significantly more complicated than graph al-
gebras, we are finding out more about them every day. Recentlythere have been some partial results on their
K-theory [1], [6] and there are some recent results by Raeburn, Sims, and Pask which show that a large class
of simple AT algebras can be realised as two dimensional graph algebras. The future may hold many more
intriguing results.

Other generalisations of graph algebras that have been studied include the ultragraphC∗-algebras intro-
duced by Tomforde [18] and the labelled graphC∗-algebras introduced by Bates and Pask [2]. An ultragraph
is a generalisation of a directed graph in which the edges have a set-valued range. To form labelled graphs, the
edges of a directed graph are given labels coming from some alphabet. At this time the basic uniqueness and
simplicity results have been proved for these algebras, andtheorems have been proved which show that some
of their structural properties can be determined by lookingat the underlying graph and its labelling. Katsura
[9] has done a vast amount of work in describingC∗-algebras associated to topological graphs. There is also
a substantial group of mathematicians working on non self-adjoint operator algebras associated to directed
graphs (see for example, [10]. Other practitioners includeMuhly, Solel and Hopenwasser). The results here
are remarkable: the directed graph itself is the invariant for classification of these operator algebras.

At the workshop, Teresa Bates presented some preliminary results on labelled graphC∗-algebras, Toke
Carlsen and Alex Kumjian discussed higher rank graphC∗-algebras, and Takeshi Katsura presented some
results related to topological graphC∗-algebras. David Kribs presented some new results on weighted graph
C∗-algebras.
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3. Commutative Dynamical Systems and C*-algebras

Already in Murray and von Neumann’s first papers, the links between the theories of dynamical systems and
operator algebras have been very important. Thanks to Connes’ classification of injective von Neumann fac-
tors (the type III1 case having been settled by Haagerup), Krieger’s theorem, and the Connes-Feldman-Weiss
characterization of amenable measurable actions; there isa bijective correspondence between amenable, er-
godic, non-singular actions up to orbit equivalence, and injective von Neumann factors up to isomorphism.

In this report, we will present some of the known results in the interplay between topological dynamics
and C*-algebras. Many of the new results were presented at this BIRS workshop. We begin by reviewing
the transformation group C*-algebras of minimal homeomorphisms of compact metric spaces. For example,
both the C*-crossed products associated to Cantor minimal systems and the irrational rotation algebras are
AT-algebras (direct limits of circle algebras) with real rank zero and therefore belong to the class of algebras
classifiable by K-theoretical invariants. The first result was proved by Putnam and the second one by Elliott
and Evans. In a very recent preprint, H. Lin and N.C. Phillipsproved the following remarkable result:

Let (X, φ) be a minimal dynamical system whereX is an infinite compact metric space with
finite covering dimension. LetA = C∗(X, φ) be the associated crossed product, and Aff(T (A))
be the space of real valued affine continuous functions onT (A), the compact convex set of tracial
states ofA. If the natural map fromK0(A) to Aff(T (A)) has dense range, thenA is a simple
unital AH algebra with rank zero and therefore is classifiable.

In the smooth case, let us recall that Q. Lin and N.C. Phillipsshowed that the C*-crossed product asso-
ciated to a minimal diffeomorphism of a compact smooth manifold is also classifiable, being a direct limit,
with no dimension growth, of recursive subhomogeneous C*-algebras.

For a general minimal dynamical system(X, φ), no Krieger type theorem has yet been proved. Only
for two classes of dynamical system have dynamical characterizations of isomorphism of the associated C*-
crossed products been given. Before describing them, let usnotice first of all that, due to an old result of
Sierpinski, two (topologically) orbit equivalent minimalhomeomorphisms on a connected compact metric
space are flip conjugate.

For minimal homeomorphisms of the circle, the isomorphism of the C*-crossed product implies flip
conjugacy (this follows from the following two facts: everyminimal homeomorphism ofS1 is conjugate to
an irrational rotation, andC∗(S1, Rα) ∼= C∗(S1, Rβ) iff α has the same image as±β in R/Z).

For Cantor minimal systems, Giordano, Putnam, and Skau introduced the slightly technical notion of
strong orbit equivalence (SOE) and proved that two Cantor minimal systems are SOE iff the associated C*-
crossed products are isomorphic.

Using the Bratteli-Vershik model of Cantor minimal systemscreated by Herman, Putnam and Skau, H.
Dahl has characterized the (finite dimensional) Choquet simplices of probability measures on the Cantor set
which are the set of invariant measures of a Cantor minimal system. This generalizes a result of E. Akin.

Recently H. Lin has proposed the study of different versionsof approximate conjugacy for minimal
dynamical systems. The first results appear in three preprints by Lin, Lin and Matui, and Matui. For Cantor
minimal systems, the approximate conjugate relation is closely related to orbit equivalence and strong orbit
equivalence.

For minimal actions of groups other thanZ, the situation is more complicated. Itzá-Ortiz has recently
established a correspondence between the group of the eigenvalues of a minimal suspension dynamical flow
(whose ceiling function is not necessarily constant) and a multiplicative subgroup of theK0-group associated
to the base transformation of this flow. For minimal actions of Zn, it is not yet known if the corresponding
C*-crossed-product is classifiable in the Elliott sense. The best result up to now has been that obtained by
N.C. Phillips, who showed that the C*-crossed-product associated to a minimal, freeZn-action on the Cantor
set has stable rank one, real rank zero, and cancellation of projections, and that the order on its K0-group is
determined by traces.

On the dynamical side, Giordano, Putnam, and Skau studied the so-called affable equivalence rela-
tions and proved that a “small extension” of an AF-equivalence relation is still (orbit equivalent to) an
AF-equivalence relation. This gives a new topological dynamic proof that any Cantor minimal system is
orbit equivalent to an AF-equivalence relation. In a recentpreprint, they introduce a cohomological condition
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on minimalZ2-actions on the Cantor set, give two large classes of actionssatisfying it and show that such
minimal Z2-actions are orbit equivalent to AF-equivalence relations, using the extension result mentioned
above.

4. Noncommutative Dynamical Systems

The classification program for C*-algebras has had the most success with purely infinite, simple C*-algebras
(see, for example, [5] and [8]), with simple C*-algebras with tracial rank zero as introduced in [6] (see, for
example, [7]), and especially with various classes of C*-algebras obtained as direct limits of special kinds of
type I C*-algebras (see the discussion in Section 1. of this report). The classification program is currently
interacting with noncommutative dynamics in two importantways. First, C*-algebraists tend to be more in-
terested in crossed product C*-algebras than in most of the classes just mentioned. Work on the classification
of crossed products has generally taken the form of proving that certain crossed products belong to one of
the classes already covered by other classification theorems, or, less satisfactorily, at least proving structural
properties of crossed products which suggest that they should belong to one of these classes. Work on crossed
products by groups acting on compact spaces is discussed in Section 3. of this report, but some results for ac-
tions on noncommutative C*-algebras were presented at the workshop. Secondly, having classified algebras,
it is natural to try to classify group actions on algebras.

Recent work on classifiability of crossed products of noncommutative C*-algebras has relied on the tracial
Rokhlin property. This property is a weakening of the Rokhlin property [3] that Izumi uses in his classifi-
cation work for automorphisms. The Rokhlin property is a rather rigid condition: K-theoretic obstructions
(some obvious, some less so; see [4]) show that many purely infinite simple C*-algebras admit no actions
of finite groups with the Rokhlin property. The tracial Rokhlin property for actions of finite cyclic groups
first appeared in [9], where it was proved that ifA is a simple separable unital C*-algebra with tracial rank
zero, and ifα : G → Aut(A) is an action of a finite cyclic group with the tracial Rokhlin property, then
C∗(G, A, α) again has tracial rank zero. The applications there were to C*-algebras on which no nontrivial
action of a finite group can have the full Rokhlin property.

Hiroyuki Osaka talked about actions ofZ with the tracial Rokhlin property. ForZ, there are no known
K-theoretic obstructions which prevent an action from having the Rokhlin property while allowing it to have
the tracial Rokhlin property. However, there are a number ofinteresting actions ofZ which are known to
have the tracial Rokhlin property but not known to have the Rokhlin property. Osaka described two results,
strongly suggestive but still incomplete. LetA be a simple separable stably finite unital C*-algebra, and let
α : Z → Aut(A) be an action with the tracial Rokhlin property. IfA has real rank zero and stable rank one,
and if the order on projections overA is determined by traces, thenC∗(G, Z, α) again has these properties.
If A has tracial rank zero, and ifαn is approximately inner for some nonzeron, thenC∗(Z, A, α) again has
tracial rank zero.

As seen above, in some ways crossed products by finite groups are more accessible than crossed products
by Z. Their K-theory, however, is much harder to compute. For example, there is an action ofZ/2Z on a
contractible C*-algebra such that the K-theory of the crossed product is nonzero, which rules out anything
resembling the Pimsner-Voiculescu exact sequences for crossed products byZ and by free groups. There
are standard actions ofZ/nZ on the irrational rotation algebrasAθ, for n = 2, 3, 4, 6, which are among the
actions of finite groups which have attracted the most attention. Computations of K-theory in the rational
case (when the crossed products are type I and can be described explicitly) have led to the conjecture that, in
the irrational case, all the crossed products are AF algebras. This has been known for some time forZ/2Z
(the proof relies on a fortuitous coincidence), and has beenproved by Walters forZ/4Z and “most”θ. It is
shown in [9] that, forθ irrational, all the crossed products are AH algebras with slow dimension growth and
real rank zero. Thus, the remaining step is to compute the K-theory. Julian Buck talked about work in this
direction with Walters forZ/3Z andZ/6Z (where the least is known). It depends on cyclic cohomology in
an essential way.

In the second direction, Masaki Izumi has previously provedsome classification results for actions of
finite groups with the Rokhlin property on Kirchberg algebras [3], [4]. In his talk at the conference, he
described results for quasifree actions of finite groups onO∞. These actions do not have the Rokhlin property;
in fact, as follows from Izumi’s earlier work, there are no nontrivial actions of finite groups onO∞ which
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have the Rokhlin property. However, Izumi proved that quasifree actions are locally representable, which
in a certain sense is dual to the Rokhlin property. (For an action α of a finite abeliangroup,α is locally
representable if and only if̂α has the Rokhlin property.) One should note that this theory is really only just
beginning; as with the classification of C*-algebras, the purely infinite simple case is the place to start.

Andrew Dean talked about classification for actions on AF algebras which are explicitly given as direct
limit actions, but where the group is not compact. Such actions (“locally representable” in a sense stronger
than that used by Izumi) for compact groups were considered long ago by Handelman and Rossmann [1], [2],
as well as others. While keeping the direct limit structure (in contrast to Izumi), Dean has obtained results
for certain specific kinds of actions of noncompact groups. In previous work, he has considered actions of
R, and in his talk at this conference he examined actions of two relatively elementary groups which have
infinite dimensional irreducible representations, and in particular are neither compact nor abelian, namely
SL2(R) and the group of Euclidean motions of the plane. The direct limits are set up so as to allow these
representations to appear in at least a limited way, and thusallow infinite dimensional algebras (copies of the
compact operators) in the system. They can only appear in a limited way because the partial maps must have
finite multiplicity; otherwise, the direct limit will not beAF.

Two talks at the conference described work on noncommutative dynamics farther afield from the classi-
fication program. Rui Okayasu presented work relating the entropy of certain subshifts to the values of a a
numerical invariant introduced some time ago by Voiculescufor the purpose of measuring the obstruction to
the existence of a quasicentral approximate identity relative to the Macaev ideal for a finite set of operators.
Specifically, the set of operators should be the creation operators which appear in Matsumoto’s construction
of the C*-algebra of the shift. Okayasu has also computed this invariant for the images of generating sets of
certain groups under the regular representation.

Ilan Hirshberg talked about finding certain kinds of representations of C*-correspondences (bimodules
which are Hilbert modules on one side). A C*-correspondencecan be thought of as a generalization of an
automorphism of the algebra (also, simultaneously, as a generalization of some other things), and some of
the associated C*-algebras (Cuntz-Pimsner algebras [10])have attracted considerable interest recently. These
algebras generalize not only crossed products but also Cuntz-Krieger algebras and graph algebras. From the
point of view of dynamics, a representations of a C*-correspondence is a generalization of a covariant repre-
sentation of(Z, A). Hirshberg’s situation was of course much more complicated than just finding covariant
representations.
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Chapter 34

Functional Differential Equations
(04w5026)

November 6–11, 2004
Organizer(s): Jianhong Wu (York University), Hans-otto Walther (University of Giessen),
John Mallet-paret (Brown University)

The main purpose of this proposed workshop is to bring together international leaders and active re-
searchers working in the theory and applications of functional differential equations for communication of
new ideas and results, for review and summary of topics of current interest, for discussions of future research
directions and for initiation of further collaborations.

The workshop shall have three (two-hours) featured lectures in each of the following areas: mixed func-
tional differential equations; delay differential systems with state-dependent lags; delayed reaction-diffusion
equations with non-local effects.

There will be multiple half-hour lectures, in addition to special sessions on specific topics.

Training of the junior researchers, postdoctoral fellows and graduate students will be an important part
of this workshop. We are planning to invite approximately 10young researchers to the workshop and we
will encourage the speakers of the three featured lectures to make their lecture notes available to the general
public.

Workshops of this type have been previously held in many major international centres of mathemati-
cal research, such as the ICM2002 satellite conference “Differential and Functional Differential Equations”
(Moscow, Aug. 11-17, 2002), the CRM workshop “Memory, Delays and Multistability in Neural Systems”
(October 11-15, 2000), International Conference on Functional Differential and Difference Equations (Lis-
boa, Portugal, July 26-30, 1999), Oberwolfach workshop “Global and Geometric Theory of Delay Differ-
ential Equations” (January 11-17, 1998), IMA program in Mathematical Physiology and Differential-Delay
Equations (March 19 - April 13, 1990). There has been either aspecial session or minisymposium in the
area of functional differential equations associated withalmost every major international event of dynamical
systems sponsored by AMS, CAIMS, CMS, SIAM and EQUADIFF.

Canada, Germany and USA have strong groups of researchers, and have been playing leading role in
both theoretical research and applications of functional differential equations. Germany previously hosted
such a workshop in Oberwolfach in 1998, IMA organized a special program in 1990, and thus it is natural
and desirable that the next international workshop in the area be held in Canada, at Banff station. Canada
has active researchers from coast to coast (see listed possible participants below), a workshop at Banff will
further stimulate the nationwide collaboration.
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New Techniques in Lorentz Manifolds
(04w5521)

November 6–11, 2004
Organizer(s): Virginie Charette (University of Manitoba), Todd A. Drumm (University of
Pennsylvania), William M. Goldman (University of Maryland)

Recently discovered examples of Lorentz manifolds have renewed interest in the field among group the-
orists, differential geometers, topologists and dynamicists. The purpose of the November 6 BIRS workshop
was to assemble specialists in these fields to discuss these new discoveries.

A Lorentz manifoldis a manifold with an indefinite metric of index1. Such structures arise naturally in
relativity theory and, more recently, string theory.

Unlike the considerably more familiarRiemannian manifolds(with metric tensors of index0), Lorentzian
manifolds are poorly understood. Basic global questions remain unanswered, even for Lorentzian manifolds
of constant curvature.

The simplest example isMinkowski spaceRn
1 , a real affine space of dimensionn, with a nondegenerate

inner product of index1. Although its compact quotients have been classified [17], its noncompact quotients,
and more generally manifolds locally isometric or conformal to it are still mysterious. Closely related are
the model constant curvature Lorentz manifolds, namely de Sitter spaceSn

1 and anti-de Sitter spaceASn
1 .

Constant curvatureRiemannianmanifolds are also Lorentz manifolds.
Some of the topics discussed during the workshop included:

• Foliations of Lorentz manifolds and globally hyperbolic spacetimes;

• Global hyperbolicity in constant curvature manifolds;

• Conformal Lorentzian dynamics;

• Fundamental domains in anti-de Sitter space;

• Spinors on Lorentz manifolds;

• Topology of the future causal boundary of a spacetime.

We expand here on topics that generated discussion in the “open problems” session, and possible new
research directions. The workshop facilitated many discussions which led to several new results.

Affine Spaces; Margulis Spacetimes

In 1977 Milnor [23] asked whether a nonabelian free group acts properly by affine transformations ofRn.
He suggested taking a discrete free subgroupΓ0 of SO(2, 1) (for example a Schottky group) and “adding
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Figure 35.1: A crooked plane

translational components” (that is, anaffine deformation) to make the group act properly. In 1983 Fried-
Goldman [15] reduced the classification of complete affine 3-manifolds to Milnor’s question. Also in 1983
Margulis [20] constructed proper free actions of nonabelian free groups, answering Milnor’s question. Mar-
gulis’s examples were startling and unexpected.

In his 1990 doctoral thesis, Drumm [11] gave examples by constructing fundamental domains for such ac-
tions, using polyhedra calledcrooked planes. A crooked plane is depicted in Figure 35.1 and the intersections
of a tiling of R2

1 by crooked planes by a horizontal plane are depicted in Figures 35.2 and 35.3.
Hence the interest in flat Lorentz 3-dimensional space forms, or Margulis spacetimes. Margulis found a

criterion for a groupΓ to notact properly. The Margulis invariant of an affine hyperbolictransformation mea-
sures signed Lorentzian displacement along an invariant spacelike line. WhenΓ acts properly and contains
no parabolics, the quotient spacetimeM = R2,1/Γ enjoys the property that every essential loop is freely
homotopic to a unique closed geodesic (necessarily spacelike). The absolute value of the Margulis invariant
is thesigned Lorentzian length spectrumof M .

Margulis showed that in order forΓ to act properly, the sign of the Margulis invariant must be constant
over the group. It was conjectured that this is a sufficient condition; it was even hoped that we could find
some sort of condition involving only a finite set of elementsof Γ.

In the case whereΓ is a free group on two generators, this conjecture has already led to surprising findings.
If Γ is the holonomy of a three-holed sphere, it does act properlyif and only if the values of the Margulis
invariants for a certain “generating triple” (see below) all carry the same sign [19]. This is equivalent, via
a beautiful interpretation of the signed Lorentzian length, to a result by Thurston: all closed geodesics of a
hyperbolic three-holed sphere are shortened (resp., lengthened) if the three bounding closed geodesics are
shortened (resp., lengthened) [33].

In the case of the punctured torus, the conjecture was answered in the negative by showing that there is
no hope to ensure properness of an action by a “same sign” condition on a finite number of elements of the
group [6].

In each case,Γ is a free rank two subgroup. Thus the moduli space of affine deformations depends on
three parameters, namely, the values of the Margulis invariant for a pair of generators and their product – call
these agenerating triple. In fact, since an affine deformation may be considered up to rescaling without loss
of generality (this corresponds to rescaling Minkowski space), the real projective plane is the moduli space of
affine deformations ofΓ, and by Margulis’ result, the proper deformations are bounded by the triangle with
homogeneous coordinates (1,0,0), (0,1,0) and (0,0,1).
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Figure 35.2: Cross-section of a crooked tiling

Figure 35.3: Proper affine deformation of the modular group
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The contrast between the two cases is evident in Figures 35.4and 35.5. Each line corresponds to a word
in the abstract group associated toΓ: it is the space of deformations whose Margulis invariant for that word
is zero. In the case of the three-holed sphere (Figure 35.4),the triangle of positive values for the generating
triple appears to be contained in the intersection of the positive half-planes. However, in the case of the
punctured torus, there are subsets for which every element of the generating triple admits a positive Margulis
invariant, but some word in the group does not.

Crooked planes were discussed in Drumm’s talk. He describedthe conjectural relationship between
crooked planes and the Margulis invariant. The finite determination of the Margulis invariant was discussed
in Charette’s lecture [8].

As for the original conjecture, it is now believed to be falseand that instead, one must consider an
extension of the Margulis invariant, which we outline here.

SetE to be the affine space modelled onR3
1 and letΓ be a free rank two group of isometries ofE, such

that its linear parṫΓ is a convex cocompact subgroup ofSO(2, 1) – thusΓ̇ is discrete and finitely generated,
andΣ = H2/Γ̇ has no cusps.

Consider the flat Minkowski bundlẽE → UΣ. The affine deformationΓ corresponds to a cocycle class
in H1(Γ̇, E), which in the de Rham interpretation corresponds to a classω ∈ H1(Ẽ). The bundleẼ → UΣ
admits a preferred spacelike sectionν, that is an extension ofeγ , the preferred unit-spacelike eigenvector of
γ which appears in the definition of the Margulis invariant. The following function is not uniquely defined:

f : UΣ −→ R

(x, u) 7−→ 〈ω(X), ν〉,

whereX is the generator of the geodesic flow. However, given a probability measure invariant by the geodesic
flow, λ, the following only depends on the cohomology class ofω:

µ(λ) =

∫

UΣ

f dλ.

Goldman, Labourie and Margulis have shown thatΓ acts properly onE if and only if the sign ofµ(λ) is
constant over allλ [16]. Here are some open problems remaining around this question. (See also Section 35.)

• Is the Goldman-Labourie-Margulis theorem the sharpest possible? It is believed to be so, that is, thatΓ
may not act properly onE, even though the sign of the Margulis invariant is constant over the group.

• Extend the result to the case whenΣ has cusps, i.e. whenΓ admits parabolic elements.

Margulis’s original definition of the signed Lorentzian length was extended to include parabolic elements
by Charette and Drumm [9].

Surfaces in Lorentz Space-forms

This was the subject of Schlenker’s talk, as well as Pratoussevitch’s talk. While Schlenker discussed the
extension of Aleksandrov’s theorem to Minkowski space, Pratoussevitch described a surprising construction
of fundamental polyhedra forAS3

1-structures on Seifert 3-manifolds.
A theorem of Aleksandrov states that any metric on the two-sphereS2 with curvatureK > −1 is induced

on a unique convex surface inH3, three-dimensional hyperbolic space. Schlenker and Labourie have worked
on the analogous problem in de Sitter spaceS3

1 . In particular, the same result holds inS3
1 , except that

the curvature is now bounded above by one and the closed geodesics must have length greater than2π.
Let Σ ⊂ H3 be a smooth, strictly convex surface; denote byI the induced metric. We define the third
fundamental form onΣ to be:

III(X, Y ) = I(∇XN,∇Y N),

whereN is the unit normal vector. Then there is a dual statement to Aleksandrov’s theorem: any metric
h on S2 with curvature less than one and whose closed geodesics havelength greater than2π is the third
fundamental form of a unique convex surface inH3. This follows from the duality between surfaces inH3

and surfaces inS3
1 , which we will outline here.
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Figure 35.4: The moduli space of proper affine deformations of a hyperbolic 3-holed sphere

Figure 35.5: The moduli space of proper affine deformations of a hyperbolic 1-holed torus
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Let Σ ⊂ H3; for p ∈ Σ, the tangent space atp corresponds to a plane inH3, which in turn admits a polar
pointp∗ ∈ S3

1 . The induced metricI∗ on the polar surface turns out to beIII.
Thus any statement concerning convex surfaces inH3 translates to a dual statement inS3

1 .
Let us define aFuchsian equivariant embeddingof a surface. Given a surfaceΣ of genusg ≥ 2, an

equivariant embeddingof Σ in H3 (resp.S3
1 , H3

1 ) is a pair(φ, ρ), where:

• φ is an embedding of̃Σ into H3 (resp.S3
1 , H3

1 );

• ρ is a monomorphism ofπ1(Σ) into the isometry group ofH3 (resp. S3
1 , H3

1 ) such that, for every
x ∈ Σ andγ ∈ π1(Σ),

φ(γx) = ρ(γ)φ(x).

An equivariant embedding(φ, ρ) is Fuchsianif it fixes a totally geodesic plane inH3 (resp. a point inS3
1 ,

H3
1 ).

In this context, Aleksandrov’s theorem is stated as follows: a convex surfaceΣ with curvatureK > −1
admits a unique Fuchsian equivariant embedding intoH3, such thatI = h. Dually, if K < 1 and every
closed geodesic has length greater than2π, Σ admits a unique Fuchsian equivariant embedding intoH3 such
thatIII = h.

In the anti-de Sitter world, analogous statements hold. Namely, a surfaceΣ with metrich, whose curva-
ture is boundedaboveby -1, admits a unique equivariant embedding intoH3

1 such thatI = h. Dually, the
same result holds withh = III instead ofI.

Now, Aleksandrov’s theorem is a special case of a statement about hyperbolic three-manifolds with con-
vex boundary. Leth± be metrics on a convex surfaceΣ with curvatureK > −1. Then there exists a unique
hyperbolic metricg onΣ× [−1, 1] such that the induced metric on each component of the boundary is given
by h+, h−, respectively. Dually, the same statement holds forK < 1, as long as the lengths of the closed
geodesics are greater than2π, substituting the third fundamental form forI.

In the anti-de Sitter world, all evidence points to the existence of an analogous statement; but this remains
conjectural.

Causality

Perhaps the most salient feature of a Lorentzian structure is its underlying causality structure. Unlike Rie-
mannian manifolds, geodesics (and more generally, smooth curves) come in several flavors, depending on the
restriction of the metric tensor to these curves. Steve Harris described the notion of the ideal causal boundary
on Lorentz manifolds [18].

In a sequence of talks, Thierry Barbot and François Begun described their joint work [3] with Zeghib, on
foliating globally hyperbolic 3-dimensional spacetimes by constant mean curvature surfaces. The principal
result is that every maximal such spatially compact Lorentzian manifold admits atime function,that is, a
function which increases along future-directed timelike curves.

Lorentzian Foliations and Group Actions

The subject of Riemannian foliations (that is, foliations whose holonomy groupoid preserves a transverse
Riemannian metric) was developed in the 1970’s and 1980’s. Pierre Mounoud presented his recent work [24,
25, 26] on Lorentzian foliations at the workshop.

Frances’s lecture dealt with the extension of Obata’s theorem to Lorentz manifolds. Obata proved that the
only Riemannian manifolds which admit noncompact conformal automorphism groups are Euclidean space
Rn and the Euclidean sphereSn−1. Frances gave surprising examples of compact conformally flat Lorentz
manifolds whose automorphism groups are noncompact. Furthermore he discussed which 3-manifolds sup-
port suchessentialflat Lorentzian conformal structures. This was the topic of his recent doctoral the-
sis [12, 13, 14].
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In a different direction, Karin Melnick discussed her recent results, concerning which groups can act
by Lorentzian isometries on compact manifolds. Building onearlier work of Zeghib [34, 35] and Adams-
Stuck [2], she showed that the possible connected isometry groups of a compact connected Lorentz manifold
have the formK ×Rm × S, whereK is compact andS is locally isomorphic to one of the following:

• PSL2(R);

• a Heisenberg groupHn;

• one of a countable family of solvable extensions isomorphicto S1 n H, whereH is a Heisenberg
group.

She went on to describe which manifolds admit an action of theHeisenberg group, particularly one of codi-
mension one–where the dimension of the Heisenberg group is one less than the dimension of the manifold.
This work, recently posted to the archives [21], may be part of her forthcoming doctoral thesis.

Closely related to Killing vector fields areKilling spinor fieldswhich generalize toconformal Killing
fields.In her talk, Helga Baum showed how conformal Killing spinor fields lead to new examples of manifolds
with essential Lorentzian conformal structures. In particular if the associated vector field is lightlike, then
the manifold is one of a few special types (for example, a strictly pseudoconvex boundary of a domain (a
Fefferman space,or a circle bundle over a K̈ahler manifold). The proof [4] involves a careful analysis of the
zero-set of a conformal Killing spinor field.

Low-dimensional Topology and Other Topics

The workshop benefited from several lectures which were not exactly on the topic of the conference, but
nonetheless closely related. Suhyoung Choi presented his solution [10] of Marden’s Tameness Conjecture
for hyperbolic 3-manifolds (proved independently by Agol and Calegari-Gabai).

Dave Morris lectured on which arithmetic groups can act on the line.
Kevin Scannell discussed deformations of hyperbolic 3-manifolds, which through work begun in his

thesis [30, 31, 32], closely relate toR3
1-manifolds.

Problem Session

The items outlined above represent just a sample of the topics discussed at the workshop. On the last day a
problem session was held. Here is a list of some of the problems which were suggested:

1. (Labourie) Mess shows that compact oriented orthochronous 2 + 1 AdS spacetime with non-empty
spacelike boundaryS is a productS × [0, 1] and embeds in a domain of dependence. Is it possible to
construct a singular AdS manifold with more than two ends, say by branching on a spacelike geodesic
in a domain of dependence?

2. (Scannell) Generalize the “no topology change” theorem of Mess noted above to all constant curvature
3 + 1 spacetimes. Or (even better) characterize when a constant curvature3 + 1 maximal domain of
dependence embeds in a larger constant curvature spacetime.

3. (Schlenker) LetM be a compact AdS cone manifold withm singular curves. Given real numbers
α̇1, . . . ˙αm, is there a first order deformation of the AdS structure inducing these derivatives of the cone
angles? This is related to the following problem, posed by Mess.

4. (Mess) Letρ = (ρL, ρR) be the representation of the fundamental group of a closed surface into
PSL(2, R)× PSL(2, R) corresponding to an AdS domain of dependence.

(a) Isρ determined by the two measured laminations on the boundary of the “convex hull”?

(b) Is ρ determined by the hyperbolic structure on the future boundary of the convex hull together
with the measured lamination on the past boundary?
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(c) Isρ determined byρL together with the hyperbolic structure on one of the boundary components
of the convex hull?

These are analogous to well-known questions about the parameterization of quasi-Fuchsian space by
the pair of conformal structures at infinity, and how these relate to the bending laminations and hyper-
bolic structures on the convex hull boundary.

5. (Barbot) LetM0 be a globally hyperbolic static AdS spacetime with closed spacelike slices and con-
siderv0 = vol(M0). Is the volume of a non-static AdS spacetime of the same topological type less
than or equal tov0?

6. (Schlenker) Is the volume of the convex core of a2 + 1 AdS domain of dependence strictly concave
as the bending lamination varies? This question, and Barbot’s question above, can be thought of as
refinements of the following question posed by Mess in his preprint:

7. (Mess) For a2 + 1 AdS domain of dependence, the volume of the maximal domain ofdependence and
of the convex core are invariants onTeich × Teich. How do they behave? Are they related, perhaps
asymptotically, to invariants of quasi-Fuchsian space, such as the volume of the convex core and the
Hausdorff dimension of the limit set?

8. (Harris) A static complete spacetime is conformal to(L1 ×M)/G = U with G ⊂ Isom(M) for a
Riemannian manifoldM . Hereµ : G → R is a homomorphism andG acts onL1 ×M by g(t, x) =

(t + µ(g), g · x). Does∂̂(U) depend onµ?

9. (Goldman) LetM be a complete flat2 + 1 spacetime.

(a) DoesM have a fundamental domain bounded by crooked planes?

(b) Is the interior ofM diffeomorphic to a solid handlebody?

(c) Do there exist natural smooth approximations of crookedplanes?

(d) (Properness conjecture). It is known that if an affine deformation of a Fuchsian group acts prop-
erly, then the value of the Margulis invariant is everywherepositive or everywhere negative. Is
the converse true?

10. (Goldman) Extend crooked planes to surfaces in AdS space. Are there conformally invariant surfaces
that could be used as boundaries of fundamental domains of AdS spacetimes?

11. (Abels)

(a) Auslander Conjecture: Is every affine crystallographicgroup (i.e. discrete, cocompact subgroup
of Aff(Rn) acting properly) virtually solvable?

(b) Are there properly discontinuous affine groups (not necessarily cocompact) that are neither virtu-
ally polycyclic nor virtually free?

12. (Scannell) Characterize closed hyperbolic3-manifolds which admit affine deformations intoIsom(R4).
Do they always admit quasi-Fuchsian deformations intoIsom(H4)?

Many of the talks were influenced by Mess’s unpublished preprint [22].
During the problem session it was decided to undertake the project to annotate the preprint (in order to

update the results) and eventually publish it.
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The organizers solicited papers based on the workshop, possibly including the updated annotated version
of Mess’s paper. Since one of the organizers of the workshop (Goldman) is editor-in-chief of the journal
Geometriae Dedicata,that journal seems a particularly appropriate for such a volume.

Kevin Scannell’s workshop websitehttp://borel.slu.edu/lorentz/index.html facilitates
communication between the participants following the workshop. In particular, the summaries of the discus-
sions (and soon the papers arising from the workshop) will beposted there.

List of Participants

Abels, Herbert (Bielefeld University)
Bader, Uri (Technion - Israel Institute of Technology)
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Chapter 36

Explicit Methods in Number Theory
(04w5502)

November 13–18, 2004
Organizer(s): Peter Borwein (Simon Fraser University), Hendrik W. Lenstra (University
of California, Berkeley), Peter Stevenhagen (Universiteit Leiden), Hugh Williams (Univer-
sity of Calgary)

With this workshop, we intend to provide an opportunity for the participants to communicate recent
developments in the various participating disciplines to experts in the same and in neighbouring areas. Fur-
thermore, the workshop will facilitate and promote new and existing collaborations by giving an opportunity
for participants to meet their colleagues in a relatively small, informal and intensive environment.

Developments in the participating areas are vast and quick.Many collaborations between physically
distant researchers are ongoing and new results in one area often spark off new collaborations with researchers
in other areas. The proposed meeting will give the participants an excellent platform for disseminating their
results to a relevant audience and will give them a chance to absorb results by others. Recent meetings at
MSRI and Oberwolfach have shown that the subject area is verymuch in flux and that there is a clear demand
for more opportunities for dissemination and collaboration in this field.

Information technology industries have shown serious interest in computational number theory. Many
number theoretic constructions find an application in cryptography or coding theory. Furthermore, the com-
putational challenges offered by number theory give an excellent incentive and clear benchmarks for the
computing industry to enhance hardware and the constant quest for faster algorithms enhances computational
tools in general.

By organising a meeting on a smaller scale at BIRS rather thana large conference, better conditions are
created to work out correspondences and relevant applications of presented results informally afterwards. We
expect that the scientific spin-off of an intensive, informal and small-scale meeting will be more significant
than that of a formal, big conference. The formula that BIRS offers matches with the intent of the proposed
meeting and we would be delighted to be enabled to organise the proposed meeting at BIRS.
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Diophantine Approximation and
Analytic Number Theory (04w5507)

November 20–25, 2004
Organizer(s): Michael Bennett (University of British Columbia), Greg Martin (University
of British Columbia), John Friedlander (University of Toronto), Andrew Granville (Univer-
sité de Montŕeal), Cameron Stewart (University of Waterloo), Trevor Wooley (University
of Michigan)

Analytic number theory and Diophantine approximation are two major areas in the field of number theory.
Historically, they have both been strongly represented in the North American community and remain so to this
day. Furthermore, the frequency with which methods and advances in one area have fuelled research efforts
in the other is increasing, as deeper and more pervasive connections between the two areas are constantly
discovered.

Some of the major tools of analytic number theory involve thetheory of meromorphic functions (which
was in large part commenced by the study of the Riemann zeta function in connection with the distribution
of prime numbers), the evaluation and estimation of exponential sums, sieve methods, and many techniques
from the fields of harmonic analysis, probability, and random matrix theory. In Diophantine approximation,
common techniques involve versions of the subspace theorem, lower bounds for the sizes of linear forms in
logarithms, the hypergeometric method of Thue and Siegel, and the circle method, which itself combines
elements of harmonic analysis and exponential sums.

The primary problems to which these tools are applied include, on the analytic side, the distribution
of prime numbers and of the prime factors of integers, special values of zeta functions (including multiple
zeta values) and L-functions, and uniform distribution of arithmetic sequences; and on the Diophantine side,
determining the transcendentality of natural constants and of values of modular functions, irrationality mea-
sures for these values and for algebraic numbers, and applications to rational points on algebraic varieties
and solutions of Diophantine equations. Indeed, the difficulty in placing any of these topics firmly within one
category or the other makes the interrelations between these two areas even more evident.

The objective of the workshop on Diophantine approximationand analytic number theory was to gather
together researchers with expertise in both Diophantine approximation and analytic number theory in an en-
vironment that fosters the presentation and sharing of the latest ideas in both fields. The participants were
chosen either as experts in analytic number theory whose work involves problems in Diophantine approxi-
mation, or as experts in Diophantine approximation whose methods also lend themselves to the resolution of
open questions in analytic number theory. The workshop was also intended to provide a significant learning
experience and exposure to current research for number theorists in these two areas in the early stages of their
careers.

A focal point of the workshop was that of rational andK-rational points on curves and surfaces (see
[3]), an area where the aforementioned interaction betweenthe fields is particularly pronounced. By way of
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example, Jordan Ellenberg (Princeton) spoke about his research into insolubility of the equationx2+y4 = zn

and the relation between possible solutions and the modularity of Q-curves, extending the now famous Frey
curve approach first taken to success by A. Wiles. His techniques include bounds for the average central
values of theL-functions in question; in practice, he only needed information on a singleL-function central
value. Kannan Soundararajan and Trevor Wooley (Michigan) were thus able to recommend various weighting
and mollification techniques from the analytic number theory arsenal the purpose of which is precisely to
retain the analyzability of an averaged sum while giving more information about particular values.

Regarding surfaces, Pietro Corvaja (Udine) spoke on his continuing work with Zannier involving a wide
range of applications of explicit versions of the Subspace Theorem to counting integer points on surfaces.
His interaction with David McKinnon (Waterloo) during the informal discussion sessions allowed them to
trade perspectives on some of McKinnon’s conjectures on thebounds for such integer points. In addition,
this subject is closely related to the work of Ellenberg, Venkatesh and Helfgott (all present at the workshop)
on counting rational points on varieties.

On the subject of Diophantine equations, one of the most significant results of the past decade was Preda
Mihailescu’s proof of Catalan’s Conjecture. At the workshop, Mihailescu described his partial progress
towards a generalization of his work, to the Fermat–Catalanequationxp + yp = zq. These results rely upon
classical cyclotomic theory, and complement current work on similar equations of Bennett and Ellenberg, who
apply extensions of the methods of Wiles et al. involving Frey elliptic curves. In this setting, the modularity
of representations of dimension greater than 1 becomes paramount; computational aspects of Hilbert modular
forms were discussed by Lassina Dembele (University of Calgary).

A central theme in current research in Analytic Number Theory is the conjectural connection between ran-
dom matrix theory and distribution questions regarding thezeros ofL-functions (see [1]). At the workshop,
Chantal David (Concordia University) presented the results of her evaluation of the predictions that random
matrix theory made to the question of how often twists ofL-functions corresponding to elliptic curves by
characters of fixed order vanish at the centre of the criticalstrip. She gave the surprising answer that for
twists by characters of order 3 or 5 the number of such vanishing central values is predicted to be infinite,
while for characters of higher prime order the number of suchvanishing central values is predicted to be finite.
Martin pointed out that David’s techniques might well be able to predict that the number of vanishing central
values should be finite, even when the characters of all primeorders greater than 5 are taken together. Among
further results onL-functions, Valentin Blomer (G̈ottingen) spoke on his contributions and improvements to
the literature of bounds for values of automorphicL-functions within the critical strip. Subconvexity bounds
for the growth of such functions are often crucial in obtaining nontrivial estimations for technical sums that
arise in problems in multiplicative and additive analytic number theory. For instance, these results are impor-
tant for current research of Paula Cohen (Texas A&M University) on hyperbolic equidistribution problems
(generalizing prior work of W. Duke on the equidistributionof Heegner points). Cohen’s results apply more
generally to Hilbert modular varieties of arbitrary dimension.

Further themes represented in the workshop were the Hardy-Littlewood circle method (Wooley, Lucier,
etc, see [2]), a major tool in analytic number theory now finding application to questions of rational points
on varieties, and the hypergeometric method of Thue and Siegel, traditionally the province of transcendence
theory and now, as demonstrated by Michael Filaseta (University of South Carolina), important for a variety of
questions in classical analytic theory. Classical transcendence theory [4] was also well-represented, including
a stimulating talk by Yann Bugeaud (University of Strasbourg) on the transcendence of real numbers whose
decimal or base-b expansions are expressible by automata.

Number theory is unique among the major fields of mathematicsin that it combines problems and ques-
tions of incredible simplicity and accessibility with truly deep and technical tools and methods for addressing
these questions. A reduction of a problem in one area of number theory (and indeed in many other mathe-
matical fields as well) often involves a very simply stated question in the other area, which can seem difficult
to resolve if one is not well-versed in the techniques of the second area. Often, contact and communica-
tion between Diophantine approximation researchers and analytic number theorists is the greatest obstacle to
overcome on the way to significant advances on both sides. This accessibility that number theory possesses
is another reason that involving young researchers in the workshop was so profitable.
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Mathematical Models for Biological
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November 27–December 2, 2004
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Pauline van den Driessche (University of Victoria)

Background

The spread of introduced species is one of the most importantapplied problems in ecology. In North America,
invasive exotic species are widespread, ranging from zebramussels to Africanized honey bees to weedy
plants. Although some invaders are thought of as beneficial,many become pests, and the associated costs are
immense, exceeding $100 billion US per year.

Early models for invasive species were nonlinear reaction-diffusion equations such as Fisher’s equa-
tion [8], which describes quadratic growth coupled to Brownian motion. Here the analysis of travelling
waves and of the convergence of initial data to wave solutions has been a fruitful area of classical mathemat-
ical research [9]. The travelling wave speed, interpreted biologically as the rate of spread of the introduced
population, has successfully predicted spread rates of many introduced species, but has failed dramatically
with others.

From a scientific perspective, the field of invasion biology has matured greatly in the last few years as
ecologists have tried to come to grips with the risks, damages, and spatial spread of introduced species. This
is evidenced by new journals (eg, ‘Biological Invasions’),large sections of meetings devoted to the subject
of biological invasions (eg, Ecological Society of Americaannual meeting), and many new books and new
text books on the subject. At the same time, quantitative biologists and mathematical modellers have become
increasingly aware of the limitations inherent in the earlyquantitative models.

Ingredients missing in early models include: rare, long-distance dispersal events which cannot be de-
scribed by classical diffusion, age- and stage-structuredpopulation dynamics, interspecific interactions and
nonlinear stochastic effects. It is possible to include such ingredients in systems of coupled nonlinear
reaction-diffusion equations, systems of integral-basedequations, such as integro-difference (discrete-time,
continuous space) equations, or as stochastic, interacting particle models.

Analysis of the resulting mathematical systems is a daunting task, and provides a modern-day challenge
for applied mathematicians. Some progress has been made on such analysis of these systems, although, to
date, results have not always been communicated widely. Moreover, a broad scientific impact requires a
multidisciplinary effort which includes mathematicians,biologists and modellers.

The purpose of this meeting was to bring together a group of expert mathematicians and quantitative
biologists with the following goals: (i) communicate recent advances in the mathematical analysis of invasion
problems, and advances in the application of these results to real ecosystems (ii) propose future directions
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for research in the mathematics of biological invasions with a view to developing areas where the interaction
between models and science is strong. Because the field of biological invasions is immense, we focused of
four subareas where the interaction between models and science is already promising.

1. How do invader life-history details affect spread, and are there particular stages that are most sensitive
to control measures?

2. How do secondary ecological interactions with other species impact spread, and what is the impact of
the invader on these other species?

3. How can model inputs (such as dispersal kernels) be measured under practical field conditions, and
how can model predictions (such as spreading speeds) be tested against field data?

4. What is the impact of rare, long-distance dispersal events on the rate of spread, and the precision of
spread rate estimates?

Some results of these efforts give us a detailed understanding of biological invasions, including the spatial
spread of disease, new methods to predict the response of vegetation to climate change, the spread of weed
species through ecosystems, and new methods for spatial biocontrol of pest species.

Our workshop was roughly focused around the above four themes, and involved a range of participants,
ranging from mathematicians to quantitative biologists. The synergistic interaction between mathematics and
biology lead to advances in both fields.

Mathematical Theory

Several large classes of models for the growth and spread of multiple species can be unified into a simple
recursion model of the formun+1 = Q[un]. Here the operatorQ takes the set of densities of the species
at an initial time into the values at time later. This provides a generalization of the early partial differential
equation (PDE) models of Fisher [8] , Skellam [21] and others, to include the possibility of non-Gaussian
dispersal and discrete-time dynamics.

Hans Weinberger presented a survey of the qualitative spreading properties of solutions of such models in
which all the species cooperate [11, 23]. The main results are that there are, in general, a slowest spreading
speed such that no species spreads at a speed less than this number and at least one species spreads no faster,
and a fastest spreading speed such that no species spreads more quickly and at least one species spreads
no more slowly. These results were illustrated with some simple invasion models, one of which showed
the development of ‘stacked waves’ of mutualistic species,moving at different speeds, and another that
treated two-species competition models. More recent work on the existence of travelling wave solutions was
discussed. Here the existence of a family of travelling wavesolutions was shown, with the spreading speed
characterized as the slowest speed of the family of travelling waves [1]. This recent work builds on the earlier
theory developed by Roger Lui for recursion models [13, 14].

The effects of quiescent states on ecological systems were discussed by Karl Hadeler. Quiescent states,
with random switching in and out of these states, damp oscillations locally and can suppress periodic orbits.
This was illustrated by the introduction of a quiescent state for the prey into the MacArthur-Rosenzweig
model. Coupled reaction-diffusion equations with a quiescent state [6] can be analyzed by the methods
in [11, 23] to yield spread rates and travelling fronts. Herethe impact of the quiescent states can be dramatic
on spreading speeds, often reducing the speed to a fraction of what it would be without the quiescent state.
The mathematical methods in Hadeler’s research [6] have been recently applied to model the spread of West
Nile Virus across North America [10]

Xiao-Qiang Zhao gave a historical survey of results on travelling waves and spread speeds for differ-
ent population models. He summarized studies of monostableand bistable waves for a variety of different
formulations (reaction-diffusion equations, integro-differential equations, etc.) and unified these with an in-
tegral equation approach. He gave rigorous results on the asymptotic spread speed and travelling wave speed
for symmetric kernels [22]. This general method was illustrated by examples from the literature in which the
spread speed and minimum wave speed were equal, and this value was estimated. Numerical simulations [24]
of spreading speeds were presented.
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Invasions of diseases into new territory is a worldwide problem, which traditionally has been modelled
with reaction-diffusion equations. If dispersal is nonlocal, these equations can greatly underestimate speeds
of invasion. Integro-differential models can incorporatenonlocal dispersal. Jan Medlock showed how to use
knowledge about the dispersal of either disease propagules(distributed contacts) or infected hosts (distributed
infectives) to model disease spread with integro-differential equations [16]. Both models have travelling
wave solutions and the wave speed can be computed in terms of the moment generating function of the
contact distribution or dispersal kernel. The magnitude ofthe force of infection determines which dispersal
mechanism gives rise to faster wave speeds. A perturbation scheme can be used to approximate the wave
shape. Integro-differential equations seem more flexible than reaction-diffusion equations for continuous
time scenarios; they will clearly be the focus of much futurework.

Development of the Interface Between Model and Data

The theoretical work of Lui [13, 14], cited above, was popularized and applied in an ecological context
to stage-structured (matrix) models with dispersal by Neubert and Caswell [17]. Here the combination of
stage-specific information on demography and dispersal makes it possible to predict invasion wave speeds.
However, such predictions are not the only, or even the most interesting, results of the model. For example,
analysis of sensitivity and elasticity of the speed to modelparameters makes it possible for managers to
determine where invasive species are most susceptible to control measures. These issues were discussed in
detail by Mike Neubert and Hal Caswell. They also presented alarge number of examples of successful
application of the theory to biological invasions across biological taxa. Some of the work they presented was
the output of a US NSF-funded “National Center for Ecological Analysis and Synthesis” working group.

Beneficial ‘invasions’ may be the goal when managing endangered species. Variation in the rate of spread
of a population is of fundamental importance for managing the species of conservation concern, for which
spatial spread is beneficial [20]. James Bullock presented case studies in which this approach was used to
model and understand constraints on spread for a range of conservation questions: how we facilitate habitat
restoration; how we speed up species re-introduction; whatrole do mutualisms have in population persistence
and spread; and how do we predict risks from Genetically Modified Organisms? The methods used for the
analysis in these studies was based on the Neubert and Caswell modelling approach given above [17].

When rare, long-distance dispersal events occur, spread rates of populations are very sensitive to the so-
called ‘tails’ of the dispersal kernels (probability density functions for dispersal distance). Here, the rare,
long-distance dispersal events are the ones that cause rapid spread of an invading population. At the same
time, the spreading speed becomes highly variable, as it is uncertain precisely when the rare, long-distance
dispersal will occur [3]. In this context fecundity (numberof viable offspring produced) makes a strong con-
tribution to invasion speed [4]. The importance of fecundity has been largely overlooked, because traditional
models of diffusion are weakly influenced by net reproductive rate (R0) and, thus, seed production. By con-
trast, fat-tailed dispersal kernels effectively translate small differences in fecundity over large distances [2].
Among the challenges for predicting invasion speed is the estimation of fecundity and of recruitment success
in new landscapes. Together, these components of population success far from the resident population control
the capacity to spread. Jim Clark discussed the components of R0 that must be inferred or predicted in order
to anticipate invasion speed, and provided perspectives onthose components we can expect to predict well
and those that will remain uncertain for the foreseeable future [5].

Although recent studies have highlighted the importance ofdetailed dispersal data for the accurate pre-
diction of spread rates, there are few, if any, standardizedmethods for the measurement of dispersal. Katriona
Shea reported on recent efforts to standardize dispersal study designs. These include simulation models to
investigate the efficiency of different trap layouts; to assess the importance of trap areas, source strengths,
and dispersal geometry; and to compare the effectiveness oftrapping (Eulerian) and tracking (Lagrangian)
approaches. For thin-tailed dispersal data, transects were especially effective, but for fat-tailed data sec-
tor sampling was more effective. Under constant environmental conditions tracking of seeds often required
smaller sample sizes than trapping for reasonable goodnessof fit. At the same time, tracking data, which
is often of limited duration, is more susceptible to error from autocorrelation in the environment. Dispersal
models based on limited samples should be used with caution in population dynamics.

Mountain pine beetle attacks on lodgepole pine are a major problem for forests in the western United
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States and, more recently, in Alberta and British Columbia.James Powell began by describing the ecol-
ogy and phenology of pine beetles [12]. The development of mountain pine beetles is under direct thermal
control, and success of attack depends upon the beetles’ ability to emerge simultaneously at an appropriate
time of year [19]. Before 1995, data on outbreaks in SawtoothValley in Idaho showed a declining period-
two oscillation, but since 1995 data show exponential growth in the area of infestation. To describe these
outbreaks, Powell developed a discrete-time model, the Red-Top Model, in which the pines are divided into
three age classes. Two key parameters were estimated from the data. The presence of an Allee effect makes
the calculation of the invasion speed difficult, even with good dispersal data. Predicted spread speeds match
data for Sawtooth Valley, but are too low for current BritishColumbia outbreaks. Other factors such as wind
dispersal and global warming may account for this discrepancy.

The most common method of harvesting forests is clearcutting, which presents a challenge to species that
live in the forest, for example, tree squirrels in the dry interior forests of British Columbia. Rebecca Tyson
presented a model for recolonization that includes a habitat quality depending on time since clearcutting. The
model includes migration between patches and a patch selection function. Tyson applied the model to tree
squirrels in both a two-patch system (mature and second growth forest) and a four-patch model that includes
edge effects. In the latter case recolonization can take more than twice as long as forest regeneration. If
the recutting schedule in based only on forest regeneration, then it is quite possible that even small mammal
populations living in the forest are still a long way from recolonization.

Development of New Models and Their Analysis

Are generalist predators effective biological control agents for invasive species? Chris Cosner described a
model for an invasive leaf miner and a generalist parasitoidthat attacks the leaf miner but that can survive
without the leaf miner. Each species has its own carrying capacity, but there is a Holling type-II predator-prey
term that links the dynamics of the two species. In addition,both species diffuse. The resulting reaction-
diffusion model predicts a number of possible outcomes, depending on the parameters of the model. In some
cases, there are pulled waves of leaf miner invasion. For other parameters, the predator induces an Allee
effect in the prey and the leaf miner invades by means of pushed waves. Finally, the predator may prevent
invasion by the leaf miner altogether. Cosner used this model to focus attention on the factors that lead to
effective biological control by generalist predators.

William Fagan continued the theme of predator-prey interactions in ecological invasions by summarizing
recent experimental and theoretical work on native herbivorous insects that attack invasive lupine plants at
Mount St. Helens, Washington, USA [7]. Detailed data on the life history and interaction of the lupine
and its herbivores have been used to parameterize a system ofstage-structured integrodifference equations
for the recolonization of the volcano’s primary successional landscape. A key ingredient of these models is
the presence of inverse density-dependent herbivory: herbivores that attack high-density patches of lupine
encounter low nutrient quality and high toxicity. A preliminary analysis of this model suggests that Allee
effects in the predator play a pivotal role and that too much plant “invasion momentum” prevents the herbivore
from reversing the plant invasion. Fagan described the implications of this work for successional dynamics
and the biological control of invasive species.

Species persistence in river ecosystems is a subject of ongoing concern, especially as these ecosystems
are affected by human disturbance. Individuals in rivers and streams are subject to downstream-advection in
their environment. The somewhat surprising observation that species can persist in such environments even
though the individuals cannot actively move against the advection has been termed the “drift paradox” in the
ecological literature. Mathematical models for populations in environments with unidirectional flow, such
as rivers and streams, can be used to analyze conditions under which species can persist. In particular the
models allow us to analyze the consequences of movement behaviour of individuals with respect to invasion
speed and critical domain size. As shown by Lutscher and coworkers in a series of papers [15, 18], it turns out
that these two ecological quantities are related as follows: If the advection speed is so large that the critical
domain size approaches infinity, then the population cannotinvade upstream, and vice versa. As shown by
Lutscher, it is possible to extend one simple model to include spatial heterogeneity, given by a “pool-and-
riffle” environment in a river, and study the model with respect to persistence and travelling periodic waves.
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Collaborative Research, Interchange and Open Questions

The workshop was the ideal venue for discussion and collaborative interactions. For every 50 minutes of
lecture there was at least 30 minutes of formal discussion time. This was supplemented by more informal
discussion in the afternoons. The afternoons were also usedfor informal “breakout sessions” in which groups
discussed subjects such as: how to estimate observed population spread rates from data, and the formulation
and analysis of stochastic models for population spread.

Collaborative research groups tackled specific applied problems where biological questions and mathe-
matical theory came together. For example, two separate groups started work on deriving a simplified model
for plant-insect recolonization interactions on the Pumice Plains region of Mt. St. Helens. The ideas for these
groups followed on from the ideas presented in the talks of Bill Fagan and Steve Cantrell (above).

The organizers asked that workshop participants submit informal “open problems” as a basis for the final
discussion for the workshop. The list appended shows the breadth and depth of the issues addressed at the
meeting.

Discussion Questions

We invited workshop participants to submit open questions in the area of biological invasions. These open
questions were the foundation for our discussion on the finalday. A list is given below.

Mathematical Theory

1. Can we come up with a general theorem on the existence of spread rates, even when systems are not
cooperative? (Hans Weinberger)

2. Just as there are well-known precisely defined kinds of stability, applicable to classes of dynamical
systems, someone (if they haven’t already done so) ought to come up with general well-defined no-
tions of invadability of a given ecological community by another given community, which are appli-
cable to broad classes of evolutionary population dynamicsmodels. In the case of models of spatially
distributed populations, some but not all of these definitions would involve propagative ideas (well
represented in this conference). These definitions of invadability would be mathematical, but of course
clearly tied to concrete events. Example: systems with travelling fronts connecting two “stable” con-
stant states—the state being invaded could be considered invadable according to one definition, but not
if something like the hair trigger effect is required. (PaulFife)

3. Find a framework in which to study travelling waves for non-monotonic evolutions. Maybe take a
clue from physics; there has been a lot of work, usually not rigorous, on non-monotonic invasions,
sometimes invasions of or by a spatially or temporally oscillatory state. (Paul Fife)

4. I wish we would have a clear definition of an accelerating front. (Karl Hadeler)

5. What error does one commit (with respect to critical domain size (leading eigenvalue) or speed of
fronts if one replaces a kernel by its diffusion approximation? (Karl Hadeler)

6. Is there any scaling (cf. Paul Fife’s comment on Barenblatt: long time, but not too long) of time
and/or space that would make a fat kernel biological meaningful. Remember: you try to investigate
the behaviour of a front for large time at distant space positions and at the same time you assume that
the fat kernel reaches to infinity with high probability. No wonder there is singular behaviour. (Karl
Hadeler)

7. How quickly do invasions reach the wave speed c*, what roledo transients play, and how do demo-
graphic and dispersal contributions shift as an invasion progresses? (Kat Shea)

8. What to do about overcompensation? (Mike Neubert)

9. What is the biological interpretation of the condition for invasion in the bistable equation? (I.e.∫
f(x)dx > 0?) (Mike Neubert)
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10. Why hasn’t any mathematician written a paper, in plain language, that lays out exactly what we know
about rates of spread in population models, exactly what we don’t know, and and exactly what we wish
we knew? (This last part will be different for mathematicians and biologists.) (Mike Neubert)

11. What happen if we don’t have a cooperative system? Can we still define an invasion speed? Mathe-
matically, this is very challenging as Prof. Weinberger pointed out. The phenomenon of accelerating
waves that Jan talked about is also very interesting. (RogerLui)

12. Difference integral equations can formally be written as double integral equations using the Dirac mea-
sure in time concentrated at one. Jan Medlock’s epidemic model with movement via an integral kernel
can formally be transformed to a double integral equation with a Dirac measure in space concentrated
at 0. (Horst Thieme)

13. Can the double integral equation theory be extended fromLebesgue densities to more general measures
such that these models are not only formally covered, but become actual special cases? (Horst Thieme)

14. If a multi-species or multi-stage system is cooperative, certain useful results follow. If it is not, no one
knows quite what to expect. Faced with this situation, some students of invasion (like me, for instance)
go ahead and calculate properties of wave speed anyway. Thisreliance on faith seems touching, but
dangerous. So, are there any calculations (hopefully simple) that would support one’s belief in the
existence of a wave, with a speed, in the absence of a demonstration of cooperativity? An obvious
possibility would be a numerical simulation for a specific set of parameters, but does this really provide
much comfort? Are there other, less obvious, calculations?If so, what are they? (Hal Caswell)

15. Is it true that the flows of integrodifferential equations do not compactify (although they may contract
with respect to measures of non-compactness) and hence their qualitative analysis is technically more
difficult than that of reaction diffusion equations ? (Karl Hadeler)

Development of the Interface Between Model and Data

1. Should we be paying attention to correspondence between projected spread rates and observed spread
(from field data)? When an for what kinds of questions? Under what conditions should we de-
emphasize this comparison? What can we learn from it? (Ingrid Parker)

2. Can some of the complicated behaviour seen in plant-herbivore invasions on Mt. St. Helens be dupli-
cated in simple models with a couple of PDEs or integro-difference equations? (Chris Cosner)

3. Patchy spread with more than one species motivated by the Mount St Helens system. This would
involve something like random draws from a dispersal kernelin which a dispersed individual of species
X starts a patch where it lands, which then starts to grow radially. The same type of process then occurs
for species Y, but Y only succeeds if it lands on one of the patches of species X. Once a Y landed on a
patch of Xs there would have to be some submodel for local growth of Y plus rules for how the newly
founded patches of X and Y started sending off their own dispersers (or not). (Bill Fagan)

4. It seems that we lack a proper framework for 2D (and 3D) phenomena. Not only are the problems
solved in 1D, but even questions are asked in a 1D shape (speedof invasion). The issue is first to know
whether things essentially stay the same in 2D or not, and if not, in which shape can we ask the relevant
ecological questions in 2D ? (Amaury Lambert).

5. There seem to be several open questions surrounding the choice of dispersal kernels to use in a model.
These are of a more technical nature and not grand theoretical questions. What kernels are appropriate
for a given dispersal mechanism(s). What are the appropriate statistics to use to estimate parameters
in kernels. Most of what I am aware of in this area treats the kernels as mere statistical models and
doesn’t take into account the mechanisms. Surely there is a way to combine experiments on individuals
(tracking) with experiments on populations (tracking). What is to be done with outliers, or extreme
events. Should they be used in estimating a dispersal kernel, or treated differently in a model. Eg, an
integral equation model with either rare events as initial conditions or as a stochastic (rare) forcing.
(James Watmough)
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6. Given that long distance dispersal events are hard to quantify and measure, due to their stochastic
nature, and that the effect of this data on the resulting dispersal kernel: little on parametric kernels; and
large on spline type kernels, is unsatisfactory (Clark). How can this be resolved with the importance
of LDD events on spread rate and wave speed (Neubert, Caswelletc)? Following Shea and Bullock’s
optimization method, can this be extended to determine the amount of effort that is worth expending
on collecting LDD? Or should mechanistic models be investigated more fully? (Caroline Bampfylde)

7. Should we be paying attention to correspondence between projected c* and observed spread? When
and for what kinds of questions? When should we de-emphasizethis comparison? What can we learn
from it? (Ingrid Parker)

Development of New Models and Their Analysis

1. “How much is enough?” There is a spectrum from simple mathematical toy models to highly complex
simulation models, and similarly there seem to be simple field experiments and highly complicated
ones. How much of all this information do we really need to understand and to make informed deci-
sions? (Frithjof Lutscher)

2. Is there a simple model that can be used to determine conditions under which the intrinsic stochasticity
in dispersal and environmental conditions make it impossible to estimate a spread rate with reasonable
certainty? (Mark Lewis)

3. What happens in coinvasions or successive invasions involving prey and generalist predators or suites
of predators? (Chris Cosner)

4. One of the main features of the Mt.St. Helens lupine-moth interaction is that moth feeding success is
much higher on small lupine patches than it is on larger patches.In part the reason is that the nutrient
content of larger patches is lower; however,the larger patch lupines appear to generate a substance
that is toxic to the moth. It seems to me that one possible way to model such a scenario is to think
of the interaction as predation at low resource levels and ascompetition at high levels. What are the
implications for such a formulation regarding the invasionof consumer and resource across a spatial
landscape? (Steve Cantrell)

5. I gather Okubo did something on invasion into a competitor, which I still have to find and read, but
I’d be interested in how the degree of similarity between invaders and natives mediates invasion wave
speed. Also, how the presence of different types of natural enemies in such competitive systems (gen-
eralists, specialists on the invader or on the native) wouldalter the dynamics. (Kat Shea)

6. Amaury Lambert and I talked about the following branchingprocess problem, again based on the
Mount St Helens system. The branching process considers howpatches give rise to new patches (at
rate B) and how patches are terminated by the herbivores (at rate D) There are old analytical results
governing the probability of failure of the whole colony if Band D are constants. But consider the
following scenario: After a patch is founded it continues togrow locally in size in addition to having
the possibility of founding new patches. One way of treatingthis idea is to have B be some increasing
function of patch age (the time since that patch was founded). Patch termination rate D would also have
to be an increasing function of patch age to counter the increasing rate B and maintain the possibility for
process failure. The interesting scenarios are ones in which B and D have different shapes, including
the case where D is hump shaped (increasing faster than B for young ages but then below B for long
ages [to capture the decline in lupine tissue quality]). This would be complicated analytically so one
possibility would be to rephrase the problem as a hierarchy of branching processes where at the fine
scale individuals give birth to other individuals (at a constant rate B) but the D term operates against
whole “limbs” (i.e., patches) of the process. There is a relevant book on this type of system called
“Modelling extinction” which deals with theoretical treatments of extinctions in the fossil record trying
to find ways of studying mass-extinction processes like those found in the geological record using
mathematics. (Bill Fagan)
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7. Analytically treat the case of co-invasions of predator and prey in the integrodifference case even if it
is not tractable for PDEs and thus falls outside of the Weinberger-Li-Lewis general theory. (Bill Fagan)

8. Treat analytically cases where species interactions manifest through changes in each others movement
terms rather than through the growth terms. So what is the effect of a mutualist like a seed disperser or
a natural enemy like a seed predator on invasion success or wave speed. (Bill Fagan)

9. The focus is overwhelmingly on deterministic models (even if they sometimes have to be interpreted as
integrated stochastic models). However, the role of stochasticity (demography but also dispersion) is
ubiquitous in ecology and has not to be missed, at least because you might ask what is the probability
that an invasion will succeed. The recent interest of some ofthe audience into branching random walks
instead of PDE or IDE (Kot, Medlock, Reluga, Neubert, Caswell...) suggests that the community is
mature for dealing more often with stochastic versions of known models, but also hopefully with truly
new stochastic models. (Amaury Lambert)

10. Stochastic models - especially random environment and how they affect invasion speed. Prof. Hadeler
mentioned in his talk that a lot of work has been done in this area but I am unaware of any papers on this
subject. Is this related to LDD that Prof. Clark talked about? (I am not talking about nonhomogeneous
environment.) (Roger Lui)

11. A more complete theory of the functional response is needed that takes into account: use of a spa-
tially distributed resource, and the effects of multiple predator and prey species, and does not assume
dispersal, reproduction and predation are independent. (James Watmough)

12. I’m wondering how much we can learn about predator invasions from what is known about epidemiol-
ogy. For example, we know that a susceptible population at K but spreading outwards can be invaded
by a pathogen in the interior and the wave of infecteds will follow the wave of susceptibles, etc. We
also know that for the disease, R0¿1 can invade and that immunization can reduce the density of sus-
ceptibles below the level necessary for an epidemic. (KevinDrury)

13. How can integro-differential equation models for disease spread best be used to model disease control
strategies? (Pauline van den Driessche)

14. If we consider a population where females and males disperse differently, is the spread speed of the
travelling wave determined by the parameters of the less-readily dispersing sex? (Rebecca Tyson)

15. What proportion of “attempted” invasions fail, and how does invasion failure fit into the framework of
wave speeds via the linear conjecture? Is it simply that failure is due to an overall negative growth rate,
or should we be looking for threshold effects, which do not allow the use of the linear conjecture? There
was some discussion to the effect that many invasions do fail, or require multiple initiating events, so
this would appear to be a common feature. (Markus Owen)

16. What do our models tell us about types of intervention that may be desirable? E.g. control measures or
conservation measures. (Markus Owen)

17. One thing I was thinking about was types of models other than PDEs. Alan Hastings briefly mentioned
cellular automata and interacting particle systems in his 1996 Ecology paper. I think that there is some
analytical theory concerning these approaches - it’s not just all simulation.

Also these approaches might be more amenable to incorporating detailed landscape data into a model.
With all the GIS data that there must be now, this might be worthwhile. (Andy Edwards)

18. My question has to do with can we identify the extent to which dispersal makes a species a better
invader. Most ecologists normally think that dispersal is aplus but (1) during establishment, dispersal
may amplify the effects of an Allee effect and decrease establishment rates (2) If range expansions
functions via formation of coalescing colonies (e.g. Shigesada et al) then dispersal may decrease the
rate of colony establishment (again by magnifying Allee effects) and thus lead to lower rates of spread.
I guess the big question is when does dispersal have these negative effects. (Sandy Liebhold)
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19. Some plants produce fruits with a surplus of nutrient in order to attract spreaders (apple), others produce
seeds with just the right amount for germination but they produce much more seeds than they can ever
be expect to be dispersed in order to attract spreaders by themere amount (acorn). In such cases most
seeds fall very close to the parent plant and the actual dispersal happens later. Dow we know how
to average over positions of located seeds to get the true dispersal pattern? Does standard sampling
underestimate dispersal rates ? (Karl Hadeler)

20. An invader that is rather similar to existing species (example leaf miner) can be sure that the per capita
mortality caused by a generalist predator does not exceed that of its competitors. Is it true that its
invasion success will largely depend on exploitation of resources and reproduction and not so much on
predation? In other words, can it hide amongst its competitors? (Karl Hadeler)

21. Is it true that Europeans should not bother about invaders since their flora (and perhaps fauna) is rela-
tively poor in comparison to North America? (Karl Hadeler)
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Generalizations of de Bruijn Cycles and
Gray Codes (04w5039)

December 4–9, 2004
Organizer(s): Brett Stevens (Carleton University), Joe Buhler (Reed College), Persi Di-
aconis (Stanford University), Fan Chung Graham (University of California, San Diego),
Ronald Graham (University of California, San Diego), FrankRuskey (University of Victo-
ria)

Introduction

The Banff International Research Station workshop on “Generalizations of de Bruijn Cycles and Gray Codes”
was held the 5-9 Dec. 2004. We had many wonderful talks, open problem sessions, informal discussions. This
workshop was a wonderful opportunity for many researchers in the breadth of this area to meet and exchange
ideas. What follows is an outline of the talks, their abstracts, some summary of the informal discussions and
a summary of the open problems discussed.

Sunday 5 Dec. 2004

Frank Ruskey, University of Victoria
Title: “Gray Codes, Polyominoes and Distributive Lattices”
Joint work with Stirling Chow.
Abstract: A polyomino is a configuration of unit squares in the plane. Squares are joined along their edges
and the configuration may not contain holes. In this talk we consider two topics on polyominoes: Gray codes
for polyominoes and Venn diagrams of minimum area constructed from polyominoes.

The Gray codes that we consider are for column-convex polyominoes, which are those whose intersec-
tions with vertical lines are connected. In the code successive polyominoes differ by the movement of one
square. These Gray codes have interesting connections withcertain classical distributive lattices studied in
algebraic combinatorics, particularly with regard to questions of rank unimodality.

A Venn diagram is a collection of n simple closed curves (e.g., the outlines of polyominoes) whose2n

possible interior intersections are all non-empty and connected. A Venn diagram whose curves are polyomi-
noes has minimum area if every intersection of curve interiors is a unit square, with the exception of the empty
set. Previously they were known to exist only forn <= 4 polyomino curves; we give examples showing that
they exist up ton = 7 polyomino curves, and give an approximation algorithm to construct them with close
to minimum area for alln.

236
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Aaron Williams , University of Victoria
Title: “A Gray Code that Knuth Missed”
Abstract: While studying a pre-fascicle of Donald E. Knuth’s new volume of ”The Art of Computer Pro-
gramming” the authors discovered a new Gray Code for generating combinations. The Gray Code is remark-
ably simple to describe, has several interesting properties, can be implemented with an efficient loop-free
algorithm, and will ultimately appear in Volume 4 of the ”Artof Computer Programming

Robert Johnson, Queen Mary University of London
Title: “Long Cycles in the Middle Two Layers of the Cube”
Abstract: Let Br be the graph formed by the middle two layers of the discrete cube of dimension(2r +
1). That is the vertices ofBr are ther-sets and the(r + 1)-sets of ann-set, with vertices adjacent if the
corresponding sets differ in exactly 1 element.

It is a well-known conjecture, probably due to Havel, that the graphBr is Hamiltonian for allr. This is
know to be true only forr ≤ 15. For larger values ofr even finding long cycles inBr seems to be hard. The
best previous result (due to Savage and Shields) being that acycle through 86% of the vertices always exists.

In this talk we describe a construction of cycles inBr which contain a proportion1−o(1) of the vertices.
One of our tools, giving a Hamilton cycle in the cube with the minimum number of ‘changes of direction’,
may be of independent interest.

Megan Dewar, Carleton University
Title: “Gray Codes of Block Designs”
Abstract: The study of the presence or absence of configurations among consecutive blocks in an ordering
of the blocks of a design was initiated by M. Cohen and C. Colbourn in 2003. A(n, l)-configuration is a set
system withn elements andl sets in which every element is contained in at least one set. LetC be a collection
of configurations, each havingm sets. LetS = (V,B) be a design. AC-ordering ofS is a list containing each
block ofS exactly once, with the property that everym consecutive blocks form a configuration isomorphic to
one inC. In this presentation we survey the known results inC-orderings. Many of these results appear under
other names or in other fields. We “translate” these results into the language ofC-orderings. In the second
part the talk, we present a new result: forv ≥ 132, all (v, 3, 1)-designs admit a hut-ordering. Finally, we
discuss the relationship ofC-orderings to universal cycles. LetB4 represent the configuration of three triples
forming a path and letB5 be the configuration of triples forming a triangle. We show that a{B4, B5}-cyclic
ordering of a triple system is exactly a Ucycle for the triplesystem.

Monday 6 Dec. 2004

Hal Fredricksen, West Point Naval School.
Title: “The Classical de Bruijn Sequence Problem”
Abstract: de Bruijn sequences and de Bruijn graphs have been studied for considerably longer period than
previously thought. There existence was first shown by Flye-Sainte. Marie in 1896 and enumerated by him.
Their generation via primitive polynomials was known by Mantel in 1897. With their rediscovery by de
Bruijn and Good in 1944 their study began to grow. Algorithmsfor the generation of these sequences became
popular and eventually the first algorithm due to Martin in 1934 was rediscovered. A history of the problem
can be found in Fredricksen (SIAM Review, V. 24, # 2, April 1982).

In Figure 39.1 we present a Mind Map of the relationships between the de Bruijn graph and the sequences
(Hamilton cycles) in the graph and the decomposition of cycles by the weight of the shift register truth tables
that provide for their generation. We give a partial annotation of the Mind Map:

There are 3 areas of study in de Bruijn Graphs/ Sequences:

1. de Bruijn Graphs

2. de Bruijn Sequences

3. The Weight-Cycle Diagram

The mind map in Figure 39.1 shows connections between these topics:
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,

Figure 39.1: A Mind Map of de Bruijn Sequences and their relatives

1. Shift registers and Combs (multiple Eulerian Cycles) connect 1 & 2.

2. Cycles in the de Bruijn graph connect 1 & 3

3. de Bruijn sequences form the left boundary of 3

4. Maximum cycle decompositions of 2 from the right boundaryof 3

The graphs (1)are the superposition of adjacency quadruples that connectvertices in the graph via the shift
register connections.

There exist many ways to draw the graph and since it rapidly becomes non-planar and complex these
methods (recursive techniques, Best diagram, m-pires, etc) become more important for the graph’s study.

Graphs are also a representation as a Trellis for Trellis Coding, Viterbi Algorithm, etc. and also provides
a nice model of a Markov Process.

Other authors have considered questions of a representation on a higher genus surface (Hales & Butler)
and have numbered the graph (Hales & Jewett, Harper).

The graph has many cycle decompositions and decompositionsinto equal length cycles which provide
the impetus for several parlor games and puzzles. Other authors have considered the questions of covers and
packings of the graph by maximum independent sets.
The de Bruijn Sequences (2)have a rich and growing history.

A number of elegant algorithms for their generation have been discovered, dissected and improved, pri-
marily the Greedy (Prefer 1s algorithm) and the Lexicographic Compositions (Prefer Sames algorithm).

Some algorithms relate to generation by shift registers (a connection between 1 & 2) and various cycle
joining algorithms , e.g. Roth.

Some are elegant combinatorial algorithms – Greedy, prefer1s, prefer sames, lexicographic compositions,
and those of Ralston and Lempel & Etzion as well as generalizations such as the key sequence theorem of
Golomb & Welch.
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Properties of Randomness make the de Bruijn sequences attractive especially their pseudo-random prop-
erty and the complexity measures on sequences studied by Kolmogorov/Chaitin, Schnorr, Micali, Maurer,
etc.

Complexity of the sequences has been studied by a number of authors including Ziv-Lempel, Reuppel,
Games, Chan & Key, and thek-ary complexity profile offers an intriguing possibility for the analysis of these
sequences

Persi Diaconis, Stanford University
Ronald Graham, University of California, San Diego
Title: “Some Magic”
Persi Diaconis performed a card trick and discussed the application of universal cycles to card tricks. Both
Persi Diaconis and Ronald Graham discussed several open problems which are discussed in Section 39

Informal session: Applications

• Magic tricks

• Erasure correcting codes

• Statistics (permutation tests and randomization procedures)

• Computational efficiency

• analog to digital conversion

• Gray codes and repeated measure designs

• Gray codes with optimized run lengths and light detectors.

• Literary uses of combinatorial orderings

There was also some discussion of various implementations of Gray codes including the various puzzles that
incorporate Gray codes, hardware implementations and software implementations.

Brett Stevens, Carleton University
Title: “The Mathematics of Freedom and Constraint”
Abstract: We examine Beckett’s playQuad. One previous interpretation ofQuadexamines the geometry
of movement and suggests a Purgatorial image of simultaneous movement towards and away from God and
freedom. We look at the combinatorial aspects of the play andwith support from Beckett’s other works we
suggest a combinatorial analog of this simultaneity of freedom and constraint. Along the way we define a
Beckett-Gray codewhich has utility in computer science and computational efficiency.

Eduardo Moreno, University de Chile
Title: “de Bruijn Sequences for General Languages”
Abstract: Let be a language composed by all words of a given lengthN . A de Bruijn sequence of spanN is
a cyclic string such that all words in the language appears exactly once as factors of this sequence. This talk
shows how to generalize the concept of de Bruijn sequence fora language composed by a subset of words of
lengthN , particularly the languages of all words of lengthN without factors in a list of ”forbidden factors”.

We characterize for which languages of words of lengthN there exists a de Bruijn sequence, and we
also study some symbolic dynamical properties of these languages, particularly of the languages defined by
forbidden factors. For these kinds of languages, we presenttwo algorithms: one to produce a de Bruijn
sequence, using the Lyndon words of the language, and another to construct the lexicographically minimal
de Bruijn sequence. These results use the notion of de Bruijngraph and reduce the problem to construct an
Eulerian cycle in this graph.

Anant Godbole,East Tennessee State University
Title: “Birthday problem with Dependence”
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Abstract: Suppose that then-tuple X is created by randomly selecting each bit to be 0 or 1 with equal
probability. What is the chance that then corresponding consecutivek tuples are distinct? We exhibit the
fact that there is a sharp threshold atk = 2 log2 n. Several open problems will be discussed. This is joint
work with Tom Intardonato and Garth Fine.

Tuesday 7 Dec. 2004

Glenn Hurlbert , Arizona State University
Title: “UCycles and Recent Results for(n− k)-Subsets of ann-Set”
Abstract: We present a historical survey of Universal Cycles and some new results. We discuss the smallest
repetition factor required so that Ucycles of thek-subsets of andn-set exist fork = 5, 6 and fork close ton.
We present results that show that the length of packing and covering universal words for thek-subsets of and
n-set are asymptotically optimal. We finish by discussing de Bruijn Tori and other manifolds.

Brendan McKay, Australian National University
Title: “untitled”
Abstract: Imagine a marine biologist is testing various treatments onplants. He hangs specimens around the
edge of a circular tank. There is a distance two neighbor effect. How can the plants be arranged so that this
neighbor effect can be controlled for. Three variants of theproblem ask for

• A circular list onn elements of lengthn2 such that each ordered pair occurs exactly once at distance 1
and distance 2.

• A circular list onn elements of lengthn(n− 1) such that each ordered pair of distinct elements occurs
once at distances one and two.

• A circular ordering onn elements of lengthn(n − 1)/2 so each unordered pair of distinct elements
occurs once at distances one and two.

The first of these problems has some relationship to quasigroups. The second can be solved cyclically with
starters for some classes ofn mod 8. The third problem requires thatn be odd and also have been solved
cyclically for manyn.

Karel Casteels, University of Waterloo
Title: “U Cycles of n-1 Partitions of n-Set”
Abstract: In 1992 Chung, Diaconis and Graham generalized de Bruijn cycles to other combinatorial families
with universal cycles. Universal cycles have been investigated for permutations, partitions,k-partitions and
k-subsets. In 1990 Hurlbert proved that there existed at least one Ucycle of(n − 1)-partitions of ann-set
whenn is odd and conjectured that whenn is even, they do not exist. Herein we prove Hurlbert’s conjecture,
and establish algebraic necessary and sufficient conditions for their existence. We enumerate all such Ucycles
for n ≤ 13 and give a lower bound on the total number for alln. Additionally we give ranking and unranking
formulae. Finally we discuss the structures of the various solutions.

Brad Jackson, San Jose State University
Title: “A Recursive Construction for U Cycles of 2-Subspaces”
Joint work with: Joe Buhler, Centre for Communications Research, La Jolla/Dept. of Math, Reed College,
Portland, OR and Ray Mayer, Dept. of Math, Reed College, Portland, OR.
Abstract: Let F = GF (p) be a finite field and suppose thatFn is ann-dimensional vector space overF .
We denote byG(k, n), the set ofk-dimensional subspaces ofFn. We see that

|G(k, n)| = m(k, n) =
(pn − 1)(pn − p)(pn − p2) · · · (pnpk − 1)

(pk − 1)(pk − p)(pk − p2) · · · (pk − pk−1)
.

A universal cycle of thek-subspaces is a circular arrangement ofm(k, n) elements ofFn, C = v1v2v3 . . . vm(k,n),
such that everyk-subspace ofG(k, n) has exactly one basis that is a block ofk consecutive elements ofC.
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We know thatFn∗ = Fn \ {0} is a cyclic group. Denote byxn, the generator ofFn∗ = 〈xn〉 =

{(xn)j |1 ≤ j ≤ pn−1}. In particular, take a generatorx3 of F 3∗. Thenx3, x
2
3, x

3
3, , x

m(1,n)
3 is a simultaneous

universal cycle ofG(1, n) andG(2, n), thusG(2, n) = {〈xj
3, x

j+1
3 〉|1 ≤ j ≤ m(2, n)} andG(1, n) =

{〈xj
3〉|1 ≤ j ≤ m(1, n)}. Let n ≥ 3 be any integer and assume thatC = v1v2v3 . . . vm(2,n) is a universal

cycle ofG(2, n) that satisfiesG(1, n) = {〈vj〉}. We give a recursive construction, which proves the following
theorem that universal cycles of the 2-subspaces of a finite vector space always exist.

Theorem: For alln ≥ 3, there exists a universal cyclev1v2v3 . . . vm(2,n) of G(2, n) such thatG(1, n) =
{〈vj〉} (with repetition allowed).

Similar constructions may exist fork > 2, as long as one can construct a simultaneous universal cycleof
(k−1)-subspaces andk-subspaces ofF 2k−1 to start with. For some small finite fields simultaneous universal
cycles of 2-subspaces and 3-subspaces ofF 5 have been constructed in an ad hoc manner.

Wednesday 8 Dec. 2004

Carala Savage, North Carolina State University
Title: “Enumeration of Sequences Constrained by the Ratio of Consecutive Parts”
Abstract: This talk will focus on a recurrence that arose in counting nonnegative integer sequences(a1, . . . , an)
satisfying the constraints:

a1

s1
≥ a2

s2
≥ · · · ≥ an−1

sn−1
≥ an

sn
≥ 0,

for a given constraint sequence[s1, . . . , sn] of positive integers. For which sequences[s1, . . . , sn] does this
recurrence have a nice solution? Examples related to lecture hall partitions, Cayley compositions, and binary
partitions will be presented.
Joint work with Sylvie Corteel and Sunyoung Lee.

Mark Weston University of Victoria
Title: “Half-Simple Symmetric Venn Diagrams”
Joint work with Charles E. Killian, Frank Ruskey and Carla D. Savage.
Abstract: A Venn diagramfor n sets is a collection ofn simple closed curves in the plane, with the property
that all 2n possible intersections of curve interiors and exteriors are present exactly once. AsimpleVenn
diagram, like the familiar three-circle diagram, has the property that at most two curves intersect at any given
point. Forn prime, a diagram can be rotationally symmetric: such diagrams have many nice properties as
well as being aesthetically pleasing. Until recently, symmetric diagrams were known up ton = 11, and
simple symmetric diagrams only up ton = 7.

A recent paper of Griggs, Killian, and Savage [Elec. J. Combinatorics, 11(1), Research Paper 2, 2004]
shows how to construct symmetric Venn diagrams for any primenumber of curves. The resulting dia-
grams contain

(
n

bn/2c
)

intersection points, with exactlyn points of intersection through which all curves
pass, whereas a simple Venn diagram contains2n − 2 intersection points.

Our work involved modifying their construction to give symmetric Venn diagrams with asymptotically at
least2n−1 intersection points, which we thus call “half-simple.” Thetechnique is to systematically add extra
intersection points by adding extra faces in the dual graph of the Venn diagram. Evidence suggests that the
number of intersection points is actually significantly more than half of2n: for example, the diagram con-
structed for 11 curves has 1221 intersection points. Previous research in several papers by Peter Hamburger
had found11-curve Venn diagrams with up to 1001 intersection points.

The question remains as to whether there aresimplesymmetric Venn diagrams forn prime and greater
than 7; even the then = 11 case remains open. It would also be interesting to prove an upper bound on the
number of symmetric Venn diagrams.

Kevin O’Bryant University of California, San Diego
Title: “The Density of the Outputs of Linear-Shift Registers”
Joint work with Joshua N. Cooper and Dennis Eichhorn
Abstract: For constantsd, a1, . . . , ad, define the 0-1 sequence (withn > 0)

f0 = 1, f−n = 0, fn = a1fn−1 + a2fn−2 + · · ·+ adfn−d (mod 2).
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This is a linear shift register, and it is known that for some choices ofai the output sequence(fn) is a reduced
de Bruijn cycle. In this case, the sequence is 1 and is 0 with nearly equal density. How lopsided can the
densities be when the output is not a de Bruijn cycle? We give probabilistic heuristics that the density of ‘1’
in the output is usually near1/2. We also the consider nonlinear shift registers with theai defined by certain
number-theoretically interesting sequences, such asai = 1 if i is a perfect square, andai = 1 if the binary
expansion ofi contains an even number of ‘1’s.

Joshua Cooper, New York University
Title: “Cycles for Other Shapes of Sliding”
Abstract: For a set of integersI , we define aq-ary I -cycle to be an assignment of the symbols 1 through
q to the integers moduloqn so that every word appears on some translate ofI . This definition generalizes
that of de Bruijn cycles, and opens up a multitude of questions. We address the existence of such cycles,
discuss “reduced” cycles (ones in which the all-zeroes string need not appear), and provide general bounds
on the shortest sequence which contains all words on some translate ofI . We also prove a variant on recent
results concerning decompositions of complete graphs intocycles and employ it to resolve the case of|I| = 2
completely.

Thursday 9 Dec. 2004

Brett Stevens, Carleton University
Title: “Literary Orderings”Abstract: We survey the uses that orderings, combinatorial and otherwise, have
in Literature. We discuss the Oulipo, Borges, Cortazar, Beckett, and others.

Open problems presented during the workshop

Anant Godbole
Problem: Consider a graphG = G(k, d, s) with the vertex set consisting of allk-letter “words” over an
“alphabet” of sized. Furthermore, there will be an edge between verticesv 6= w iff the lastk − s letters ofv
are the same as the firstk − s letters ofw or the firstk − s letters ofv are the same as the lastk − s letters
of w. In this note, we show thatG is Hamiltonian for all non-trivial values of the parameters. This fact could
have been proved on using the standard method, or an extension of the ingenious greedy algorithm proof due
to Fredricksen and Maiorana. We offer, however, a proof based on induction on the alphabet size. It is our
hope that this method may be of use to exhibit the existence ofde Bruijn cycles in other contexts. OPEN
PROBLEM: Exploit this technique to its fullest.

Carla Savage
Problem: This is Knuth’s Open Problem # 106 in 7.2.1.2 of Volume 4 ofThe Art of Computer Programing.

A weak order is a relation� that is transitive and complete. We can writex ≡ y if x � y andy � x;
x ≺ y if x � y and y 6� x. There are 13 weak orders on three elements{1, 2, 3}. A weak order can be
represented as a sequencea1 . . . an whereaj = k if j is preceded byk ≺ signs. For example, the thirteen
weak orders on{1, 2, 3} are 000, 001, 011, 012, 010, 021, 101, 102, 100, 201, 110, 120,210, in this form.
For all such sequences of lengthn is there a Gray-like code for them?

Mark Weston
Problem: “Trotter Gray Code” Is there ann bit binary Gray code with the following extra condition: For
anyx, y ∈ 2[n] andx ⊂ y (where sequences are thought of as the incidence vectors of sets) thenx preceded
y in the Gray code, with at most one exceptions with immediately followsy in the code. For example:

0000, 0001, 0011, 0010, 0110, 1100, 1000, 1010, 1011, 1001, 1101, 0101, 0111, 1111, 1110

The motivation for this come from the fact that such a Gray code gives the chromatic number of the “double
shift graph”.

Joe Buhler
Problem: Let F = GF (p) be a finite field and suppose thatFn is ann-dimensional vector space overF .
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We denote byG(k, n), the set ofk-dimensional subspaces ofFn. The general problem is to find Universal
cycles forG(k, n) that are simultaneously Universal cycles forG(n−k, n). As a step in the direction of this,
for k < n/2, find a map

α : G(k, n)← G(n− k, n)

such thatX ⊂ α(X).

Ronald Graham
Problems:

• Find a minimal change ordering of all the solutions to Archimedes’s Stomachion puzzle.

• Show that

k|
(

n− 1

k − 1

)

is a sufficient condition for the existence of the universal cycles of thek-subsets of ann-set provided
thatn ≥ n0(k).

• de Bruijn Tori.

• Universal tori of thek-subsets of ann-set.

• de Bruijn Tori with different window shapes.

Persi Diaconis
Problems: Solve

1. Enumerate all sequences

2. Construct all sequences

3. Rank and Unranking problem

4. “cutting down problem”: can a sequence for a particular object be restricted to smaller order objects
and still have a minimal change property?

For the following problems:

• Universal cycles of permutations

• Universal cycles of set partitions

• Universal cycles of permutations with ties.

Conclusion

The workshop was an excellent and timely opportunity for diverse researchers to meet in a field which is
lively and growing. Thus it fulfilled its mandate well. The setting is beautiful, the facilities were excellent.
The participants were friendly and excited! We end with a note looking towards the future. The publisher
Elsevier and the JournalDiscrete Mathematicshave agreed to publish a special issue devoted to the topic of
this workshop. The Editors of the issue are Brett Stevens, Brad Jackson and Glenn Hurlbert. We look forward
to the exciting new results that will appear there and afterwords.
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Numeracy and Beyond (04w5044)

December 4–9, 2004

Organizer(s):Klaus Hoechsmann (Pacific Institute for the Mathematical Sciences), Tony
Gardiner (University of Birmingham), Bernard Madison (University of Arkansas), Yoram
Sagher (Florida Atlantic University), G̈unter T̈orner (University of Duisburg)

This was the conclusion of a two part workshop called Numeracy and Beyond begun at PIMS, Vancouver,
July 8–11, 2003, and intended not as a gathering of experts offering advice, but one of people with insight and
experience in mathematics and its promulgation, soberly examining the question of what level of numeracy
might be required of average citizens in the future, and how it would relate to the needs of engineers or
scientists.

The first priority was to identify key principles, which are simple, widely acceptable, and fundamental,
which could guide teaching and learning, and be largely independent of particular contexts. After detailed
presentations and discussions, touching on the various subjects involved, such as the decimal system, frac-
tions, statistics, measurement, graphics, geometry, etc., the following four points had emerged.

1. Cultivation of numeracy, though built on K–12 education,should continue through the college curricu-
lum in close cooperation with other disciplines.

2. Elementary mathematics, being the foundation of numeracy and impinging on many other fields, should
be taught with great care and learnt thoroughly.

3. Curricula should be sufficiently lean to allow deeper treatment of core topics; their goals should be
stated in concise documents with minimal adumbration.

4. Teachers should train to be “at home” in basic mathematics, if necessary at the expense of exploring
educational theory not closely related to teaching.

Their implementation was not seen as unproblematic. Given that numbers are indifferent if not repulsive
to many (especially Western) cultures, the cooperation mentioned in Item (1) would require considerable
effort. Furthermore, Item (3) would go against the almost universal tendency of administrations to issue
jargon-laden directives. Straightforward goals such as numerical competence are seldom addressed in to-
day’s curricula, which strive instead for “higher” and morenebulous ones. The race toward calculus inhibits
the practice of calculation. Overlaps between intended, implemented, and assessed curricula are progres-
sively shrinking (as can be observed even at universities),perhaps mirroring those between the communities
of mathematicians, teachers, and policy makers.

The retreat into educational theory, alluded to in Item (4),is as attractive to prospective teachers haunted
by “math anxiety” as it harmful to their future performance.However, it is quite legitimately encouraged
by Faculties of Education, who naturally see it in a positivelight. The resolution of this conflict was seen
as a key issue by most participants. Two avenues were described by people with experience in them, and
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they both involve the cooperation of mathematicians with a sense of what is relevant in schools: ongoing
professional development of teachers and joint seminars with teacher trainers. It was also remarked that
elementary mathematics could perhaps be presented in such away that its common sense roots are clearly
visible, so that teachers will learn to master it even without external training.

The greatest variety of interpretations was attached to theapparently innocuous word “thoroughly” in
Item (2). There is a growing recognition (cf.“ American Educator” Spring 2004) that for knowledge to
become long-lasting, sustained practice “beyond the pointof mastery” is necessary. Accordingly, many
participants felt that teaching should aim at grade-appropriate mastery, including conceptual grasp as well
as numerical fluency. While no one disagreed with the proposition that almost all young children have great
learning potential, there was some reluctance to have curricular goals defined by international comparisons,
such as the performance of Singapore children at Grade 8 (say, in TIMSS 1985). Underdeveloped (e.g., North
American) school systems would need time to catch up.

Older students would present even greater challenges, for starters their lack of interest. Here the most
common recommendations involved “real life” or “hands on” scenarios. Not all of them were geared toward
demonstrating improved numerical know-how, but one presentation showed what was possible, in terms
of producing actual, albeit modest, results by applying elementary arithmetic on spread-sheets to simple
(simulated) “real life” tasks in “hopeless” Grade 12 classes. This was a useful reality check for the initial
visions of wide-spread numeracy.

Like sports, mathematics could serve to equalize chances rather than accentuating differences. In par-
ticular, it can open the door to traditionally underrepresented groups into high-level technical professions.
If it can ever be made school proof, it will probably be—as in sports—through a return to its rigorous but
inherently attractive sources. These are mental—affected, but not altered, by technology.
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Resolution of Singularities,
Factorization of Birational Mappings,
and Toroidal Geometry
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Organizer(s):Dan Abramovic (Boston University), Edward Bierstone (University of Toronto),
Steven Dale Cutkosky (University of Missouri), Kenji Matsuki (Purdue University), Pierre
Milman (University of Toronto), Jarosław Włodarczyk (Purdue University)

The Workshop concentrated on research and goals in three main subjects –resolution of singularities,
factorization of birational mappings, and toroidalization of morphisms– as well as on interactions among
them. The morning sessions were devoted mainly to mini-series of three lectures each on the topics above,
given by Ed Bierstone, Kalle Karu and Dale Cutkosky (respectively). The first day began with an Overview,
by Dan Abramovich. There were ten additional invited lectures by participants.

This report includes an overview, the main themes, and a discussion of perspectives and challenges that
emerged during the course of the Workshop.

Overview

Toric geometry is the study of the rich and beautiful geometry of toric varieties, a fairly limited class of
rational varieties. Yet this subject interacts in surprising ways with the birational geometry ofarbitrary
varieties. A major focus of the workshop was this point of friction between the subjects.

Hironaka’s Theorem

Let us start with a raw statement of Hironaka’s theorem on resolution of singularities, as stated in Grothendieck’s
address at the 1970 International Congress [G]:

Theorem 41.0.1Let X be an algebraic variety over a field of characteristic 0, andU ⊂ X a nonsingular
dense open subset. There exists a nonsingular varietyX ′ and a proper morphismX ′ → X such that
f−1(U)→ U is an isomorphism andX ′ r f−1(U) is a normal crossings divisor.

As Grothendieck reported, it was soon recognized that Hironaka’s theorem is “not merely a platonic
result, giving belated justification for an outdated point of view of algebraic geometry. On the contrary, it is
a powerful tool, the most powerful tool we have for studying algebraic and analytic varieties.”
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Grothendieck goes on to list an impressive array of results we have come to take for granted, all relying
on Hironaka’s theorem. Clearly,

• Hironaka’s theorem is useful.

One other point which might get lost in Grothendieck’s remark is that:

• Hironaka’s theorem is a marvellously beautiful result.

Hironaka’s theorem is a bit stronger than stated above: the resolution of singularitiesX ′ → X is ob-
tained using a sequence of blowings-up of nonsingular subvarieties lying over the closed subsetX r U .
Grothendieck seemed to think that this is useless, with the exception of preserving projectivity. In hindsight,
we know that this is absolutely not true; for many reasons,

• the use of blowings up is essential.

This was one theme running through the workshop. It will be discussed below when we relate resolution
of singularities toprincipalization, and it is the central theme of the discussion offactorization of birational
mapsand oftoroidalization.

Classification of Results

Let us describe some ways we can divide results of these kindsinto classes:

1. We can classify by how well we preserve structure:

(a) We say that a desingularizationX ′ → X is dirty if it pays no regard to the integrity of the
nonsingular locusU ⊂ X.

(b) It is cleanif U remains untouched.

(c) It is canonicalif it commutes with formally smooth mapsU → X; namely, it is afunctor for
schemes with such maps.

2. We can classify by what we do toX:

(a) In general, a desingularizationX ′ → X is bymodification.

(b) But it is better to desingularize byblowings-upwith nonsingular centers.

3. We can look at the local picture:

(a) valuativedesingularization, generally known as “local uniformization”, versus

(b) globaldesingularization.

4. Finally, we havenon-embeddedversusembeddeddesingularization.

In characteristic 0, the work of Hironaka (1960’s) and Bierstone-Milman and Villamayor (last 20 years)
providescanonical, embedded global resolution of singularities byblowings-up.In the 1990’s there appeared
some proofs ofdirty non-embedded global resolution of singularities by modification. What could possibly
justify this? The point is that there was unfinished work to do, and new approaches were desirable. As we
shall see, some of the approaches and results rely heavily ontoroidal geometry.

Unfinished Work (1970)

Looking at Grothendieck’s address, we see that things were not quite neat and clean:

1. Nonzero charateristic: Resolution of singularities in positive and mixed characteristics was, and re-
mains, a major open problem. De Jong’s result –dirty non-embedded global weak desingularization by
alterationis good for some applications. The method of Bogomolov-Pantev reduces “dirty resolution”
to understanding:
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(a) resolution of a wild separable cover of a smooth variety,branched over a normal crossings divi-
sor;

(b) resolution of a purely inseparable cover of a smooth variety.

Several lectures in the workshop addressed exciting results and new approaches to the problem, as
we report below. Specifically for our theme, Teissier’s method reveals the deep importance of toric
varieties in the picture of general singularities.

2. Simplification: While Hironaka’s theorem on resolution of singularities [H] is beautiful and powerful,
its original proof was so difficult that few have read it, and its original statement left a number of
issues unanswered, even in characteristic 0. The current state of the art is very different – resolution
of singularities in characteristic 0 is now very well understood, as reported in Bierstone’s miniseries.
This is again discussed below.

3. Generalizations and applications: An ulterior motive for a thorough understanding of resolution of
singularities is given by the Toroidalization Conjecture.(See below.) This conjecture is motivated in
part by Hironaka’s conjecture onstrong factorization of birational maps.

Weak Factorization

Consider a birational mapf : X 99K X ′ of smooth complete varieties over an algebraically closed field of
characteristic zero, which is an isomorphism on an open setU ⊂ X.

Theorem 41.0.2 ([AKMW, W3])The birational mapf can be factored as

X = X0 99K X1 99K · · · 99K Xn−1 99K Xn = X ′, (41.1)

where eachXi is a smooth complete variety, and eachXi 99K Xi+1 a blowing-up or blowing-down at a
smooth centre that is disjoint from the open setU .

Comparing with our discussion of Hironaka’s theorem, we cansay that:

• The theorem is quite useful.

• It is quite nice, but we are not fully satisfied – see below.

• It is not too difficult, given canonical resolution, which isessential.

This theorem is one point where toric geometry has so far beenabsolutely essential, and quite surprisingly
so [W2].

Strong Factorization

In order to get a marvelously beautiful result, we want a stronger result:

Conjecture 41.0.3 (Hironaka’s strong factorization problem) Theorem 1.2 holds with (1.1) a succession of
blowings-up followed by a succession of blowings-down.

This is known only in dimension 2. Now:

• This ought to be quite useful.

• It is marvelously beautiful.

• We hope that at the end it should not be too difficult.

Even the toric case is not known in dimensions≥ 3, though there is an algorithm tested to work in
dimension 3 on huge examples. If the toric case works, the non-toric conjecture becomes a special case of
thetoroidalization conjecture. (See Sections 3–5 below.)
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Toroidalization

The conjecturalstrong factorizationis a sort of resolution of singularities of a proper birational mapX → Y .
A natural generalization is theToroidalization Conjecture[AK, AKMW], whose origins go back to Akbulut
and King [AkK].

First, we have:

Theorem 41.0.4 (Dirty toroidalization [AK])given a dominant projective morphism of complex projective
varietiesX → Y , there is a diagram

X1 → X
↓ ↓
Y1 → Y

whereX1, Y1 are nonsingular varieties withtoroidal structures, X1 → X and Y1 → Y are birational
modifications, and the mapX1 → Y1 is a toroidal morphism.

Here, toric geometry is less a tool and more a goal: to replacean arbitrary map by a toroidal one. This
result can be viewed as a desingularization ofX → Y in the logarithmic sense. (See Section 5 below.)

The result is useful, and again it is nice but unsatisfactory– we want a clean result using blowings-up:

Conjecture 41.0.5In the preceding theorem, we should have the same diagram, whereX1 → X andY1 →
Y are compositions of clean blowings-up with nonsingular centers.

The strongest results towards the Toroidalization Conjecture are due to Cutkosky [C1] - [C7]. His lecture
series was devoted to his work on toroidalization of a birational map of threefolds. (See Section 4.) This is a
beautiful and powerful result, yet its proof is so far extremely difficult. The workshop gave us a chance to peek
into this proof and glean some ideas. Hopefully, this will help in simplifying the arguments and generalizing
to arbitrary dimension.

Resolution of Singularities

After Hironaka’s monumental work on resolution of singularities in characteristic zero in the 1960’s, the
challenge of finding more straightforward, algorithmic approaches to canonical desingularization was suc-
cessfully met only in the 1990’s, by Bierstone-Milman and Villamayor. The problem is still open in positive
and mixed characteristics.

Characteristic Zero

Classically, there are two main theorems:principalizationof an idealI, and embedded desingularization
of an algebraic or analytic varietyX. Principalization and embedded desingularization involve two types
of transform of the ideal or variety by blowings-up –weakand strict transform, respectively. In the case
that the idealI = IX of X is principal (thehypersurface case), the two transforms and the two versions
of desingularization coincide. There are two local invariants, theorderof an ideal, and theHilbert-Samuel
function, which behave in a nice way with respect to weak and strict transform, respectively.

The relationship between the local invariants and the corresponding transform is the basis for reducing
the two versions of resolution of singularities to an auxiliary problem ofcanonical desingularizationof a
certain collection of local data (generalizing the hypersurface case), originating in Hironaka’s idea of an
idealistic exponent, and called apresentation[BM1], basic object[EV], or marked ideal[W4]. In all cases,
canonical desingularization is proved by induction on dimension (passage to a smooth hypersurface ofmax-
imal contact). But there are important differences in the proofs, reflected in the meaning of “canonical”, and
in the theorems that can be proved as consequences of canonical desingularization of a “marked ideal”.

The Bierstone-Milman idea of canonicity involves a notion of equivalence of marked ideals by sequences
of test transformations, related to the behaviour of the transforms of logarithmic derivatives of an ideal. They
prove that desingularization is functorial with respect tothe corresponding equivalence relation (a weaker
notion than equivalence under smooth mappings, so the equivalence classes are larger). Canonical embedded
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desingularization is a consequence of presentation of the Hilbert-Samuel function by a marked ideal. The
weaker notion of equivalence allows a comparison of the various algorithms. For example, it shows that the
Bierstone-Milman and Włodarczyk algorithms for desingularization of a marked ideal are the same, despite
the differences in construction.

Nonzero Characteristic

In nonzero characteristic, the possibility of reduction toa maximal contact hypersurface fails from the start.
For example, consider the hypersurface defined byf(x) = x2

4 + x3
1x2 + x3

2x3 + x1x
7
3, in characteristic2.

Then the locus of points of order2 is a curvex1 = t15, x2 = t19, x3 = t7, x4 = t32 that does not lie in any
smooth hypersurface [N].

The most prominent advance in resolution of singularities in positive characteristic presented at the con-
ference was a proof of desingularization of three-dimensional algebraic varieties over an algebraically closed
field by Vincent Cossart and Olivier Piltant. The result was previously known for characteristics≥ 7, due to
Abhyankar (1956), and for three-dimensional hypersurfaces of the special form

yp − f(x1, x2, x3) = 0, (41.2)

due to Cossart (1989). Cossart explained how to prove thelocal uniformization theorem(a local version
of resolution of singularities, in which the singularitiesare resolved at the center of a given valuation) for
another special class of three-dimensional hypersurfaces, namely theArtin-Schreier hypersurfaces, defined
by an equation of the form

yp − g(x1, x2, x3)y − f(x1, x2, x3). (41.3)

Roughly, the proof of Cossart–Piltant consists of reducingthe case of Artin-Schreier hypersurfaces to that of
purely separable ones of the form (2.1). Piltant explained how to reduce the problem of global resolution of
singularities to that of local uniformization of varietiesof types (2.1) and (2.2), using tricks from birational
geometry due to Abhyankar and Zariski. The work of Cossart and Piltant represents major progress in the
area of resolution of singularities in positive characteristic.

Franz-Viktor Kuhlmann talked about his results on local uniformization using techniques that come from
a branch of logic called model theory (notably theAx-Kochen principle) and from Galois theory (inertia and
decomposition groups). His two main results are:

1. A proof of local uniformization in arbitrary characteristic for Abhyankar valuations; i.e., valuations
ν centred in a local noetherian domain(R, m, k), which satisfy the equalityrat.rk ν + tr.degk ν =
dim R.

2. A model-theoretic proof of a local analogue of De Jong’s celebrated result, which gives local uni-
formization on a variety with function fieldK after a finite extension ofK.

M. Spivakovsky and B. Teissier discussed their ongoing workon the local uniformization theorem in all
dimensions and characteristics. Teissier’s approach consists in generalizing the method of resolution of plane
curve singularities by embedding the singularity in a higher-dimensional space, and then applying a single
well-chosen toroidal modification. Spivakovsky’s approach uses a generalization of the notion of Puiseux
expansion which allows one to relate properties of coordinates before and after blowing up.

Factorization of Birational Maps

A proof of theweak factorization theorem(Theorem 1.2) was sketched in the mini-series by Kalle Karu.
This theorem extends a result of Zariski, which states that any birational map between two smooth complete
surfaces can be factored into a succession of blowings-ups at points followed by a succession of blowings-
downs at points.

The proof of Theorem 1.2 relies on the weak factorization theorem for toric varieties. Karu’s presentation
had three parts:
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Polyhedral Cobordisms and the Weak Factorization Theorem

The weak toric conjecture in arbitrary dimensions was proved by Włodarczyk [W1] and later independently
by Morelli [Mo] (with a correction in [AMR]). Morelli introduced a notion ofcombinatorial cobordism:

Definition 41.0.6 Letπ : NQ+ := NQ ⊕Q→ NQ be the natural projection (whereN denotes a lattice and
NQ = N ⊗Z Q), andv = ({0} × 1) ∈ NQ. A fanΣ in NQ+ is called apolyhedral cobordismor simply a
cobordismif

1. For any coneσ ∈ Σ the imageπ(σ) is strictly convex (contains no line).

2. The sets of cones

Σ+ := {σ ∈ Σ : there exists ε > 0 such that σ + ε · v 6∈ |Σ|},
Σ− := {σ ∈ Σ : there exists ε > 0 such that σ − ε · v 6∈ |Σ|}

are subfans ofΣ, andπ(Σ−) := {π(τ ) : τ ∈ Σ−}, π(Σ+) := {π(τ ) : τ ∈ Σ+} are fans inNQ.

Polyhedral cobordisms can be decomposed into elementary collapses. Every elementary collapse defines
a simple transformation of fans – either a star-subdivision, a star-assembly or a flip. Note that a flip is a
composition of a star-subdivision and a star-assembly. This allows one to connect the fansπ(Σ−) andπ(Σ+)
by a sequence of star-subdivisons and star-assemblies. Theproblem is that neither the induced intermediate
fans nor the star-subdivisions and star-assemblies are regular even if the fansπ(Σ−) andπ(Σ+) were regular.
A solution to the problem is formulated in the following lemma of Morelli.

Lemma 41.0.7LetΣ be a simplicial cobordism inNQ+. Then there exists a simplicial cobordism∆ obtained
from Σ by a sequence of star-subdivisions, such that∆ is π-nonsingular. (This means that, for any cone
σ ∈ ∆ such thatdim(σ) = dim(π(σ)), the coneπ(σ) is regular.)

The process ofπ-desingularization should be understood as resolution of singularities of the intermediate
varieties defined by the factorization. A simplified algorithm for π-desingularization was presented in a
lecture by Włodarczyk. The process is similar to resolving toric singularities. We apply star-subdivisions to
reduce the determinants of the projected cones. Despite thesimple underlying idea, the algorithm is much
more subtle than usual toric desingularization. The process ofπ-desingularization is based on a classification
of cones and their projections. One can distinguish six different configurations of cones and their projections.
In the algorithm, these configurations are eliminated one-by-one in a suitable order.

Birational Cobordisms and the Weak Factorization Theorem

The key notion in the proof of weak factorization isbirational cobordism.

Definition 41.0.8 ([W2]) Let X1 andX2 be birationally equivalent normal varieties over a ground fieldK.
A birational cobordismor simply acobordismB = B(X1, X2) between them means a normal varietyB with
an algebraic action of the multiplicative groupK∗, such that the sets

B− := {x ∈ B : lim
t→0

tx does not exist},

B+ := {x ∈ B : lim
t→∞

tx does not exist}

are nonempty and open, there exist geometric quotientsB−/K∗, B+/K∗ such thatB+/K∗ ' X1, B−/K∗ '
X2, and the birational mapX1 99K X2 is given by the above isomorphisms and the open embeddings of
B+ ∩B−/K∗ into B+/K∗ andB−/K∗, respectively.

If B is a toric variety constructed from a polyhedral cobordismΣ in NQ+, thenB defines a birational
cobordism with respect to the action of the1-parameter subgroup defined by the vector(0, 1) ∈ N⊕Z = N+.
The open subsetsB−, B+ correspond to the subfansΣ+, Σ− (respectively). The varietiesB−/K∗, B+/K∗

correspond to the fansπ(Σ+), π(Σ−).
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The notion of birational cobordism is analogous to cobordism in Morse theory. In the latter, the action
of the 1-parameter group of diffeomorphismsG ' (R, +) ' (R∗, ·), defined by the gradient field of a
Morse function, can be interpreted as above. The bottom and top boundaries determined by a Morse function
are isomorphic to the spaces of all orbits with no limit at−∞ and +∞, respectively (or0 and +∞, in
multiplicative notation). The critical points of the Morsefunction are the fixed points of the action. “Passing
through” these points induces simple birational transformations analogous to spherical transformations in
differential geometry. In the algebraic setting, we replace the Morse function by the moment map for the
action ofS1 ⊂ C∗. This defines an order on the fixed-point set components and the corresponding elementary
cobordisms. It is convenient to analyze these cobordisms inthe language of Geometric Invariant Theory. The
elementary cobordisms are merely open subsets of the semistable points defined for different linearizations of
theK∗-action. Varying linearizations gives rise to a sequence oflocally toric maps between GIT-quotients.
The last problem to overcome is to eliminate singularites ofthe intermediate varieties (GIT-quotients) and to
replace the locally toric morphisms between them by blowings-up and blowings-down.

There are two approaches to this problem. Kalle discussed the approach of [AKMW] based on the notion
of torification by Abramovich and de Jong. Atorific ideal is, roughly speaking, aK∗-equivariant sheaf
of ideals whose blowing-up defines the structure of a toroidal embedding compatible with theK∗ action.
The operation of torification (blowing-up of the torific ideal) converts locally toric to toroidal maps, where
weak factorization holds. An additional difficulty is that torific ideals can be constructed only locally for
elementary cobordisms. Hence torific ideals define local factorizations into blowings-up and blowings-down,
which have to be fit together.

A second approach was discussed by Włodarczyk. LetS be the stratification determined by the isotropy
groups. Lets ∈ S be any stratum with isotropy groupΓs. Then theΓs-semi-invariant parameters in a
neighborhood of a pointx ∈ s provide a chart which is locally analytically isomorphic tothe tangent space
with the induced linear action. Locally, we can identifyB with an affine spaceAn, which is a toric variety
corresponding to a regular coneσs in the vector spaceNQ, with a toric action ofΓs on Xσs

. The quotient
morphismXσs

→ Xσs′
defines a projectionπs : σs → σΓ

s .
In particular, if s consists of fixed points, then the action ofΓs = K∗ determines a1-parameter subgroup,

hence an integral vectorv ∈ NQ. The setsAn
− andAn

+ correspond to the setsσ+ andσ−.The quotient spaces
An

−/K∗, An
+/K∗ correspond to two subdivisionsπ(σ+) andπ(σ−) of the coneπ(σ), that are “cobordant”

in the sense of Morelli. The problem lies in the fact that the fansπ(σ+), π(σ−) are singular (i.e., they
are not spanned by a part of an integral basis). Consequently, the corresponding birational transformation
is a composition of weighted blowings-up and blowings-downbetween singular varieties. One needs to
desingularize the quotient spaces corresponding to these projections.

If a stratums is in the closure ofs′ thenσs′ can be mapped isomorphically onto a face ofσs. Glueing
these faces together defines a complexΣ. The projectionsπ are compatible with face inclusions (up to
isomorphisms). One can show that certain decompositions ofΣ define birational modifications. In particular,
if we applyπ-desingularization to the complexΣ, then the corresponding subdivison defines a birational
modificationB ofB. B is a cobordism all of whose open affine fixed-point free subsets have smooth geometric
quotients. The existence of such a cobordism easily impliesthe weak factorization theorem. (The intermediate
varieties are smooth and the blowings-up, blowings-down and flips induced by the elementary cobordisms
are regular (smooth).) Since each flip is a composition of a blowing-up and a blowing-down at a smooth
centre, we arrive at a factorization ofX 99K X ′ into blowings-up and blowings-down at smooth centres.

Strong Factorization Theorem

A local version of the strong factorization problem was solved for 3-dimensional toric varieties by Christensen
[Ch]. Cutkosky showed in hismonomialization theoremthat a birational map can be locally transformed by
blowings-up with smooth centres into a monomial mapping [C2]. In particular, he proved the local strong
factorization conjecture in dimension 3 [C2] via Christensen’s theorem. Recently, Karu extended Chris-
tensen’s algorithm to arbitrary dimension. Combining his result with Cutkosky’s monomialization theorem
gives a proof of the local strong factorization theorem.

Another approach to stong factorization for toric and arbitrary varieties uses the weak factorization
theorem. In fact, one needs to prove strong factorization for varieties which differ by a sequence of blowings-
down followed by a sequence of blowings-up. There is a simplealgorithm for toric varieties that conjecturally
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determines strong factorization. It is not known whether the algorithm terminates even in dimension 3. The
algorithm can be reduced to commutativity rules for elementary matrices.

Toroidalization of Morphisms

Throughout this section,k denotes an algebraically closed field of characteristic zero (unless explicitely
stated otherwise). Avarietymeans an open subset of an irreducible properk-variety. A toroidal structure on
a smooth varietyX is a SNC (simple normal crossings) divisorDX .

A nonsingular subvarietyV of X is a possible centre forDX if V ⊂ DX andV makes SNC withDX .
The blowing-upΦ : X1 → X of a possible centre is called a possible blowing-up.DX1

= Φ−1(DX) is then
a toroidal structure onX1.

Recall thatf : X → Y is toroidal (with respect toDY andDX ) if f : (X, DX) → (Y, DY ) is locally
formally isomorphic to a morphism of toric varieties ([KKMS, AK]).

Toroidalization Conjectures and Results

The following conjectures are more precise versions of Conjecture 1.5 above. The “toroidalization conjec-
ture” of [AKMW] is:

Conjecture 41.0.9Suppose thatf : X → Y is a dominant morphism of nonsingular varieties. Then thereis
a commutative diagram,

X1
f1→ Y1

Φ ↓ ↓ Ψ

X
f→ Y

whereΦ, Ψ are products of blowings-up with smooth centres, and there exist SNC divisorsDY1
on Y1 and

DX1
onX1 such thatf1 is toroidal with respect toDY1

andDX1
.

There is a stronger version (also stated in [AKMW]) that we will call the “strong toroidalization conjec-
ture”:

Conjecture 41.0.10Suppose thatf : X → Y is a dominant morphism of smooth varieties. Further suppose
that there is a SNC divisorDY on Y such thatDX = f−1(DY ) is a SNC divisor onX, containing the
singular locus of the mapf . Then there is a commutative diagram,

X1
f1→ Y1

Φ ↓ ↓ Ψ

X
f→ Y

whereΦ, Ψ are products of possible blowings-up for the preimages ofDX , DY (respectively), andf1 is
toroidal with respect toDY1

= Ψ−1(DY ) andDX1
= Φ−1(DX).

The characteristic zero assumption on our base fieldk is necessary in these conjectures. The conjectures
fail in positive characteristic even for morphisms of curves (where all blowings-up are trivial). A simple
example is

t = xp + xp+1

over a field of characteristicp. We havet = xp(1 + x), but(1 + x)1/p 6∈ k[[x]].
The (strong) toroidalization conjecture is known to be truein the following cases:

1. dim Y = 1, dimX arbitrary. (This case follows from embedded resolution of hypersurface singulari-
ties [28, BM1, BEV, W4].)

2. dim X = dimY = 2 [AkK, CP1, AKMW, Ma].

3. Local monomialization (locally along a possibly non-Noetherian valuation) [C1, C2, C5].



Resolution of Singularities, Factorization of BirationalMappings, and Toroidal Geometry 255

From (3), we get the following:

Theorem 41.0.11 ([C1, C2, C5])Suppose thatf : X → Y is a dominant morphism of proper varieties.
Then there is a commutative diagram,

X1
f1→ Y1

Φ ↓ ↓ Ψ

X
f→ Y

such thatf1 is toroidal, andΦ, Ψ are locally products of blowings-up with smooth centres. The morphisms
Φ, Ψ andf1 satisfy the existence part of the valuative criterion for properness, but, in general, uniqueness
fails (so that these maps are in general not separated).

From (3), we also obtain a proof of “local strong factorization” (conjectured by Abhyankar). Case (3)
reduces the proof of the conjecture to the case of a toroidal mapping and a “toroidal” valuation. This was
proved in dimension 3, by Christensen [Ch], and extended to arbitrary dimension by Karu [K]. A proof in
the style of Christensen’s original proof (using determinants and elementary linear algebra) is given in [CS].

Local monomialization along a valuation could possibly be true in positive characteristic. It is certainly
true for morphisms of curves, and for morphisms of n-folds tocurves in dimensions where resolution of
singularities is true. Good progress on this problem has been made for morphisms of surfaces [CP2].

(4) dim X = 3, dimY = 2 [C3] (strong toroidalization).

(5) dim X = dimY = 3, f birational [C6] (toroidalization), [C7] (strong toroidalization).

Using (5), we can reduce the “strong factorization” conjecture for birational morphisms of proper 3-folds
to the case of toroidal morphisms, so we see that “strong factorization” of birational morphisms of proper
3-folds will follow from the Oda conjecture on “strong factorization” of torodial varieties [O] (cf.§3.3).

We further obtain a new proof of “weak factorization” of birational morphisms of proper 3-folds. Case
(5) reduces “weak factorization” to the case of toroidal morphisms, which is solved in [D] (dimension 3),
[Mo, W1, AMR] (arbitrary dimension). “Weak factorization”has been proved in all dimensions (using
geometric invariant theory) in [W2, AKMW, W3].

Open Problems on Toroidalization

1. Prove (strong) toroidalization for an arbitrary dominant morphisms of 3-folds.

By [C7], we can assume thatf is prepared. Much of the proof of toroidalization of birational mor-
phisms of 3-folds [C6, C7] works in the case thatf is not birational.

2. Suppose thatf : X → Y is a dominant morphism from ann-fold to a surfaceY . Prove that there is a
commutative diagram,

X1 f1

Φ1 ↓ ↘
X

f→ Y

such thatΦ1 is a product of possible blowings-up andf1 is (strongly) prepared. [CK] now implies that
f can be toroidalized.

3. Prove the toroidalization conjecture in all dimensions.

Related Themes and Challenges

We conclude with a discussion of several interesting directions that emerged in the mini-series and invited
lectures, as well as in informal conversations during the Workshop.
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Toric Methods in the Study of Singularities

It is an attractive idea to study singularities by analyzingthe analytic germs of curves passing through them;
i.e., to study the space of “arcs”. Nash raised the followingquestion: Is the “Nash map” from the set of
maximal irreducible families of arcs passing through the singularities to the set of essential divisors on a
resolution bijective? S. Ishii discussed her affirmative answer to this question (joint work with Kollár) in the
case of toric varieties, as well as a counter-example in dimension≥ 4, in general.

Toric geometry provides a dictionary which translates problems in algebraic geometry into problems in
the combinatorics of convex bodies in a Euclidean space witha lattice structure. The latter often yields simple
answers (e.g, resolution of singularities for a toric variety; cf. [BM3]). So it is particularly interesting in
positive characteristic, where the known methods fail, to consider a degeneration of a given variety to a toric
variety in the central fibre, and to try to deform (lift) the resolution of singularities of the central fibre to that
of the nearby fibres (viewpoint of Teissier).

C. Casagrande’s talk presented an elegant example of the power of this dictionary in another context. She
has established a conjectured inequality,

b2(X) · (iX − 1) ≤ dimX,

in the case of toric Fano manifoldsX over C, whereiX is the minimal degree of a rational curve inX
with respect to−KX . The main technique is to study the combinatorial properties of reflexive polytopes,
suggested by Batyrev in connection with “mirror symmetry”.

Combinatorial Problems Related to Semi-stable Reduction,π-desingularization, and
Strong Factorization

Sometimes a problem in algebraic geometry remains of substantial difficulty even when translated into purely
combinatorial language. For example, the strong factorization conjecture for toric birational maps in di-
mension three: We have a simple description of an algorithm for transformation of a weak into a strong
factorization (as described by Karu), but we do not know whether it terminates after finitely many steps.
Because of Cutkosky’s solution of the toroidalization conjecture in dimension 3, this is the only obstruction
to the strong factorization conjecture for (general) birational maps in dimension 3.

Abramovich and Karu achieve only “weak” semi-stable reduction in arbitrary dimension. But they settle
a combinatorial problem to transform weak into “genuine” semi-stable reduction, only in relative dimension
≤ 3. The problem seems reminicent ofπ-desingularization (talk of Włodarczyk, simplifying the original
algorithm of Morelli and Abramovich-Matsuki-Rashid).

Logarithmic Category

As mentioned above, toroidalization can be interpreted as aproblem of resolution of singularities of a mor-
phism, in the logarithmic category. In other words, a morphismf : (X, DX) → (Y, DY ) is toroidal if and
only if it has no logarithmic ramification. Cutkosky suggested that some of his techniques for toroidalization
might become simpler in the language of the logarithmic category.

One of the differences between the proofs of resolution of singularities by Bierstone-Milman and Włodarczyk
(as discussed in Bierstone’s lectures), is that the latter uses ordinary differentials, while the former uses log-
arithmic differentials (in constructing “coefficient ideals”).

The logarithmic category may turn out to be a unifying force for the main directions of the workshop.

Computational Aspects, Computer Implementation

M. Rojas discussed the complexity of an algorithm to decide whether a given toric algebraic system has a
“torsion” point in its set of solutions. He suggested that a complete understanding of the complexity of this
very special problem might lead to a solution of the celebratedP = NP problem.

A. Fruehbis-Krueger presented her computer implementation of Villamayor’s algorithm for resolution of
singularities (joint work with Pfister). She suggested thather program could be modified to implement the
stronger resolution algorithm of Bierstone-Milman.
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Concluding Remark

Best wishes for future success to all participants! It wouldbe a great pleasure to meet again at BIRS to
discuss developments that have their origins in the ideas communicated in this Workshop.
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Chapter 42

Human Infant Speech Perception and
Language Acquisition: Rules vs.
Statistics (04w2552)

March 18–20, 2004

Organizer(s): Janet Werker (University of British Columbia), Gary Marcus(New York
University), Jacques Mehler (University of Trieste), Helen Neville (University of Oregon),
Nuria Sebastian-Galles (Universitat de Barcelona)

During the first year of life, infants become exquisitely tuned to the properties of the native language.
This includes sensitivity to the consonant and vowel soundsof the native language, the acceptable sequences
of these sounds, the rhythmical properties of the native language, and the multiple cues which signal bound-
aries between words, phrases, and sentences. Perceptual sensitivity to these properties is essential for word
learning, acquisition of grammar, and language acquisition more generally. The predominant theoretical
approach guiding this work has, until recently, stemmed from the joint contribution of Chomsky—arguing
for a rule based, symbol manipulation, foundation for language acquisition rooted in targeted evolution, and
Lenneberg—arguing that language is supported by special areas in the brain. In the past several years, how-
ever, a number of studies have documented the role of statistical learning in accounting for the changes in
perceptual sensitivity seen in infancy. In this workshop, we explored and debated the extent to which statis-
tical learning vs. rule learning might help account for bothperceptual tuning, and subsequent mapping of
tuned perceptual categories to the task of language acquisition.

The first evening of the workshop, Wednesday evening, Richard Aslin, a cognitive scientist from the Uni-
versity of Rochester, provided a broad overview of work in statistical learning in infancy. He began with
an explication of the original work showing that infants canuse transitional probabilities (TPs) to segment
words from a stream of speech. In this work, infants were presented with continuous strings of syllables in
which the only distinguishing information for positing a “word” was the TP between syllables. Among the
strings were three syllable items that had TPs between syllables of 1.0, and three syllable items that had TPs
of .33. Following a 3–4 minute familiarization period, infants of 7 months had used these TPs to pull out
“words”, choosing to listen longer (as indicated by lookingtime) to “part words” (syllable strings with TPs
of only .33) over “words” (strings with TPs of 1.0). Aslin presented a number of updates.

Two kinds of studies generated the most discussion in the debates which began the next morning. 1) those
studies comparing the learning of transitional probabilities for linguistic stimuli to learning the transitional
probabilities for non-linguistic stimuli such as tones andfor visual images. These studies are of interest be-
cause they challenge the notion that language learning relies on specialized learning mechanisms, and raise
the alternative possibility that generally available learning mechanisms are used in the service of language
acquisition. 2) those studies examining the conditions under which infants can learn non-adjacent depen-
dencies. Whereas adjacent TPs are important in word segmentation (and also in learning some aspects of
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morphology), non-adjacent TPs are needed if this learning mechanism can contribute to our understanding
of how other aspects of morphology as well as syntax are acquired. A number of studies indicate that the
learning of non-adjacent dependencies is much more difficult than is learning of adjacent dependencies. Suc-
cess requires one of a number of manipulations; the insertion of a brief (even undetectable) silent interval
between the syllables, high variability of the non-criterial intervening syllables, and/or another linguistic cue
such as syllable stress. Vigorous debate centred on the question of why these types of manipulations facilitate
learning. Is it because they simplify the pattern detectionprocess that results from the use of statistical reg-
ularities? Or is it because these manipulations turn the task from one of statistical learning into one of rule
learning? This debate centres on the question of whether language has a specialized rule-based foundation
which enables symbol manipulation.

Two other statistical learning mechanisms were discussed.One was how learning of distributional regu-
larities could account for the building of language appropriate phonetic categories. It was shown recently (by
members of our group) that infants of 6-8 months can use distributional regularities to change their phonetic
categories. If presented all members of an 8 step continuum,but with more instances of stimuli 2 and 7 in
one group (the bimodal group) and more of 4 and 5 in the other group (the monomodal group), infants in
the bimodal group divide the continuum into two perceptual categories whereas infants in the monomodal
group collapse it into one. New data on the types of information this distributional learning might generalize
to, and the ages at which infants might have this mechanism available, were discussed. The other statistical
mechanism discussed was associative probabilities. New data were presented showing that learners track
the probabilities of word-object associations almost perfectly. Using fMRI data, possible neural systems un-
derlying this learning were discussed, and will be comparedthe neural mechanisms used in learning other
probabilistic associations.

Computational Modelling was another focus of the workshop.A number of researchers in the world
are using a variety of computational models to account for and predict the regularities seen in language
acquisition. The unique new approach from Gary Marcus in ourgroup is to use computational techniques
to formally model the newest findings in developmental neurobiology that might help explain how a brain
can become organized for complex cognitive tasks such as language acquisition. The goal behind this work
is again to address the fundamental theoretical controversies outlined at the beginning of this report that
underly research in language acquisition.

The theoretically guided presentations and debates described above, were informed throughout the meet-
ing with new data in a number of areas which then spawned theirown advances in theory. One content area
focused on phonetic and phonological perception in bilingual infants and adults, and the link between per-
ceptual changes in infancy and subsequent word learning. This led to the presentation of a new theoretical
framework - “shallow” (perceptual) vs. “deep” (functionallinguistic use) learning.

A second content area focused on new data showing the different languages young infants can discrim-
inate based on rhythmical properties. Included in the presentation were new steps in the quantification of
languages based on rhythmical properties (% vowel and Deltaconsonant in the words of the language). The
novel theoretical contribution here is whether these rhythmical properties are correlated with, and predictive
of, the underlying word order of the language. If so, this would be another way in which learning the acoustic
properties of the language could help bootstrap its acquisition.

The research presented relied on both behavioural and neuroimaging techniques. One portion of the
workshop therefore involved presentation of new team-based advances in the use of these techniques. The
two most novel advances discussed were 1) the improvement ofoptical imaging (near infrared spectroscopy)
for imaging the infant brain while listening the language, and 2) the development of a new ERP (electrophys-
iological, recording of electrical activity over the brain) signature of word segmentation.

The opportunity to bring so many researchers together from so many different fields was essential to
the success of this workshop. Moreover, with the help from BIRS, we ensured broad graduate student and
postdoctoral fellow involvement as well. The background infrastructure support provided by BIRS was so
appreciated, and helped make the meeting a resounding success.
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2-day Retreat on Mathematical Ecology
and Evolution (04w2540)

March 18–20, 2004

Organizer(s):Michael Doebeli (University of British Columbia), Thomas Hillen (Univer-
sity of Alberta), Mark Kot (University of Washington), MarkLewis (University of Alberta),
Ed McCauley (University of Calgary)

Objectives

The aim of the 2-day BIRS retreat was to bring together faculty, post doctoral fellows (PDF) and graduate
students from several groups that are involved in the PIMS Collaborative Research Group in Mathematical
Ecology and Evolution. The six organizers nominated one PDFand four students from their corresponding
research groups to participate in this retreat. The format of the workshop was chosen primarily to initiate
discussion, promote exchange of ideas, and encourage collaborations. Each student and some of the PDFs
were asked to bring a new and open research problem and present it to a working group of about 8 par-
ticipants to discuss and work on each problem for about 2 hours. The faculty members of each discussion
group guided the discussions so as to encourage students to participate and express their ideas. Although
complete solutions of the problems were not expected, progress on the problems was made, while introducing
the students to new mathematical approaches to problem solving and science.

The format of the workshop was based on the very successful Woods Hole Oceanographic Institute
(WHOI) Nantucket Annual Retreat in Mathematical Ecology, run by WHOI scientists Hal Caswell and Mike
Neubert.

Scientific Topics

The topics of this 2-day retreat were exclusively chosen by the students through their contributed research
problems. These included questions about predator-prey interactions, harvesting problems, competition, in-
vasion problems, pattern formation, infectious diseases,crop control, fish behaviour, and climate change.
During discussion many different forms of models were considered: stochastic models, random walks, ordi-
nary differential equations, partial differential equations and integro-differential equations. Most of the prob-
lems were concerned with spatial distribution of species and hence a partial differential approach seemed
natural.

In many cases the use on integro-differential equations (IDE) was discussed. This confirmed the need for
a more theoretical understanding of IDEs. The theory of IDEsis still not as nearly developed as the theories
for reaction-diffusion equations, for example. Almost allof the participating groups of the PIMS CRG in
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Mathematical Ecology and Evolution have published research papers about IDE’s, are currently working
with IDE’s, or have used them for modelling. In fact, the theoretical understanding of IDEs seems to be one
of the common grounds of this CRG.

Through the discussion of different problems and differentmodelling tools the students were exposed to
a large variety of methods and solution strategies. For all of the discussion groups, several possible model
ideas were generated. In many cases a stochastic model was contrasted with a continuous deterministic
model and/or with a discrete time model. This showed the students that, in general, there is not a single
correct model that must be used, but there maybe many models of very different types that could be used
to describe a biological phenomenon. This insight made the students aware to look beyond their own area
of expertise and to be open to new methods and ideas. Each participant contributed his knowledge and
experiences to the workshop and benefited greatly from each other.

Outreach

The format of the workshop created an intense interactive atmosphere and supported the exchange of ideas
between the involved PIMS University groups on all levels (faculty, PDFs, graduate students). The 2-day
retreat strengthened the collaborations between Ed McCauley at (U. Calgary) and M. Lewis (U. Alberta) on
the modelling of water ecosystems, and many visits took place during the past year. Another collaboration
developed between M. Doebeli (UBC), T. Hillen (U. Alberta) and F. Lutscher (U. Calgary and U. Alberta) on
the evolution of biodiversity.
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PIMS PDF Meeting (04w2542)

April 15–17, 2004

Organizer(s):Manfred Trummer (Simon Fraser University and PIMS)

This workshop hosted the Annual PIMS Meeting for its postdoctoral fellows. Fourteen PIMS postdoctoral
fellows from a huge variety of mathematical sciences research areas and the PIMS Director, Ivar Ekeland,
and Deputy Director, Manfred Trummer, met and all talked about their research areas (a list of abstracts is
enclosed).

The purpose of the meeting is to allow participants to see what sort of research problems their peers are
working on, and to allow participants to make connections ifthey have common research interests.

The talks were mostly of an introductory nature, but many generated extremely lively discussions. Partic-
ipants enjoyed the informal discussions, many of them science and research related, many other concerned
with all aspects of academic life, including job search strategies, writing of grant applications, and setting
up of successful research programmes.

The meeting proved extremely useful to the PIMS postdocs, and BIRS proved to be an ideal setting for
this conference.
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Mathfair Workshop (04w2600)

April 22–24

Organizer(s): Ted Lewis (University of Alberta), Andy Liu (University of Alberta), Tom
Holloway (University of Alberta)

From the Introduction of The Math Fair Booklet by Ted Lewis

Everybody knows what a science fair is. Students find projects to work on, they prepare posters and demon-
strations, the public is invited to come and see what they have done, and a panel of judges awards prizes for
projects that are deemed to be the best.

A math fair is similar, but two important differences set ourconcept apart. Although mathematics is
extremely diverse, our math fairs concentrate on just one aspect of the subject, namely problem solving,
and our fairs are officially non-competitive, so there are noawards or prizes. We have chosen to focus on
problem solving for several reasons. It is one activity thatis common to most of mathematics, it is frequently
an explicit part of the mathematics curriculum and it encourages skills in students that can be applied in all
areas of their lives.

The problems in this booklet are ones that young students cansolve and truly understand with a reason-
able amount of work. They will not need a broad educational background, but the problems are not simple
and most will have to think before solving them. The same is true about the people who visit the math fair
even though they may be adults or students from higher grades. When the paricipants present their problems,
they will discover that the visitors need help to work through the solutions, and the presenters will gain the
satisfaction and confidence that comes from helping more talented or older persons.

The interaction between the participants and the viewers ata problem-based math fair can have a pro-
found effect on the poise, confidence, communication skillsand patience of the participants. The reason for
our second difference, that the math fair be officially non-competitive, is so that all students are encouraged
to participate and benefit. If some students feel they have little chance of winning they may decline to join in
or not put in a full effort.

Even if a math fair is officially non-competitive, informal competition does occur. The participants quickly
recognize who among them are good problem solvers, who can explain things well, whose presentations have
the best artwork, and which displays attract the most visitors. But this sort of competition is friendly and
constructive, and frequently leads to co-operative efforts among the participants. The focus on problem
solving and the lack of formal awards are the key parts to our concept of a math fair for children, but
otherwise there are many opportunities to creatively adaptthe concept to a particular situation. We hope you
will find this booklet useful in organizing your own math fairand are looking forward to hearing from you
about your experiences.
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Math Fairs in Elementary Schools in the Edmonton Area

The Math Fairs in elementary schools in the Edmonton area aregaining in popularity. Initiated upon requests
by schools, and supported mainly by PIMS and the Edmonton Public School Board, the Math Fairs were
held in previous years at Our Lady of Victories, Parkallen Elementary, and Terrace Heights Schools. The
Edmonton Math Fairs are unique in that all students in the school participate. This event is about problem
solving, not winning and losing. The schools themselves play a major role in the planning and thus the format
can vary from school to school. In some Math Fairs, Educationstudents from the University of Alberta were
available to help, primarily by providing a model for a Math Fair that students can emulate in planning their
own event. The extensive involvement of students in planning, staging and participating in the Math Fair may
be one of the secrets of its success.

Prior to the Math Fair, students choose or are given problemsto work on. They work in small groups to
solve the problem and subsequently create a tabletop display. On the day of the Math Fair, spectators are
invited to tackle the problem, with hints and guidance provided by students in charge. The displays are not
poster sessions. Rather, the students are actively involved in the presentations.

The BIRS Workshop

At this workshop the organizers trained the participants sothey could run a math fair. Each participant was
provided with a copy of the Math Fair Booklet along with a goodcollection of new puzzles.
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Directions in Combinatorial Matrix
Theory (04w2525)

May 6–8, 2004

Organizer(s):Shaun Fallat (University of Regina), Hadi Kharaghani (University of Leth-
bridge), Steve Kirkland (University of Regina), Bryan Shader (University of Wyoming),
Michael Tsatsomeros (Washington State University), Pauline van den Driessche (Univer-
sity of Victoria)

The Directions in Combinatorial Matrix Theory workshop washeld at BIRS May 7–8, 2004, and attracted
29 researchers (10 from Canada, 15 from the U.S. and 4 from abroad) and 7 post-doctoral or graduate
students. Talks discussed current developments and open problems in the following emerging themes in
Combinatorial Matrix Theory: Spectral properties of families of matrices associated with graphs; Matrix
theory and graph theory in the service of Euclidean geometry; Algebraic tools for combinatorial problems;
and Spectral properties of classes of matrices. Titles and abstracts of the talks presented can be found at

http://www.pims.math.ca/birs/workshops/2004/04w2525/abstracts.pdf.

Below each of these themes is briefly discussed.

Spectral properties of families of matrices associated with graphs
Numerou connections between the spectrum of the adjacency matrix of a graphG and the graphical and

combinatorial properties of the graph have been long, and fruitfully explored. An emerging, promising trend
is to study the spectra of an entire class of matrices associated withG. More specifically, letS(G) denote the
set of all symmetric matrices whose graph isG (i.e. all symmetricn by n matricesA = [aij ] such that for
i 6= j, aij 6= 0 if and only if there is an edge inG joining vertexi andj.) Fundamental questions in this area
are:

(a) What combinatorial and geometric properties of a graphG can be ascertained from the invariants of
S(G)?

(b) What constraints are placed upon the spectrum of matrices inS(G) by the graphical properties ofG?

Perhaps the first results along these lines are the early papers of Parter [3] and Fiedler [1] that establish
some striking results about the spectrum of acyclic matrices, that is, matrices inS(G), whereG is a tree.
More recently, the Colin de Verdière invariant [4] (which is the maximum of the second smallest eigenvalue
of matrices in a special subset ofS(G)) has been shown to have deep connections with the embedability, and
hence the geometry, ofG.

Several conference talks presented new results about the minimum rank, or equivalently the maximum
multiplicity of an eigenvalue, of a matrix inS(G), and the inverse eigenvalue problem forS(G) (that is,
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determine necessary and sufficient conditions for the ordered sequenceλ1, λ2, . . . , λn to be the ordered
eigenvalue list of some matrix inS(G)).

Matrix theory and graph theory in the service of Euclidean geometry
The Gram-matrixM = [〈vi, vj〉] of a collectionv1, v2, . . . , vn of vectors in a Euclidean space stores

much information about the geometric arrangement of the vectors, and often matrix theoretic properties of
M produce startling corresponding geometric properties of the vectors.

One presentation at the workshop, illustrated the promise of this research theme, by deriving necessary
and sufficient conditions for the existence of a simplex whose edges make prescribed (perpendicular, acute,
or obtuse) angles. Future directions include extending this characterization to other families of polytopes.

Symmetric factorizationsA = BBT (B (entry wise) nonnegative) of a nonnegative matrixA correspond
geometrically to a system of nonnegative vectors with prescribed inner products. Such factorizations arise in
image processing, physics, and statistical applications.Two fundamental questions are:

(a) If A has a symmetric nonnegative factorizationA = BBT what is the smallest possible numberk of
columns in such aB? What is the largestk can be for a fixed dimension ofA?

(b) If A is an integer matrix, how can one determine whether or notA has a factorizationA = BBT

whereB is a (0, 1)-matrix?

Algebraic tools for tackling combinatorial problems
The Yin of Combinatorial Matrix Theory (CMT) is the use of combinatorial ideas and theorems to more

closely analyze problems in matrix theory. The Yang of CMT isto use algebraic concepts and results to tackle
combinatorial problems. Perhaps the prime example of the Yang in CMT is the Witsenhausen-Graham-Pollak
theorem [2], that asserts that every biclique partition of the complete graphKn has at leastn− 1 bicliques,
and whose only known proofs are all based on linear algebra.

The Yang of CMT was represented at the conference through talks on a number of subjects. These include:
results on the behaviour of the inertia of a matrix when perturbed, and their use in the study of minimum
biclique partitions of various families of graphs; a surveyof the wide range of matroid theoretic, and graph
colouring problems arising in Combinatorial Scientific Computing; a survey of the major questions and
a proposed uniform theory for the various generalizations (e.g. Hadamard matrices, weighing matrices,
symmetric designs, Type II matrices, etc.) of orthogonal matrices; and a talk using number theory to obtain
new results on the long-standing problem of classifying thegraphs with integral spectrum.

Spectral properties of classes of matrices
Several promising Yin directions in CMT were discussed.
New families of spectrally arbitraryn by n sign patterns (that is, a sign pattern with the property that

every conjugate closed multi-set ofn complex numbers is the spectrum of some matrix with the givensign
pattern) were presented, and a field theoretic argument was presented to show that ifA is an irreducible,
spectrally arbitrary sign pattern, thenA has at least2n− 1 nonzero entries. This leaves the intriguing open
problem:

Is there ann byn, irreducible, spectrally arbitrary sign pattern with2n− 1 nonzero entries?

A talk concerning the possible Jordan Canonical Forms of a nonnegative matrix with prescribed eigen-
values of largest modulus illustrates that while the Perron-Frobenius theory for nonnegative matrices began
over 100 years ago, there are still many interesting open questions about nonnegative matrices to be resolved.

Several results and problems concerning the relationship between the sign patterns of commuting ma-
trices were discussed. For example, an interesting open problem is to determine necessary and sufficient
conditions for a pair of sign patterns to allow a pair of commuting matrices.

The Workshop’s Open Problem sessions were highly successful, and a list of problems presented will be
posted at

http://www.pims.math.ca/birs/workshops/2004/04w2525/openprobs.pdf .
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New collaborative efforts resulting from the workshop are already noticeable, especially among the post-
docs and graduate students. Results presented at the conference will be disseminated through a special 2005
issue of the Electronic Journal of Linear Algebra.

In summary, the future directions for research in Combinatorial Matrix Theory are abundant, promising,
and central to mathematics.
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Decentralized Discrete Event Systems:
Structure, Communication, and Control
(04w2040)

May 14–15, 2004

Organizer(s):Peter Caines (McGill University), Stéphane Lafortune (University of Michi-
gan), Laurie Ricker (Mount Allison University), Iakov Romanovski (Queen’s University),
Karen Rudie (Queen’s University), John Thistle (University of Waterloo)

The workshop themes of structure, communication and control in decentralized discrete event systems
were addressed through examinations of modular and hierarchical architectures, language-based theories of
distributed control synthesis, and logics for specification, synthesis and verification of control and commu-
nication structures. Potential applications were presented in the fields of distributed control of air and wa-
tercraft, distributed robotic self-assembly and power system fault detection. Throughout the two-day meeting
the sessions were notable for the informal and lively discussions that accompanied essentially all of the talks.
From both the presentations and the discussions several keyissues emerged, and these are summarized below.

Modularity and Structure:

New unpublished results about the implications of modular structure on the computational complexity of
certain verification and control problems were presented. It became apparent that computational issues
associated with modular systems are highly sensitive to theinherent symmetry in the system components.
In particular, a new undecidability result for certain classes of symmetric modular systems was presented.
This result generated considerable discussion among the attendees. On the other hand, it was demonstrated
that for another class of symmetric modular systems, significant computational savings could be achieved in
solving verification and control problems by exploiting symmetry and building quotient transition structures,
reminiscent of partial-order methods in field of formal verification in computer science. It became apparent
that these issues are worthy of future investigations, especially regarding the boundary between decidability
and undecidability as well as the robustness of quotient structures to the symmetry assumptions.

New work was presented on fundamental properties (controllability, observability, etc.) underpinning
control synthesis for multi-agent systems; this included the topic of controller synthesis for vector discrete
event systems under partial observations. A promising approach in this direction is the use of hierarchical
control architectures presented during the workshop. Thismethod can be effectively used to reduce the
computational complexity of various architecturally complex systems.
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Logics for Synthesis of Decentralized/Distributed Controllers:

Exciting new results on the use of special logics that allow the solution of controller synthesis problems
as certain types of verification problems were presented. These results are very elegant from a theoretical
standpoint. They also appear to offer new possibilities forsynthesizing control strategies for problems with
partial observation. There was a feeling among attendees that this is a promising new avenue, although the
computational properties of the approach remain largely unexplored.

Related work on solving control problems for continuous-variable systems subject to temporal logic spec-
ifications was presented. In this case, it was shown how the (discrete) specification drives the abstraction of
the continuous-variable system to a discrete event system that is sufficiently detailed for controller synthesis
purposes.

The use of a special logic for addressing decentralization of information in distributed systems was also
presented. This method uses a modal logic for ascribing knowledge to agents and relates the field of discrete-
event systems control to recent work in theoretical computer science on formal reasoning about knowledge.
One of the goals is to use the knowledge theory approach to aidin the synthesis of communication strategies
between controllers in a distributed control setting.

Application Areas:

A grammar-based approach to problems in distributed robotic self-assembly was presented, and various
discrete-event control problems associated with Uninhabited Air Vehicles (UAVs) and distributed ship control
were discussed. A Petri-net based method of fault detectionin electric power distribution system protection
networks was proposed. In general, it was felt that in further theoretical developments of existing theories
special attention should be paid to applications. For example, more experience with applications could lead
to a better understanding of the modelling of incomplete or imperfect system descriptions. It was suggested
that a set of benchmark applications be assembled, and that additional energy be devoted to the development
of software tools.

Discussion Topics

At the end of the workshop, a free-form session was held to discuss the common themes, open research
problems, and debated ideas that arose during the workshop.In addition to the topics and areas in the
aforementioned sections of this report, some of the other issues that arose include the following: the tradeoff
between expressiveness of a model and its computational capabilities; uncertainty, robustness, unmodelled
dynamics and the need to design systems which can tolerate imperfections; the desire for a simple char-
acterization of the fundamental system-theoretic properties of decentralized discrete-event systems; and the
relationship between theory and application and to what degree applications should drive future theory.

Future Workshop:

The workshop underlined the vitality, the variety and the pertinence of research on the three broad issues
of structure, communication and control. It also highlighted other themes – such as the increasing rap-
prochement between discrete event control and computer science, which recurred throughout. The attendees
unanimously support holding a similar workshop in 2006 to discuss progress made on the key issues sum-
marized above and to identify new strategic research directions in decentralized control of discrete event
systems.
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Adaptive Wavelet and Multiscale
Methods for Partial Differential
Equations (04w2055)

June 3–5, 2004

Organizer(s):Tony Ware (Univerity of Calgary), Manfred Trummer (Simon Fraser Univer-
sity), Bin Han (University of Alberta), Michael Lamouroux (University of Calgary), Elena
Braverman (University of Calgary)

The development of adaptive wavelet methods for partial differential equations has matured significantly
in recent years to the point where it is attracting an increasing amount of attention from engineers and from
mathematicians. The purpose of this workshop is to bring together mathematicians, engineers, geophysicists
and others and provide an opportunity for the participants to get up to date with recent developments in the
theory and practice of adaptive wavelet methods, and together to explore potential applications of these new
techniques.
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The Design and Analysis of Computer
Experiments for Complex Systems
(04w2056)

July 15–17, 2004

Organizer(s):Derek Bingham (Simon Fraser University), Randy Sitter (Simon Fraser Uni-
versity)

The design and analysis of computer experiments has become increasingly important to scientists and
engineers. Researchers world-wide have recognized this asan important emerging area of research. We
propose to hold a 2-day workshop at BIRS aimed at addressing the aforementioned topics. The workshop
will be supported, in part, by the National Programme on Complex Data Strucutres (NPCDS). The NPCDS
Programme Director (Dr. Jamie Stafford) and the PIMS Director (Dr. Ivar Ekeland) have indicated that
NPCDS will be alotted time at BIRS and that this workshop may be suitable.

The workshop has support from the NPCDS and has a secondary goal of identifying participants who will
help form an international network of researchers in this area. NPCDS has seed money to help kick-start such
a network. This endeavor will also be co-sponsored by the Statistical and Applied Mathematical Sciences
Institute (SAMSI) in the USA. SAMSI is an important partner in the formation of an international network
and has already indicated interest in activities such as a semester devoted to this topic, with events held at
SAMSI and at a math institute in Canada. We have also found interest at Los Alamos National Labs. Industry
paricipation will be an important component of the success of the workshop and at making an impact in real
scietific investigation. We feel that the BIRS programme will be crucial at meeting the scientific goals of the
programme, but also the long-run leadership of Canadian researchers in this emerging area.

We have aimed to be fairly creative with the format of the workshop. The format aims to facilitate in-
teraction among the participants. Like many others, the workshop will have a combination of talks, poster
sessions and roundtable discussions. However, the presentations must aim to address the three theme topics
of the workshop. Furthermore, the topics presented must meet a secondary criterion in that they must ei-
ther present new methodology or present an application in one of the theme areas where new methodology
is required. In addition, for each topic, a reading list willbe created which each of the participants will
be expected to be intimately familiar. These unique features are aimed at stimulating research on specific
problems.

In the long-run, we hope that the format of the workshop will foster collaboration between the partic-
ipants. Further, we hope that by partnering with SAMSI and Los Alamos National Labs we will form the
framework for future projects that will result in an international network of leading researchers in the design
and analysis of computer experiments for complex systems.
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Combinatorial and Algorithmic Aspects
of Networking and the Internet
(04w2059)

August 5–7, 2004

Organizer(s):Ang̀ele Hamel (Wilfrid Laurier University), Alejandro Lopez–Ortiz (Univer-
sity of Waterloo), Ian Munro (University of Waterloo), Rajeev Motwani (Stanford Univer-
sity), Andrei Broder (IBM T.J. Watson), Srinivasan Keshav (University of Waterloo)

The workshop, Combinatorial and Algorithmic Aspects of Networking and the Internet (CAAN04), was
dedicated to exploring the combinatorics and algorithmicsof networking. This interdisciplinary field is a
rapidly expanding one, primarily due to the influence of the Internet. The Internet is a global network of 700
million users. An additional 300,000 users are added each day. The Internet itself is in constant flux, with
connections and content being added and deleted continuously. How does one study, predict, or even model
such an entity? This is the challenge addressed by research in large–scale networks. The unique nature
of these networks calls for a variety of techniques from a variety of disciplines. The primary goal of this
workshop is to bring together this expertise and provide a snapshot of the cutting edge research in this field.

The workshop was a great success on a number of fronts. First,it brought together a diverse cross-section
of researchers in an already scattered and distinctive community. Among the participants were mathemati-
cians, computer scientists in theory and algorithms, computer scientists in networks, physicists, and engi-
neers, as well as researchers from Europe and North America,participants from industry and academia,
students and established researchers.

The papers presented were of high quality. The decision was taken to put out a call for papers and select
speakers by peer review. The refereeing process led to twelve papers, and up–to–date research was presented.
We further took the decision to bracket these cutting–edge talks with two invited survey talks—an opening talk
by Ashish Goel and a closing talk by Andrei Broder—that set the area in context and presented an overview of
the field. In one of the refereed talks the presenter proposeda solution to a major outstanding problem in the
field and there is now ongoing work to further evaluate the correctness of the solution. The Springer–Verlag
series,Lecture Notes in Computer Science(LNCS) has expressed interest in publishing a volume dedicated
to the workshop and consisting of the presented papers alongwith a number of invited survey papers. We
anticipate that this volume would become a standard reference or graduate text in this emerging field.

New collaborations are another possible outcome of the workshop. There was clear interest among
the participants for further discussions and collaborations, and, although the format, which included large
periods for discussion, was useful, the interaction of the participants was somewhat limited by the short
duration of the two–day format.

This workshop may also spawn an annual series of similar workshops. There was also clear interest
in future workshops on this topic and the organizers had a number of inquiries from participants about the
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possibility of CAAN05. One proposal under discussion is to mount it as a satellite workshop of the Workshop
on Algorithms and Data Structures (WADS05) to be held in August 2005 in Waterloo, Ontario.

The workshop was also greatly enhanced by the wonderful facilities at BIRS, in particular the accommo-
dation, the meeting and collaboration rooms, the easy access to computers, and the proximity to the town of
Banff itself.
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Linear Operators: Theory, Applications
and Computations (04w2063)

August 12–14, 2004

Organizer(s): Paul Binding (University of Calgary), Peter Lancaster (University of Cal-
gary)

The theory of matrices and linear operators is going througha highly productive phase driven largely by
a great variety of applications. These include magneto-hydrodynamics, vibrations of continua, systems the-
ory, signal processing, for example. They frequently concern the spectral properties of operators on Krein or
Pontryagin spaces, and also require modern techniques in perturbation theory and differential equations. The
workshop will provide an opportunity for informal discussion and presentation of current research projects in
these areas. Participants will include H. Langer (Vienna),A. Markus (Beer-Sheva) and L. Rodman (Williams-
burg).
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Alberta Topology Seminar (04w2064)

August 19–21, 2004

Organizer(s):Kristine Bauer (University of Calgary), George Peschke (University of Al-
berta), Peter Zvengrowski (University of Calgary)

This 2-day workshop should be considered within the wider context of the Alberta Topology Seminar
(ATS). The ATS is an Alberta based regional effort to strengthen the research environment and to foster re-
search activities of mathematicians working in Topology aswell as in its interfaces with Algebra, Analysis,
Geometry, and Theoretical Physics. Participants come primarily from the Alberta universities, but also from
neighbouring provinces and states. The driving force behind this broad endeavour is the basic fact that re-
search thrives in a climate of rich and multidirectional interaction, generating critical mass for discovery
amongst the participants in as many ways as possible. The challenge then is to achieve amongst the par-
ticipants a level of breadth of expertise and familiarity with each other’s works to allow such interaction
to take place. Towards this end we have had 12 ATS-meetings during the last year with talks comprising a
mix of background building educational presentations, as well as conference style presentations about recent
discoveries.

Within this context the 2-day workshop we had at BIRS was by far the most important, extensive, and
beneficial ATS meeting held to date. The twenty participantsformed a healthy mix of established and junior
researchers, as well as graduate students representing theUniversities of Alberta, Calgary, Lethbridge, and
Oregon. We had twelve talks (7 on the first day, 5 on the second)spanning areas that include low dimensional
and transformation group topology, representation theory, algebraic geometry, noncommutative geometry,
etc. For details, see

http://www.ualberta.ca/dept/math/gauss/AAGT/Topology/BIRS2004.htm

Perhaps contrasting a bit those workshops whose participants come together because they share a com-
mon focus, the ultimate significance of this ATS will be measured by the extent to which its very diverse group
of participants learn to share and amplify each other’s expertise. A number of unexpected exchanges took
place which appear very promising in this regard. While the germination of ideas between specialists in
neighbouring, but different, fields requires time to nurture, we are quite optimistic that this 2-day workshop
will turn out to play a key role towards obtaining tangible results within the near to mid-range future.

The ATS meeting at BIRS also provided an opportunity for the organizers to plan future events for the
coming year; for evolving details please consult the above web address.

Finally we wish to express our gratitude to BIRS for hosting this meeting in such a relaxed setting amidst
the spectacular scenery of the Canadian Rockies. There was also great praise among the participants for the
BIRS facilities, in particular for the excellent computer access available in each room.
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Theoretical Physics Institute (TPI)
Symposium 2004 (04w2544)

September 2–4, 2004

Organizer(s): Frank Marsiglio (University of Alberta), Helmy Sherif (University of Al-
berta)

The Theoretical Physics Institute (TPI) at the University of Alberta consists of members from three dif-
ferent departments (Physics, Mathematical and Statistical Sciences, and Chemistry). This is the 2nd time we
have held a Symposium at BIRS, with the idea that this was to bring together members of the Institute, their
students and postdoctoral fellows, as well as colleagues from other universities in the West, for two days; the
intent was to promote the exchange of ideas and collaboration.

This year we had more participants from Eastern Canada, along with keynote speakers from the U.S. and
Australia. Our format differed somewhat from last year’s inthat we had only plenary talks, along with poster
sessions in the afternoons.

The first day’s talks centred around statistical mechanics,while the 2nd day had a more diverse character.
Nonetheless, even then a common theme seemed to be problems that contain many length (or energy) scales,
and the means one requires to take proper account of these disparate scales.

A number of participants are actively engaged in many-body problems. We heard about some state-of-the-
art calculations on lattices, by straightforward diagonalization. While this techniques continues to provide
insights and benchmark checks, it is clear that it can never be used to achieve the thermodynamic limit.

Other speakers (Kadanoff, Plischke, Bowman, Czarnecki) described more complicated problems in that
very different scales are involved. The latter actually tied problems in particle physics to those in aerody-
namics, connected by a common philosophy/technique of solution.

One speaker (Brown) reviewed some work being done in chemistry at the University of Alberta; it requires
the solution of the time-dependent Schrodinger equation for molecules. This work was appreciated by a
number of physicists tackling similar problems (there was even a poster involving the time-dependence of a
magnetic moment in the presence of a spin current).

Finally a couple of talks focused on issues in entanglement in quantum mechanics. The one by Sanders
(Calgary) in particular focused on applications to cryptography and quantum computers. This is clearly an
area of burgeoning interest.

Quite a variety of topics was covered in this workshop. We continue to find this annual symposium to be
very stimulating, especially in that it points out the many areas in the sciences that share common ground.
Such interdisciplinary dialogue is very welcome.
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PIMS Executive Retreat (04w2545)

September 23–25, 2004

Organizer(s):Manfred Trummer (Pacific Institute for the Mathematical Sciences)

The PIMS Executive Committee consists of the PIMS Director,Deputy Director, and the Site Directors of
the member universities. Invited participants from the mathematics community met with the PIMS Executive
Committee to discuss the future directions of PIMS.
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Pacific Northwest Numerical Analysis
Seminar (04w2053)

September 30–October 2, 2004

Organizer(s):Chen Greif (University of British Columbia), Dominik Schoetzau (University
of British Columbia), Manfred Trummer (Simon Fraser University)

The meeting will start at 8pm on Thursday September 30th, andend at noon on Saturday October 2nd.
The Banff Centre is available for accommodations for the twonights of Thursday-Friday. Check-in time at
the Banff Centre is 4pm and check-out time is noon. Objectives

This meeting is the 18th Annual Pacific Northwest Numerical Analysis Seminar (PNWNAS). It is spon-
sored by the Pacific Institute for the Mathematical Sciences(PIMS) as an event of the period of concentration
in scientific computing, and is hosted by BIRS.

The PNWNAS meeting has been held every year since 1987, and isaimed at bringing together people
from the Pacific Northwest who are interested in numerical analysis and scientific computing. Details on
previous meetings can be found at http://www.amath.washington.edu/∼pnwnas/
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Data Mining MITACS Industry Session
(04w2065)

October 14–16, 2004

Organizer(s):Jim Brookes (MITACS)

The goals of this workshop include:

• Network individuals from industry and academia who are interested in both data mining research and
the application of advanced techniques in data mining

• Share experiences from industrial participants on key issues in the application of data mining and from
academia on current research results

• Establish future research priorities for data mining

• Create new opportunities for research collaborations between industry and academia
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Canadian Mathematical Leadership
Retreat (04w2067)

October 28–30, 2005

Organizer(s):Nassif Ghoussoub (University of British Columbia)

List of Participants

Ali, Twareque(Institut des Sciences Mathematiques)
Brunner, Hermann (Memorial University of Newfoundland)
Campbell, Eddy(Memorial University of Newfoundland)
Davidson, Kenneth R.(University of Waterloo)
Ekeland, Ivar (University of British Columbia)
Ghoussoub, Nassif(University of British Columbia)
Gupta, Arvind(MITACS)
Jackson, Ken(Canadian Applied and Industrial Mathematics Society)
Kane, Richard(University of Western Ontario)
Keyfitz, Barbara Lee(Fields Institute)
Lalonde, Francois(University of Montreal)
Langford, Bill (Canadian Applied and Industrial Mathematics Society)
Reid, Nancy(University of Toronto)
Rousseau, Christiane(University of Montreal)
Thompson, Mary E.(University of Waterloo)

296



Chapter 58

MITACS Theme Meeting:
Communication Networks and Security
(04w2069)

November 4–6, 2004

Organizer(s):Evangelos Kranakis (Carleton University)
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MITACS Project Meeting: Modelling
Trading and Risk in the Market
(04w2070)

November 11–13, 2004

Organizer(s):Tony Ware (University of Calgary)

The workshop aims to bring academic researchers in mathematical and computational finance and to-
gether with risk managers and quantitaive analysts from industry to share new ideas, practical and theoretical
questions of the moment, current research, and to foster closer collaboration.

List of Participants
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Number Theorists Weekend (04w2505)

November 18–20, 2004

Organizer(s):Mark Bauer (University of Calgary), Michael Bennett (University of British
Columbia), Ronald Ferguson (Simon Fraser University)

This short workshop focused on developments in Number Theory at the interface of Computational Meth-
ods with Analytic Number Theory and Diophantine Approximation. These represent two particular strengths
of the Canadian mathematical community in general, and of the PIMS region in particular. The workshop
was designed as a bridge between the Computational workshoppreceding it and that in Analytic Number
Theory and Diophantine Approximation which followed. An emphasis was placed on expository talks with
graduate student and postdoctoral fellow involvement highlighted.

Computational tools for Diophantine problems include implementations of the Lenstra-Lenstra-Lovascz
lattice basis reduction algorithm (typically DeWeger’s integer-arithmetic version), Wildanger’s algorithm
for unit equations in number fields, various techniques for computing information about the unit groups of
number fields (typically fundamental units, with or withoutassuming the Generalized Riemann hypothesis),
related algorithms for solving Thue equations, algorithmsrelated to algebraic curves, genus calculations,
ranks of elliptic curves and Jacobians (critical for applications of Chabauty-type techniques for bounding
rational points on higher genus curves). Modular forms computationsà la William Stein (i.e. modular sym-
bols) for computations of Hecke eigenvalues of Galois conjugacy classes of, e.g. weight2 cuspidal newforms
of levelN also are critical in modern Diophantine analysis, as are computations of zeros of DirichletL-
functions (see e.g. Rubinstein) and related zero-free regions (Khadiri). These latter results are involved in
producing explicit Chebyshev-type bounds for primes in short intervals in arithmetic progressions, which
figure in estimating nonarchimedean contributions in the hypergeometric method of Thue and Siegel.

Multiplicative Number Theory also utilizes a variety of computational tools, both in order to make asymp-
totic estimates explicit, and also to inspire or provide evidence for conjectures. Some of the major tools of
analytic number theory involve the theory of meromorphic functions (which was in large part commenced by
the study of the Riemann zeta function in connection with thedistribution of prime numbers), the evaluation
and estimation of exponential sums, sieve methods, and manytechniques from the fields of harmonic analysis,
probability, and random matrix theory. In many of these areas, computations inform and suggest directions
for future research.

The primary problems to which these computational tools areapplied include, on the analytic side, the
distribution of prime numbers and of the prime factors of integers, special values of zeta functions (including
multiple zeta values) and L-functions, and uniform distribution of arithmetic sequences; and on the Dio-
phantine side, determining the transcendentality of natural constants and of values of modular functions,
irrationality measures for these values and for algebraic numbers, and applications to rational points on
algebraic varieties and solutions of Diophantine equations (see e.g. [2], [4], [5], [6]).

The workshop kicked off with an expository exploration of open problems by Richard Guy (Calgary)
in prime number theory, arithmetic function theory and the arithmetic of elliptic curves. Subsequent talks
focused on pseudoprimes (with applications to primality testing), and inequalities for arithmetic functions,
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before the direction of the workshop changed on the second day to more algebraic computation. Along
these lines, the workshop featured talks on Hilbert modularform computations, with related work on ternary
Diophantine equations, via modularity ofQ-curves.
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MITACS Environment and Natural
Resources Theme Meeting (04w2066)

December 2–4, 2004

Organizer(s):John Stockie (Simon Fraser University, MITACS)
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Chapter 62

Robust Analysis of Large Data Sets
(04frg501)

June 5–19, 2004

Organizer(s):Ruben Zamar (University of British Columbia), Stefan Van Aelst (University
of Ghent, Belgium)

Robust statistics has been developing for several decades now, and it was time for some reflection on the
topic. The informal atmosphere, lengthy discussions and extended talks in our workshop permitted, amongst
others things to focus on the following important questions.

• What are the fields of application where robust statistics can make a difference?It became clear
that analysis of huge, messy data sets with many variables (the typical data-mining setting) is crucial.
Applications in finance, genetics, chemometrics, etc. havebeen presented at the meeting.

• Which kind of methods do we still need to develop?From the discussions and talks, it became clear
that analysis of datasets that contain several types of data(numerical, categorical, ordinal, etc.), robust
statistical inference beyond point estimation, and cleaning of data matrices deserve more attention.

• Do we need to put into questions some of the foundations of robustness?In the robustness com-
munity, high breakdown point and equivariance properties have always been at a central place, but it
is not always clear that these properties are required in typical data mining applications. Moreover
it is not obvious how to define important robustness notions such as breakdown point in non-standard
settings.

From the discussions at the workshop it became clear that theinterplay between robustness and data
mining will be an important direction of future research with many applications. In data mining the focus is
on extracting valuable information from large databases. Revolutionary progress in digital data acquisition
and storage in recent years has resulted in the creation of huge databases. Supermarket transactions, credit
card usage, telephone calls details, internet traffic, corporate statistics, astronomical data, gene expression
data, medical and clinical data are all examples of such databases. In fact, the production and accumulation
of digital databases is occurring at a faster rate than our ability to comprehend and use them. One possible
reaction to this avalanche of digital data would be to dismiss them as electronic junk. However, many people
including the organizers and most participants of this workshop believe that these databases contain valuable
knowledge which can be mined (found, extracted and used).

In the process of mining the data - as in a true mining operation - we go through the following typical
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main steps:

Step I Defining mining goal: defining the particular type of
structure (or structures) we wish to find.

Step II Scoring mining results: deciding how to quantify - score - the success
of a given structure in realizing the mining goal.

Step III Getting it done: designing and implementing an algorithm
to optimize the scoring scheme from Step II.

Since Statistics and Data Mining are both concerned with theanalysis and modelling of data and methods
to perform these tasks, there is a big overlap between these two disciplines. There is a clear parallel between
data mining Steps I, II and III and Statistical Model Building, Model Fitting and Computing. The main
difference lies in the fact that, given the magnitude of the datasets encountered in data mining applications,
Step III has to be highly automated and run with non or little human intervention. Data miners have always
used statistical tools and statistician are now showing an interest in Data Mining problems. The interactions
between the two disciplines will be very beneficial to both ofthem.

It has been discussed by the participants of our workshop (and generally agreed) that there is an oppor-
tunity for the application of robust methods and ideas in Data Mining. It is possible, for example that some
useful patterns apply to the majority (but not the totality)of the data. Such patterns may never be found by
classical statistical methods that attempt to fit the complete dataset. Robust algorithms, on the other hand,
search for suitable subsets of the data and therefore can findthese partial patterns. But classical robust pro-
cedures are computationally intensive and do not scale wellto large datasets normally encountered in data
mining applications.

Several examples shown at the workshop clearly illustratedthat there is a need for robust data analysis
techniques that can handle large data sets. However, many ofthe robust methods that are available cannot
be applied directly to large data sets due to practical and theoretical reasons. Practically, robust methods are
computationally so demanding that running them on large data sets is not feasible in a reasonable amount
of time. From the theoretical viewpoint many robust methodsare not suitable for large, high dimensional
data sets because they are based on the concept of outlying objects (rows in the data matrix). Most available
robust methods treat the measurements for all variables of one object as the basic processing unit. Each
object is classified as “good” or “outlying” and if an object is considered outlying, then all measurements
for that object are downweighted together. This approach works well for low dimensional data sets because
it leads to equivariance properties that are often considered desirable. In high dimensions, on the other
hand, it is not reasonable anymore to consider all measurements of an object as deviating from the majority
if some of them are outliers. Indeed, often only 1 or a few of the measurements are contaminated while all
other measurements of the object are not. In fact, if every variable has a small probability of producing
a contaminated measurement, then the probability of havinga completely clean object decreases rapidly
as the dimension increases. In high dimensions, we can thus be confronted with data sets that contain
only few completely clean objects. This violates the basic assumption underlying most available robust
procedures: good points form the majority of the data. For high dimensional data sets it is therefore more
natural to consideroutlying cells instead ofoutlying objects. A cell is the measurement for one object and
one variable. Robust statistics can make relevant contributions to the field of data mining by developing
methods and techniques based on outlying cells that are better suited to handle the problems encountered
when analyzing large data sets. Research in this direction should focus on developing methods and algorithms
that are maybe less refined from the statistical viewpoint but are extremely fast to compute and scale well with
growing sample size and dimension.
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String Field Theory Camp (04frg538)

July 10–24, 2004

Organizer(s):Gordon Semenoff (University of British Columbia), Moshe Rozali (Univer-
sity of British Columbia), Mark Van Raamsdonk (University of British Columbia)

This was an intensive study group of some issues of current interest in string theory and string field theory.
Most of the participants of the Camp gave a free form, informal lecture. Typically the lectures lasted for two
hours and they inspired lively discussion. Below is a list ofthe titles and abstracts of the discussions:

1. Dominic Brecher and Mark van Raamsdonk, University of British Columbia: Generally Covariant
Actions for Multiple D-branes: We develop a formalism that allows us to write actions for multiple
D-branes with manifest general covariance. While the matrix coordinates of the D-branes have a
complicated transformation law under coordinate transformations, we find that these may be promoted
to (redundant) matrix fields on the transverse space with a simple covariant transformation law. Using
these fields, we define a covariant distribution function (a matrix generalization of the delta function
which describes the location of a single brane). The final actions take the form of an integral over the
curved space of a scalar single-trace action built from the covariant matrix fields, tensors involving
the metric, and the covariant distribution function. For diagonal matrices, the integral localizes to the
positions of the individual branes, giving N copies of the single-brane action.

2. Anastasia Volovich, KITP: On the Tree-Level S-Matrix of Yang-Mills Theory: We investigate the proce-
dure for computing tree-level amplitudes in Yang-Mills theory from connected instantons in the B-model
on P 3|4, emphasizing that the problem of calculating Feynman diagrams is recast into the problem of
finding solutions to a certain set of algebraic equations. Weshow that the B-model correctly reproduces
all 6-particle amplitudes, including non-MHV amplitudes with three negative and three positive helic-
ity gluons. As a further check, we also show that n-particle amplitudes obtained from the B-model obey
a number of properties required of gauge theory, such as parity symmetry (which relates an integral
over degree d curves to one over degree n-d-2 curves) and the soft and collinear gluon poles.

3. Marcus Spradlin, KITP: A Googly Amplitude from the B-model in Twistor Space: Recently it has been
proposed that gluon scattering amplitudes in gauge theory can be computed from the D-instanton ex-
pansion of the topological B-model onP 3|4, although only maximally helicity violating (MHV) ampli-
tudes have so far been obtained from a direct B-model calculation. In this note we compute the simplest
non-MHV gluon amplitudes (++— and +-+–) from the B-model as an integral over the moduli space
of degree 2 curves inP 3|4 and find perfect agreement with Yang-Mills theory.

4. David Berenstein (University of California at Santa Barbara): Deformations of N=4 SYM and in-
tegrable spin chain models: Beginning with the planar limitof N=4 SYM theory, we study planar
diagrams for field theory deformations of N=4 which are marginal at the free field theory level. We
show that the requirement of integrability of the full one loop dilatation operator in the scalar sector,
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places very strong constraints on the field theory, so that the only soluble models correspond essentially
to orbifolds of N=4 SYM. For these, the associated spin chainmodel gets twisted boundary conditions
that depend on the length of the chain, but which are still integrable. We also show that theories with
integrable subsectors appear quite generically, and it is possible to engineer integrable subsectors to
have some specific symmetry, however these do not generally lead to full integrability. We also try to
construct a theory whose spin chain has quantum group symmetry SOq(6) as a deformation of the
SO(6) R-symmetry structure of N=4 SYM. We show that it is not possible to obtain a spin chain with
that symmetry from deformations of the scalar potential of N=4 SYM. We also show that the natural
context for these questions can be better phrased in terms ofmulti-matrix quantum mechanics rather
than in four dimensional field theories.

5. David Berenstein: University of California at Santa Barbara: A toy model for the AdS/CFT corre-
spondence: We study the large N gauged quantum mechanics fora single Hermitian matrix in the
Harmonic oscillator potential well as a toy model for the AdS/CFT correspondence. We argue that the
dual geometry should be a string in two dimensions with a curvature of stringy size. Even though the
dual geometry is not weakly curved, one can still gain knowledge of the system from a detailed study
of the open-closed string duality. We give a mapping betweenthe basis of states made of traces (closed
strings) and the eigenvalues of the matrix (D-brane picture) in terms of Schur polynomials. We connect
this model with the study of giant gravitons inAdS5xS5. We show that the two giant gravitons that
expand alongAdS5 andS5 can be interpreted in the matrix model as taking an eigenvalue from the
Fermi sea and exciting it very much, or as making a hole in the Fermi sea respectively. This is similar
to recent studies of the c=1 string. This connection gives new insight on how to perform calculations
for giant gravitons.

6. Taejin Lee, Asia Pacific Center for Theoretical Physics, Seoul: Fermion Representation of the Rolling
Tachyon Boundary Conformal Field Theory: A free fermion representation of the rolling tachyon
boundary conformal field theory is constructed. The representation is used to obtain an explicit, com-
pact, exact expression for the boundary state. By explicit computation, we show that this boundary
state correctly depicts the time evolution of the unstable D-brane in the scalar sector.

7. Yutaka Matsuo, University of Tokyo: Cardy states as idempotents of fusion ring in string field theory:
With some assumptions, the algebra between Ishibashi states in string field theory can be reduced to
a commutative ring. From this viewpoint, Cardy states can beidentified with its idempotents. The
algebra can be identified with a fusion ring for the rational conformal field theory and a group ring
for the orbifold. This observation supports our previous observation that boundary states satisfy a
universal idempotency relation under closed string star product.

8. Yoshi Kitazawa, KEK Lab, Tsukuba, Japan: Correlators of Matrix Models on Homogeneous Spaces:
We investigate the correlators ofTrAmuAnu in matrix models on homogeneous spaces:S2 and
S2xS2. Their expectation value is a good order parameter to measure the geometry of the space
on which non-commutative gauge theory is realized. They also serve as the Wilson lines which carry
the minimum momentum. We develop an efficient procedure to calculate them through 1PI diagrams.
We determine the large N scaling behaviour of the correlators. The order parameter shows that fuzzy
S2xS2 acquires a 4 dimensional fractal structure in contrast to fuzzyS2. We also find that the two
point functions exhibit logarithmic scaling violations.

9. Washington Taylor, MIT: abelian and nonabelian vector field effective actions from string field theory:
The leading terms in the tree-level effective action for themassless fields of the bosonic open string are
calculated by integrating out all massive fields in Witten’scubic string field theory. In both the abelian
and nonabelian theories, field redefinitions make it possible to express the effective action in terms of
the conventional field strength. The resulting actions reproduce the leading terms in the abelian and
nonabelian Born-Infeld theories, and include (covariant)derivative corrections.

10. Amanda Peet, University of Toronto: Brane-antibrane systems and the thermal life of neutral black
holes: A brane-antibrane model for the entropy of neutral black branes is developed, following on
from the work of Danielsson, Guijosa and Kruczenski. The model involves equal numbers of Dp-
branes and anti-Dp-branes, and arbitrary angular momenta,and covers the cases p=0,1,2,3,4. The
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thermodynamic entropy is reproduced by the strongly coupled field theory, up to a power of two. The
strong-coupling physics of the p=0 case is further developed numerically, using techniques of Kabat,
Lifschytz et al., in the context of a toy model containing thetachyon and the bosonic degrees of freedom
of the D0-brane and anti-D0-brane quantum mechanics. Preliminary numerical results show that
strong-coupling finite-temperature stabilization of the tachyon is possible, in this context.

11. Shiraz Minwalla, Harvard University: Black hole-blackstring phase transitions in thermal 1+1-
dimensional supersymmetric Yang-Mills theory on a circle:We review and extend earlier work that
uses the AdS/CFT correspondence to relate the black hole-black string transition of gravitational the-
ories on a circle to a phase transition in maximally supersymmetric 1+1-dimensional SU(N) gauge
theories at large N, again compactified on a circle. We perform gravity calculations to determine a
likely phase diagram for the strongly coupled gauge theory.We then directly study the phase structure
of the same gauge theory, now at weak ’t Hooft coupling. In theinteresting temperature regime for
the phase transition, we may reduce the 1+1-dimensional theory to a 0+1-dimensional bosonic theory,
which we solve using Monte Carlo methods. We find strong evidence that the weakly coupled gauge
theory also exhibits a black hole-black string like phase transition in the large N limit. We demonstrate
that a simple Landau-Ginzburg like model describes the behaviour near the phase transition remark-
ably well. The weak coupling transition appears to be close to the cusp between a first order and a
second order transition.

12. Andre Mikhailov, CALTECH: Supersymmetric null-surfaces: Single trace operators with the large
R-charge in supersymmetric Yang-Mills theory correspond to the null-surfaces inAdS5 × S5. We
argue that the moduli space of the null-surfaces is the spaceof contours in the super-Grassmanian
parametrizing the complex(2|2)-dimensional subspaces of the complex(4|4)-dimensional space. The
odd coordinates on this super-Grassmanian correspond to the fermionic degrees of freedom of the
superstring.

A number of research collaborations were either initiated or pursued during the camp. Mark van Raams-
donk, Anastasia Volovich and Marcus Spradlin initiated a project on studying a comparison of the spectrum
of the plane wave matrix model and the dilatation operator ina certain sector of supersymmetric Yang-Mills
theory. Gordon Semenoff and Taejin Lee worked on fermionization of the rolling tachyon conformal field
theory.
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Chapter 64

Kinetic Models for Multiscale Problems
(04frg049)

August 21–September 4, 2004

Organizer(s): Reinhard Illner (University of Victoria), Shi Jin (University of Wisconsin,
Madison), Peter Markowich (Wolfgang Pauli Institute, Vienna), Lorenzo Pareschi (Univer-
sity of Ferrara, Italy)

General Comments

Besides the four organizers there were five additional “core” participants hosted at the institute. In alpha-
betical order: Chi-Kun Lin (presently University of Calgary), Dietmar Oelz (Technical University Vienna),
Christian Schmeiser (Technical University Vienna), Giovanni Russo (University of Catania) and Holger Teis-
mann (Acadia University). In addition there were two observers, hosted elsewhere in Banff but fully inte-
grated in the scientific activities: Jean Dolbeault (Université Paris Dauphine) and Horst Lange (University
of Cologne). There were thus a total of 11 participants.

Each participant gave one or two seminar style presentations on current research. Abstracts of these
presentations may be found on the website of Peter Markowich:

http://homepage/univie.ac.at/peter.markowich/

A brief list of the presented topics, in the order in which they were presented, follows:

• R. Illner: Fokker-Planck type models for multilane traffic flow

• S. Jin: Computation of semi-classical limits and multivalued solutions of PDEs

• C.-K. Lin: On coupled nonlinear Schroedinger equations, and From compressible to incompressible
fluid equations

• J. Dolbeault: Entropy/ entropy production methods for degenerate drift-diffusion equations, and Com-
ments on stability and control of quantum equations

• H. Lange: Limitations of controllability for linear and nonlinear Schr̈odinger equations

• H. Teismann: An overview of controllability results for Schrödinger equations. The significance of
coherent states.
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• P. Markowich: Bose-Einstein condensates

• L. Pareschi: Analytical and numerical results for the Boltzmann equation for Bosons; Bose-Einstein
condensation

• G. Russo: Implicit-explicit numerical methods for nonlinear hyperbolic systems

• C. Schmeiser: Mathematical models for chemotaxis, and Dimension reduction for the Gross-Pitaevski
equation

• D. Oelz: Nonlinear Diffusion equations as macroscopic limits of generalized BGK models, and Nu-
merical studies on chemotaxis

These lectures happened in a very informal setting and without serious time constraints, such that de-
tailed discussions were possible during the talks. Everybody attended all lectures and participated in the
discussions. Research sessions typically happened immediately after the lectures. These sessions were ex-
ceptionally fruitful and entailed many continued and new collaborations. Several research papers were
completed or significantly advanced during the workshop. Details are given in the sequel.

Central Research Topics

Among the many research subjects which were considered during the workshop, the following saw the most
efforts and progress.

J. Dolbeault, P. Markowich, D. Oelz and C. Schmeiser continued joint work on the mean free path limit of
a Boltzmann-type equation with general equilibrium function and a relaxation time approximation collision
operator (a generalized BGK model) This advances the theoryof diffusion limits, a theory with fundamental
roots in a paper by C. Bardos, R. Santos and R. Sentis (Diffusion approximation and computation of the
critical size, Trans. Amer. Math. Soc.284 (1984), no. 2, 617–649). In this project a Boltzmann-type
equation with a non-linear relaxation time approximation collision operator involving a general equilibrium
function is considered. Under parabolic scaling a rigorousconvergence proof of solutions to a macroscopic
limit was obtained. The analysis employs compensated compactness theory.

Different choices for the local equilibrium lead to different macroscopic equations. Most notably, non-
linear diffusion equations ranging from fast diffusion to porous medium equations are reproduced as macro-
scopic limits by employing different types of equilibrium functions with decreasing rates of decay in terms of
energy. The resulting paper is available as a preprint [1].

Chemotaxis was studied by D. Oelz and C. Schmeiser on the kinetic level with particular emphasis on
diffusion limits and microscopic modelling of the motion ofbacteria. It is conceivable that finite-time blow-up
can be avoided on this level by careful modelling of reorientation processes.

Peter Markowich and Lorenzo Pareschi finished work on the numerical solution of the ergodic approxi-
mation of the quantum Boltzmann equation. The main difficulty here was finding an efficient scheme which
maintains entropy growth, mass conservation and is at the same time able to reproduce a generalized Bose-
Einstein equilibrium. The devised scheme is based on appropriate discretisation of the three dimensional
integral in the collision operator and was found to be competitive with a Monte-Carlo method. It can be used
for both the homogeneous gas dynamics Boltzmann equation and for the Boltzmann equation for Fermions.

Shi Jin and Peter Markowich further completed a paper (with additional authors Sparber, Zheng and
Huang) on the numerical solution of the Dirac-Maxwell system. The scheme is based on a spectral dis-
cretisation in position space combined with a time splitting method. Test examples are presented in the
semiclassical and non-relativistic regimes, focusing on electon-phonon coupling.

Lorenzo Pareschi and Giovanni Russo continued their analysis of stability and accuracy of IMEX-Runge
Kutta schemes. Implicit-explicit (IMEX) Runge-Kutta schemes are a very effective tool for the numerical
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solution of hyperbolic systems with stiff relaxation. Under mild assumptions on the system coefficients, they
provide numerical schemes that are accurate in the limit of both very large and very small relaxation pa-
rameters. However, for intermediate values of the parameter the accuracy of such schemes is not known
theoretically. Numerical tests show degradation of the accuracy for values of the relaxation parameter of the
order of the time step. During the Focused Research Group workshop, asymptotic analysis was used to obtain
an estimate of the uniform order of accuracy for the various IMEX-RK schemes developed by the authors.
One of the aims of the stability analysis is to exploit the stabilization effect introduced by the dissipative
term, when it is treated by an L-stable space discretization. The larger the stabilization, the less severe the
restriction on the time step, resulting in a more efficient scheme.

Jean Dolbeault and Reinhard Illner continued work on entropy methods for (linear) drift-diffusion equa-
tions with time-dependent and locally vanishing drift and diffusion coefficients (thus leading to degeneracies
in the diffusion). Problems of this nature emerged in the traffic models which Reinhard Illner presented at
the workshop; related problems arise in the analysis of flashing ratchets. Many open mathematical ques-
tions emerge naturally in this theory, among them the validity of generalized Hardy-Poincare inequalities,
the description of asymptotic behaviour of the system if theroots of the diffusion and drift coefficients experi-
ence periodic oscillations, and others. A comprehensive paper about these matters was essentially completed
during the workshop [2].

Finally, Reinhard Illner, Horst Lange and Holger Teismann completed work on a comprehensive article
on the limitations of exact controllability of linear and nonlinear Schroedinger equations, with the Hartree
equation and the Gross-Pitaevski equation as the most relevant examples. In particular, a result on non-
controllability (complementing the knowledge on optimal control) for the Hartree equation was obtained.
The paper is presently undergoing final revisions.

Concluding Observations

1. The workshop united a small group of researchers with a strong common mathematical culture and
very varied applied interests. Such a variety of domains of applications is common among applied
mathematicians and especially among people involved in multiscale modelling.

2. The main applications considered at the workshop were:

• New classes of kinetic traffic flow models, leading to original research on nonlinear and nonlocal
degenerate drift-diffusion equations (Dolbeault, Illner).

• Bose-Einstein condensation: the condensation mechanism,the dynamics of the condensate, and
numerical methods (Markowich, Pareschi, Russo, Schmeiser). The numerical methods presented
by Russo (IMEX) essentially apply to all the topics considered in the meeting (they are derived to
treat multiscale problems).

• quantum control (Dolbeault, Illner, Lange, Teismann)

• multiscale models in biology, in particular the phenomenonof chemotaxis (Markowich, Oelz,
Schmeiser)

• Scaling limits in kinetic theory and fluid dynamics (Dolbeault, Jin, Markowich, Lin, Oelz, Schmeiser).

3. The format of a small focused research group was universally found to be ideal: long presentations,
enough time for detailed discussions, and time and space foractive research (there are numerous
articles in preparation as a consequence; new projects are being planned)

The workshop was a resounding success.
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Figure 64.1: Jets in Bose-Einstein condensates
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Chapter 65

Cohomogeneity One Manifolds With
Positive Sectional Curvature (04rit525)

March 13–27, 2004

Organizer(s): Karsten Grove (University of Maryland), Burkhard Wilking (Universiẗat
Münster), Wolfgang Ziller (University of Pennsylvania)

Background

Since the simplest non-trivial Riemannian manifold is the round sphere of radiusr and (constant) curvature
1/r2, it is only natural that manifolds with positive curvature have played a central role since the beginning
of global Riemannian geometry. In the (complete) non-compact case a theorem of Gromoll and Meyer (1970)
asserts that the manifold is diffeomorphic to euclidean space, and in the compact case the classical Bonnet-
Myers theorem (1932) imply that the fundamental group is finite. In even dimensions a result of Synge (1934)
shows that the manifold is simply connected if it is orientable. The main issue in the subject is therefore to
understand (compact) simply connected manifolds with positive curvature. Except for special obstructions
for spin manifolds (stemming already from positive scalar curvature) the only known obstruction is the Betti
number theorem due to Gromov (1980) which even applies to non-negative curvature: It provides a bound on
the total Betti number which depends only on the dimension.

Under natural additional conditions there are celebrated results that identify the manifold with the sphere
or with one of the other rank one symmetric spaces, i.e., the complex and quaternionic projective spaces, or
the Cayley plane, the so-called CROSSes. It is remarkable that above dimension 24 these are the only known
(simply connected) manifolds of positive curvature. Additional examples have appeared in dimensions 6, 7,
12, 13, and 24. These examples include a complete classification of positively curved homogeneous manifolds
due to combined work of Berger (1960), Wallach (1970), Aloff-Wallach (1972), and Berard-Bergery (1975)
(one in each of the dimensions 6, 12, 13 and 24, and infinitely many in dimension 7). Non-homogeneous
examples have been found by Eschenburg (1978) in dimensions6, 7, and by Bazaikin (1996) in dimension 13
(one in dimension 6 and infinitely many in the other dimensions). All these examples are so-called biquotients,
i.e., quotients of a compact Lie groupG by a subgroup ofG×G acting on left and right onG.

To advance the theory at this point it seems imperative to findnew examples, a task which notoriously
is very difficult as indicated above. For simplicity, and since all known examples have a fairly large group
of isometries, it seems natural to look for new examples withlarge symmetry group. Attempts to classify
manifolds with positive curvature and large isometry groupprovide a framework for a systematic search for
new examples. One of the natural measurements for the size ofthe isometry group is itscohomegeneity, i.e.,
the dimension of the orbit space. For example, having minimal cohomogeneity0 means that the isometry
group acts transitively on the manifold, i.e., it is homogeneous. In analogy with the case of homogeneous
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manifolds, Wilking recently showed that in any fixed cohomogeneity, sufficiently high dimensional manifolds
of positive curvature are CROSSes (up to tangential homotopy equivalence).

Project Description

The previous section should provide ample justification fora serious investigation of simply connected coho-
mogeneity one manifolds of positive curvature with a complete classification as the final goal.

It is well known that the orbit spaceM/G of a simply connected cohomogeneity oneG-manifoldM , is
an interval whose end points correspond to two singular orbits B± = G/K± of codimension at least two,
and where each interior point is a principal orbitG/H of codimension one. Moreover,Sl± = K±/H are
normal spheres toB±, andM = G×K−

Dl−+1 ∪G×K+
Dl++1 is the union of tubular neighbourhoods of

these orbits. In particular,M is determined by the subgroupsH ⊂ {K±} ⊂ G and vice versa. We point out
that in general a cohomogeneity one manifold can support many inequivalent cohomogeneity one actions. In
particular there are many (linear) cohomogeneity one actions on spheres and more generally on CROSSes.

A remarkable first step towards the classification of cohomogeneity one manifolds of positive curvature is
the recent result of L. Verdiani asserting that ineven dimensionsonly CROSSes appear with their standard
actions. - The same is false in odd dimensions. In fact, one observes that specific infinite subfamilies of the
Eschenburg spaces and of the Bazaikin spaces are indeed of cohomogeneity one, as are three non CROSS nor-
mal homogeneous spaces,B7 = SO(5)/ SO(3), W 7 = SU(3) SO(3)/ U(2), andB13 = SU(5)/ Sp(2)S1.

When specialising Wilkings theorem to the case of cohomogeneity one, the dimension beyond which all
manifolds are like a CROSS is 72. In recent work by Grove, Verdiani, Wilking and Ziller it was shown
that no cohomogeneity one exotic sphere (Kervaire sphere) supports an invariant metric with nonnegative
curvature, and neither does any non-linear cohomogeneity one action on a standard sphere. In particular, if
a positively curved cohomogeneity one manifold is homotopyequivalent to a CROSS, it is indeed a CROSS
with a standard action. It thus remains to classify (simply connected) positively curved cohomogeneity one
spaces below dimension 72, that are not homotopy equivalentto a CROSS.

The classification has two natural parts:

• Find obstructions on the manifoldM , i.e., onH ⊂ {K±} ⊂ G, due to positive curvature

• Find positively curved metrics on unobstructed manifoldsM

Although we now believe that we have settled the first part, wecannot be sure until the second part has been
carried out as well. It is striking that the obstruction we have found in particular imply that the above bound
of 72 can be replaced by 13. In fact

Theorem 1 Let M be a simply connected compact positively curved manifold onwhich a Lie groupG acts
isometrically with one dimensional orbit space. Then one has the following possibilities:

(a) M is equivariantly diffeomorphic to a rank one symmetric space with a linear cohomogeneity one
action (all classified by Hsiang-Lawson).

(b) M is equivariantly diffeomorphic to a 7 dimensional positively curved Eschenburg space or 13 dimen-
sional Bazaikin space with their natural isometric cohomogeneity one action.

(c) M is a 7 dimensional manifold on whichS3 × S3 acts isometrically by cohomogeneity one with finite
isotropy group and singular orbits of codimension two.

In parts (a) and (b) we already know the existence of positively curved metrics. In part (c) earlier work of
the Grove and Ziller yield the existence of nonnegatively curved metrics. The existence of a positively curved
metric is actually further significantly obstructed: If(p−, q−) and (p+, q+) are the slopes of the circles
inside the singular isotropy groupsK−, K+ as viewed inS3 × S3, then eitherH = {±1,±i,±j,±k} or
H = Z2 ⊕ Z4. We denote the first family byM(p−,q−),(p+,q+) and the second one byN(p−,q−),(p+,q+). The
only unobstructed manifolds left (at the moment) are then:

(i) M(1,1),(1+2n,3+2n)
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(ii) N(1,1),(1+2n,2+2n))

(iii) M(1,3),(3,1)

(iv) N(3,1),(1,2))

Here M(3,1),(1,3) is actually the positively curved Berger spaceSO(5)/SO(3)max, andM(1,1),(1,3) is S7

with its linear cohomogeneity one action bySO(4) coming from the isotropy representation of the symmetric
spaceG2/SO(4).

It is also remarkable that the candidates in (i) and (ii) agree precisely with the 3-Sasakian manifolds
arising from Hitchin’s examples of self dual Einstein orbifolds onS4. They are thereforeSO(3) orbifold
principal bundles overS4 and we observed that the total space happens to be a smooth manifold and not an
orbifold.

A further intriguing property of the familyM(1,1),(1+2n,3+2n) is that they are 2-connected withπ3 = Zr

and r = (p2
−q2

+ − p2
+q2

−)/8 = n + 1 and hence are rational homology spheres. If they have a metric of
positive sectional curvature, a theorem of Rong-Petrunin-Tuschmann would imply that the optimal pinching
constant of any positively curved metric has to converge to 0asr increases. This would be the first manifolds
with such a phenomenon and would contradict a conjecture dueto Fukaya.

Most of our work at BIRS was directed towards the construction of positively curved metrics on the manifolds
described in (i) ( and hence (ii)) above. We already knew thateven this would be a formidable problem since
the curvature formulae for invariant metrics are very complicated. Although our understanding and insights
deepened significantly as a result of this process (see below), we do not yet know how to construct the desired
metrics.
Here is a brief description of the key steps in our search. By invariance, the (most restricted) metrics in
(i) on the principal orbits are given by metrics on three orthogonal two dimensional subspaces and hence
by 3 symmetric2 × 2 block, i.e., by 9 functions on the orbitspace interval. To define a smooth metric on
the manifold, specific smoothness conditions at the boundary points where collapse occurs are imposed and
completely understood for our candidates. To further simplify our investigations we have made repeated
use of a well-known deformation of aG invariant metric first used by Berger forG = R1 and in general
by Cheeger. Basically, by shrinking the metric in the direction of theG orbits one generally gets more two
planes with positive curvature. In our case we have determined exactly what it takes for a metric to have
positive curvature modulo this so-called Berger-Cheeger trick. The full curvature operator for our examples
splits into four symmetric3 × 3 blocks with complicated expressions in terms of the 9 functions as entries.
A sufficient but not quite necessary condition for positive curvature is that each of these blocks are positive
definite. Since we already had explicit metrics with nonnegative curvature on our candidates it seemed like
a natural attempt to deform these metrics. This turned out tobe exceedingly hard, and although we did
not prove it, we derived evidence that in fact there are no positively curved metrics on our candidates near
the rigid nonnegatively curved metrics constructed earlier. Another intriguing starting point is to use our
observation that our candidates coincide with the 3-Sasakian manifolds arising from Hitchin’s examples of
self dual Einstein orbifolds onS4. So far, we have been unable to determine if this approach will provide
the desired metrics, but the direct procedure does not work.It is striking that among the large class of
cohomogeneity oneS3 × S3 manifolds with nonnegative curvature, our candidates are the only ones that
even near the singular orbits admit positive curvature. Ourmost promising approach so far, and the one we
initiated at BIRS towards the end of our stay, is to start withmetrics of positive curvature near the singular
orbits, and attempt to match them at the boundary of tubular neighbourhoods in a convex fashion. To make
this work, it is however clear that much work and new ideas areneeded.
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Modular Invariants and NIM-reps
(04rit048)

March 13–27, 2004

Organizer(s):Matthias R. Gaberdiel (ETH Z̈urich, Switzerland), Terry Gannon (University
of Alberta)

During the time of this program we have continued to work on different problems regarding D-branes of
WZW models. Let us begin by briefly sketching the context.

One of the best understood string theories are the Wess-Zumino-Witten (WZW) models that describe
closed strings propagating on a target space that is a Lie groupG. The algebraic structures governing these
models are affine Kac-Moody algebras.

As has become clear in recent years, many closed string theories possess D-branes. A D-brane is simply
a submanifold of the target space on which the end points of additional open string degrees of freedom can
lie. Because of this open string point of view, D-branes can be analyzed and described using conformal field
theory techniques (although they are actually ‘non-perturbative’ objects from the closed string point of view).

D-branes are dynamical objects that can in particular decayin various ways. In order to understand
their dynamics it is useful to determine the invariant charges that characterise different configurations of
D-branes. It is believed that the corresponding charge groups agree with certain K-theory groups. For the
WZW models, the relevant K-groups are specific twisted K-groups that have been worked out in [1, 2].

A lot of work has already been done on D-branes in WZW models. In particular, the D-branes that
preserve the full affine symmetry (possibly up to an automorphism) have been constructed. For the case where
the group manifold is simply connected their charges have also been determined [3, 4, 5, 6]. (A systematic
analysis for the case of non-simply connected Lie groups wasrecently begun in [7], see also [8, 9].) While
the resulting charge groups agree beautifully with the independent K-theory calculations, it has became clear
that, apart for some small rank exceptions, the D-branes that preserve the full affine symmetry do not account
for all the K-theory charges. [For example, for the case ofG = SU(n) the charge group that is predicted
by K-theory consists of2n−2 copies of some finite cyclic groupZd, while the above D-brane constructions
can only account for two of these summands (forn ≥ 3).] This raises the question of how to construct the
D-branes that account for the remaining charges.

This is the problem we attacked during our time at BIRS.1 [For simplicity, we restricted ourselves to the
case ofSU(n), although it should be straightforward to generalise our constructions to arbitrary (simply-
connected) groups.] In particular, we managed to find two constructions that seem to generate the remaining
D-brane charges. The first construction [10] is based on the suggestion of [4] that the remaining charges
should be related by some sort of T-duality to the original untwisted and twisted branes. We have shown that
there are precisely2n−2 different constructions that can be obtained in this manner. While these boundary
states break in general the affine symmetry, their open string spectra can still be described in terms of twisted

1The work was also done in collaboration with a student of one of us.
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representations of the affine symmetry algebra. As a consequence their charges can be determined, and we
could show that each of the2n−2 different constructions leads to the same charge groupZd.

While this construction is quite suggestive, the geometricinterpretation of the different D-branes is not
obvious. In a second paper [11] we therefore gave a differentconstruction that was more geometrically
motivated. It is well known that the groupSU(n) is rationally homotopy equivalent to a product of odd
dimensional spheres

SU(n) ∼= S2n−1 × S2n−3 × · · · × S3 . (66.1)

Each of these spheres comes from a coset spaceS2m−1 ∼= SU(m)/SU(m − 1), and thus homotopically we
can think ofSU(n) as the product of these coset spaces.

From a conformal field theory point of view we can decompose the space of states in terms of these coset
algebras, and we can then construct D-branes that preserve their product. In fact, we managed to find2n−2

different classes of D-branes that have this property. Thismultiplicity arises because for each factor of (66.1)
(except theS3 factor), there are two possible constructions that seem to describe D-branes whose world-
volume does or does not wrap the corresponding sphere. Giventhe close connection of K-theory to homology
[4], this then suggests that these D-branes generate in factthe full K-group.

Technically, the two constructions [10] and [11] are very similar indeed. The analysis of the charges is
more unambiguous for the first construction, while the geometric interpretation is more transparent for the
second. Taken together, they therefore give strong supportto the assertion that either of them describes a
collection of D-branes whose charges generate the full K-group.

Our two weeks at BIRS were again very productive indeed. We found the environment beautifully con-
ducive to research. We also found Andrea Lundquist very helpful. We hope to be able to visit again some time
in the future!
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Pi in the Sky Meeting (04rit300)

May 13–15, 2004

Organizer(s):Heather Jenkins (PIMS)

This was the first meeting of theπ in the SkyEditorial Board. The following points were decided.

Our Audience

π in the Skymagazine is primarily aimed at high-school students and teachers, with the main goal of provid-
ing a cultural context/landscape for mathematics. It has a natural extension to junior high school students
and undergraduates, and topics may also put curriculum topics in a different perspective.

This will be explicitly written inπ in the Sky.

Instructions to Authors

Keep the audience (see above statement) in mind, except for specialized columns/sections.
Normally a paper should not exceed 4 printed pages includingpictures. For your information one page

is 1200 words without pictures.

Breakdown of a Typical Issue

1. Editorial by Klaus Hoechsmann

2. Thematic article–general, cultural, non-specialized,appeal to broad audience

3. Other articles of that kind, including history of math andbiographies, applications and uses of math,
notably in industry and mathematical careers

4. Specialist article(s) for more advanced readers, curriculum topics

5. Book reviews (not text books), news items

6. Letters to the editor, opinions

7. Challenges, strategies

1–4 make up about 70% of an issue.
5–7 make up about 30% of an issue.

In other words at least 2/3 should be of interest to high school teachers “without their pens”.
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Editorial Board

Editor in Chief:
Ivar Ekeland (University of British Columbia)

Editorial Board:
John Bowman (University of Alberta)
Dragos Hrimiuc (University of Alberta)
Wieslaw Krawcewicz (University of Alberta)
Alexander Melnikov (University of Alberta)
Volker Runde (University of Alberta)
Michael Lamoureux (University of Calgary)
Klaus Hoechsmann (University of British Columbia)
Florin Diacu (University of Victoria)
David Leeming (University of Victoria)
Len Berggren (Simon Fraser University)
Heather Jenkins (Pacific Institute for the Mathematical Sciences)

Teachers we will ask to join:
Sharon Friesen (Galileo Educational Network, Calgary)
Wendy Swonnell (Lambrick Park Secondary School, Victoria)
John Campbell (Archbishop MacDonald, Edmonton)

A Managing Editor will be appointed.

We will move towards a structure where there are Associate Editors (one per PIMS site).

List of Participants

Jenkins, Heather(Pacific Institute for the Mathematical Sciences)
Bowman, John(University of Alberta)
Diacu, Florin (University of Victoria)
Ekeland, Ivar (University of British Columbia)
Hoechsmann, Klaus(Pacific Institute for the Mathematical Sciences)
Hrimiuc, Dragos (University of Alberta)
Krawcewicz, Wieslaw(University of Alberta)
Lamoureux, Michael(University of Calgary)
Leeming, David(University of Victoria)
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Chapter 68

Maximal Functions in Non-commutative
Analysis (04rit004)

May 17–June 5, 2004

Organizer(s): Marius Junge (University of Illinois at Urbana-Champaign), Quanhua Xu
(Universit́e Besancon at Franche-Conté)

In recent years we have seen a very deep connection between the recent theory of operator spaces and
quantum probability. This leads to fascinating new ideas and much work to be done. The two organizers are
partially involved in this new development.

In our first project we discussed the application of these ideas to noncommutative ergodic theory and
maximal functions. One of the main results there is the noncommutative maximal ergodic inequality, which
is the noncommutative version of the classical Dunford-Schwarcz maximal ergodic inequality. This solves
an old (maybe a main) open problem in noncommutative ergodictheory. This maximal inequality is closely
related to as well as inspired by the noncommutative Doob maximal inequality for martingales, recently
established by one of the organizers. Another main result ofthis work is a noncommutative version of Stein’s
maximal ergodic inequality for symmetric positive Markovian semigroups. As an application, we obtain
a maximal inequality for the Poisson semigroup of a free group and a version of the almost everywhere
radial convergence for this semigroup. This is the free group analogue of the classical results on the Poisson
semigroup on the torus. Some work had been done before the meeting at Banff. However, there were many
details that required clarification, discussion and improvement. Let us mention, for example, the notion
of almost everywhere convergence. There is a vast literature in the noncommutative setting with at least
seven different notions. In our final result on convergence of ergodic averages we could provide a functional
analytic formulation which implies all reasonable forms ofconvergence discussed in the literature before.
Finally this project (a paper of approximately 50+ pages) isready for closure.

The second work achieved during our stay deals with the noncommutative Rosenthal inequalities. This
is a continuation of our previous work on the noncommutativeBurkholder inequality for martingales. We
obtained several noncommutative versions of Rosenthal’s inequality on independent mean zero random vari-
ables. The applications of this family of inequalities ranges from̀ p-norms estimates of the singular values for
random matrices, to operator-valued versions in free probability and Lp-estimates in classical Araki-Wood
factors obtained from quantum mechanics. Some of these estimates were developed for the understanding
of operator space analogue of the work of Rosenthal on the structure theory commutativeLp spaces. For
example we applied these results to the study of symmetric subspaces of noncommutativeLp-spaces. Let us
mention one of our applications. LetM be a von Neumann algebra andLp(M) be the associated noncom-
mutativeLp-spaces. Assume2 < p <∞. LetX ⊂ Lp(M) be a symmetric subspace. ThenX is isomorphic
either to`p or to `2. This is a result in the category of Banach spaces. Its counterpart for operator spaces
reads as follows: IfX has a completely symmetric basis, thenX is completely isomorphic to one of the four
spaces:̀ p, Cp, Rp andCp ∩Rp, whereCp andRp are respectively thep-column andp-row space.
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The collaboration in the third project on operator space techniques and quantum probability was mo-
tivated by the fast current development in the field. Parallel with the work of Pisier and Shlayhtenko, one
organizer started to investigate the connection between operator spaces and free probability in type III von
Neumann algebras. A similar theory can also be developed forthe classical Araki-Woods factors known
from quantum mechanics. We developed the material for a book(or memoirs) which should illustrate these
new area of research and techniques. This also required the review the material known to either one of the
participants. Indeed, due to the extensive exchange in Banff we avoided huge amount of overlap between the
two participants. We believe that we have gained a much better and deeper understanding of the very recent
works on the operator space Grothendieck inequalities, theembedding of Pisier’s operator Hilbertian space
OH into a noncommutativeL1 spaces (predual of a von Neumann algebra) by Pisier-Shlyakhtenko and the
organizers. We have obtained several applications of theserepresentations. In particular, we proved that
the class of completely 1-summing maps onOH coincides with the Orlicz-Schatten classSΦ, whereΦ is the
Orlicz functionΦ(x) = x2| lnx| (x > 0). This result is in strong contrast with the corresponding Banach
space result which asserts that the class of 1-summing maps on `2 is the class of Hilbert-Schmidt operators.
Note that the logarithmic factor inΦ is at the origin of the same logarithmic factor in the operator space
little Grothendieck inequality and the projection constant of OHn.

List of Participants

Junge, Marius(University of Illinois, Urbana-Champaign)
Xu, Quanhua(Universit́e Besancon at Franche-Conté)
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Chapter 69

Geometrical Analysis in One and
Several Complex Variables (04rit524)

May 22–June 5, 2004

Organizer(s): Joseph A. Cima (University of North Carolina, Chapel Hill),Ian Graham
(University of Toronto), Kang-Tae Kim (Pohang University of Science and Technology,
Korea), Steven G. Krantz (Washington University, St. Louis)

Of the topics we initially proposed for study, we spent most of our time considering holomorphic mappings
in Banach and Hilbert spaces. Following some early developments dating back to about 1970, there has been
a surge of recent activity in infinite-dimensional holomorphy. Of particular interest to us are problems which
combine geometrical methods of one and several complex variables with operator theory and functional
analysis. For example, the books [6] and [4] are written in this vein, and the papers [11] and [12] show
that significant portions of the theory of normal families can be extended to separable Banach or Hilbert
spaces. It should also be mentioned that some aspects of univalent function theory (the study of classes of
conformal mappings of the unit disc) have been generalized to infinite dimensions (see the recent book [7]
and the references there).

The Schwarz lemma is one of the most basic mapping results in one complex variable. Perhaps the most
important part of this result is the uniqueness statement: if f : D → D is a holomorphic mapping from the
unit discD to itself,f(0) = 0, and |f ′(0)| = 1, thenf is a rotation. Generalizations to bounded domains
in Cn have been considered by various authors, beginning with H. Cartan around 1930 (see [13], [18]).
The result closest in spirit to our work in infinite dimensions is a theorem which states that a holomorphic
self-map of a bounded domain inCn with a fixed pointp at which the eigenvalues ofdfp have modulus 1 must
be an automorphism of the domain. Using iteration techniques and the Cauchy estimates, one proves that the
Jordan canonical form ofdfp must be diagonal. Separate arguments are then needed to dealwith the case of
rational and irrational eigenvalues. Convergence questions for a suitable subsequence of the iterates of the
mappingf must then be considered.

During the course of our Research in Teams program we studiedversions of the rigidity result in the
Schwarz lemma for bounded domains in a separable Hilbert space H. Bounds for the differential of the
mapping are known; see [6] or [4]. Also, Harris [9] showed that if the domain in question is the unit ball
anddf0 is an invertible isometry thenf = df0. We obtained the following theorem:

Theorem. LetΩ ⊆ H be a bounded convex domain. Fix a pointp ∈ Ω. Letf : Ω→ Ω be a holomorphic
mapping such that
(a) f(p) = p;
(b) the differentialdfp is triangularizable;
(c) σ(dfp) ⊆ S1 .
Thenf is a biholomorphic mapping.

Convergence questions in infinite dimensions both for the powers of the elements of the point spectrum
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and for subsequences of the iterates of the mapping are quitesubtle, and new techniques (whose genesis lies
in recent work of Kim and Krantz [12]) must be introduced. We believe that these techniques will have further
applications, and plan to explore them.

We also considered a basic open problem in infinite dimensional holomorphy: to show that the inverse
of an injective holomorphic mapping from one bounded domainonto another in a separable Hilbert space
H must be holomorphic. Examples dues to Suffridge [17] and Heath and Suffridge [8] show that some
pathological behaviour is possible in non-separable Banach spaces. Some sufficient conditions are known
for holomorphy of the inverse mapping [10]; but the general case remains open.

Members of the group also gave informal talks on topics of mutual interest: a generalization to infinite
dimensions of a characterization of the unit ball by its automorphism group [11], the theory of Loewner
chains in several variables [7], boundary behaviour of biholomorphic mappings between convex domains
[15], and the approximation of vector fields inCn by complete vector fields [2], [5]. We formulated a
number of problems for further study in both finite and infinite dimensions, and believe that considering such
results simultaneously may lead to a useful cross-fertilization of ideas:

1. If Ω1 andΩ2 are bounded domains in a separable Hilbert spaceH andf : Ω1 → Ω2 is an injective
holomorphic mapping ofΩ1 ontoΩ2, then isf−1 holomorphic ?

2. Is there a version of the Hopf lemma for plurisubharmonic functions on bounded domains in infinite
dimensions ?

3. If B is the unit ball in a separable Hilbert spaceH, and iff : B → Ω is a biholomorphic mapping of
B onto a bounded convex domain, then doesf−1 extend continuously toΩ ?

4. With assumptions as in Problem 3, letU be a nonisotropic Koranyi ball in∂B and suppose that
f(U) ⊂ ∂Ω. With respect to the appropriate Hausdorff measureµ, does there exist a constantC > 0 such
thatµ(U) ≥ Cµ(f(U)) ?

5. Suppose thatf : B ⊂ H → H is a holomorphic mapping from the unit ball in a separable Hilbert
spaceH into H with open image and thatX is an analytic subvariety ofB. When isf(X) a variety ?

The group was very enthusiastic about the “Research in teams” format and felt that it provided an op-
portunity to carry out joint work which it would have been very difficult to accomplish without a period of
intense concentration with all of us present. The setting, facilities, and staff were wonderful.

List of Participants

Cima, Joseph(University of North Carolina, Chapel Hill)
Graham, Ian (University of Toronto)
Kim, Kang-Tae(Pohang Institute of Science and Technology, Korea)
Krantz, Steven G.(Washington University, St. Louis)



Bibliography

[1] E. Andersen, Volume-preserving automorphisms ofCn, Complex Variables Theory Appl.14(1990), 223-
235.

[2] E. Andersen and L. Lempert, On the group of holomorphic automorphisms ofCn, Invent. Math.110
(1992) 371-388.

[3] J. B. Conway,A Course in Operator Theory, American Mathematical Society, Providence, RI, 2000.

[4] S. Dineen,The Schwarz lemma, The Clarendon Press, Oxford University Press, Osford, 1989.

[5] F. Forstneric and J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms ofCn, In-
vent. Math.112(1993), 323-349.

[6] T. Franzoni and E. Vesentini,Holomorphic Maps and Invariant Distances, North-Holland, Amsterdam,
1980.

[7] I. Graham and G. Kohr,Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc.,
New York, 2003.

[8] L. F. Heath and T. J. Suffridge, Starlike, convex, close-to-convex, spirallike, andΦ-like maps in a com-
mutative Banach algebra with identity,Trans. Amer. Math. Soc.250(1979), 195-212.

[9] L. Harris, Schwarz’s lemma in normed linear spaces,Proc. Nat. Acad. Sci. U.S.A.62(1969), 1014-1017.
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Chapter 70

Geometry and Deformation Theory of
Hyperbolic 3-manifolds (04rit057)

July 3–8, 2004

Organizer(s): Richard Canary (University of Michigan), Jeffrey Brock (Brown Univer-
sity/University of Texas, Austin), Kenneth Bromberg (University of Utah), Yair Minsky (Yale
University)

Our small group convened to discuss, informally, current and new directions for research in Kleinian
groups, in view of the tremendous progress that has occurredin recent years. Major old problems have been
solved, and some powerful techniques have been introduced to the field (drilling theorems, model manifolds
and curve complexes, and more recently end reductions), which provide new opportunities to obtain a deeper
understanding of an intricate subject.

Topology of the Deformation Space

The recent solution of the Ending Lamination Conjecture by Brock-Canary-Minsky [16, 4] gives a complete
classification of (finitely-generated) Kleinian groups, but it does not give atopologicaldescription of the
deformation space of a group because the invariants involved in the classification do not vary continuously,
as discovered and explored by Anderson-Canary [1], Brock [3], and others.

Bromberg [5] more recently showed that even some remaining optimistic conjectures about this topo-
logical structure were false, when he proved that the deformation space of punctured-torus groups is not
locally-connected at its boundary.

We discussed at length some approaches to proving similar results forBers slices: these are special slices
of the representation space where most of the discontinuityphenomena do not occur, and so there was some
room for hope that the topology of these slices is tamer than the general case. However it is possible that
Bromberg’s approach can also prove non-local-connectivity in this case. It may also be that a computer-
driven search can produce and verify examples of this.

On the positive side, we discussed an ongoing project to encode the continuity properties of the ending
invariants in a complete way. The machinery in Masur-Minsky[11] and Brock-Canary-Minsky [4] gives
some tools for attempting this, but there is so far no single coherent description.

Another promising direction is the question ofbumpingandself-bumping(of components of the deforma-
tion space) in the case of manifolds with compressible boundary. In the incompressible case this phenomenon
has been well-studied by Anderson-Canary-McCullough [2],Holt [9], McMullen [13], Bromberg-Holt [6],
Ito [10] and others. It is known for example that only finitelymany components can meet at one point, but
conversely arbitrarily complex finite bumping has been shown to occur. Generalizing this to the compressible
case remains a challenge. The discontinuity of topologicaltype of quotient manifold at bumping points can
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be more intricate: handles can switch sides in a compressionbody, for example. However we still expect that
only finitely many components can meet at one point.

Uniform Models and Quantitative Bounds

An important theme we explored was that of improving our quantitative understanding of hyperbolic 3-
manifolds. A number of foundational theorems in the field areproved using “soft” methods, such as com-
pactness of parameter spaces, and hence the bounds obtainedare not even in principle computable. Here are
some sample questions:

Thurston’s bounded image theorem:A self-map of Teichm̈uller spaceT (∂M) associated to a 3-manifold
M plays a central role in Thurston’s geometrization theorem and in subsequent developments [17, 12]. The
image of this self-map, in certain cases (M acylindrical and∂M incompressible) is a bounded set. Nothing
is known about the diameter of this image. It is open, in particular, whether a bound exists depending only
on the genus of∂M . We discussed on the one hand the possible construction of examples with arbitrarily
large image diameter, and on the other hand we searched for a proof yielding constructive upper bounds. We
constructed examples where the complexity ofM goes to infinity (with fixed∂M ) while the image diameter
remains bounded.

Uniform models:The solution of the Ending Lamination Conjecture includes aconstruction of abilips-
chitz modelfor a given hyperbolic manifold, depending only on its topology and its ending invariants. The
bilipschitz constants obtained in the proof are non-constructive, but at least in the surface-bundle case they
depend only on the topology of the manifold. There is a fairlyclear line of argument that we expect will
yield similar topologically-dependent bounds in the incompressible-boundary case. However, the case of
manifolds with compressible boundary (notably handlebodies) is considerably harder.

Brock-Souto have made some progress on obtaining uniform models in the compressible case, as has
Namazi (a student of Minsky). However in general this area iswide open and promises to involve some
delicate topological questions.

Miscellaneous Topics

Infinitely-generated Kleinian groups:This area remains quite open, except for various constructions of ex-
amples. What is a good general theory of such groups? Is therea reasonable setting in which one can
establish global rigidity results? McMullen’s rigidity theorem controls quasiconformal deformations given
an upper bound on injectivity radius. Other infinitely-generated examples, suggested by Bromberg, exhibit
no deformations of any sort.

Projective structures and cone manifolds:Complex projective structures on surfaces are closely related
to hyperbolic cone manifold structures on 3-manifolds withboundaries. This relationship figures heavily in
Bromberg’s work on Bers’ density conjecture. Is every complex projective structure induced from some cone
manifold? A positive answer would perhaps give new geometric tools for understanding general (not just
discrete) representations of surface groups inPSL(2, C), in view of the theorem (Gallo-Kapovich-Marden
[8]) that every non-elementary representation of a surfacegroup intoSL(2, C) is the monodromy of some
complex projective structure.

Cannon-Thurston maps and local connectivity of limit sets:The limit set of a finitely-generated Kleinian
group is conjectured to be locally connected. This was proved for pseudo-Anosov fibre groups by Cannon-
Thurston [7], for bounded-geometry surface groups by Minsky [15], and for punctured-torus groups by Mc-
Mullen [14] (and there are additional generalizations). The general problem remains open, although it seems
that the main tool, which worked in the previous cases, is nowavailable – namely the model manifolds from
the solution of the Ending Lamination Conjecture. We discussed some plausible approaches to carrying
through a proof; some considerable difficulties remain, butthis is a very interesting direction to pursue.
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Chapter 71

Stability and Computations for
Stochastic Delay-Differential Equations
(04rit047)

July 24–August 7, 2004

Organizer(s):Rachel Kuske (University of British Columbia)

The goal of this research in teams was to bring together a group of researchers working on dynamics of
stochastic delay differential equations (SDDE’s) from different perspectives: theoretical aspects, nonlinear
effects in stochastic dynamics, numerical methods, and mathematical modeling in applications. The goals of
the group for the two weeks were to identify new directions inthis research area and to begin preliminary
work to determine productive directions to pursue. One motivating factor in this process is the increased use
of models with memory in applications, resulting in a greater demand to have analysis and computations to
understand the behavior of the solutions of these models.

The first direction was the weak convergence of numerical schemes for SDDE’s. There have been a num-
ber of results for strong convergence, both for Euler-Maruyama methods and multi-step methods, but there
are no proofs related to weak convergence. Weak convergenceof the methods is important in applications
since typically moments or the probability densities are ofinterest in understanding the behavior of the model.
Also, the order of convergence should be better for weak schemes than for strong schemes. Difficulties iden-
tified for the proof include the fact that one can not rely on expressions for the generator, as one does for
Markovian processes, so that a new approach is necessary. Anapproach was developed which borrowed
from recent results for boundary value problems using Malliavin calculus, incorporated into a convenient
formulation for the numerical error, thus making it possible to outline a method of proof which did not rely
on the generator. Details in this outline are part of presentresearch.

A second direction involved the development of stochastic models for metal cutting and the phenomenon
of chatter. In these models, the position of the cutting toolis dependent on the previous part of the cut, so
there is a delay in the forces affecting the tool dynamics. Models of these type are known to have oscillatory
instabilities, which in this application is called chatter. The development of the model demonstrated that
there is both additive and multiplicative noise, which results in resonance with the natural oscillations, thus
amplifying the chatter. Here the goal is to determine how theoperating parameter range is changed due to
the noise sensitivity in the model.

A third direction identified was complementary empirical studies for the use of numerical methods for
SDDE’s. While convergence results for numerical methods are typically verified by solving test problems,
they may not exhibit the same behavior as the problems observed in practice. For example, analysis for the
metal cutting problem suggested several aspects that need to be considered: presence of both multiplication
and additive noise, large delays, and oscillatory vs. exponential behavior.

In addition progress was made on some related projects: stochastic dynamics for problems with discon-
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tinuous coefficients and models for pricing options on assets with delayed memory. Some of the same ideas
are necessary for these problems, since they are infinite dimensional systems with noise sensitivity.

Finally the group outlined possible ways to continue their collaboration. A Trans-Cooperation Program
research grant proposal for collaboration between UBC and Humboldt University is being written presently.
A number of possibilities were outlined for future meetings. Follow-up work in the directions mentioned
above is continuing at individual institutions.

This Research in Teams wishes to thank their hosts at BIRS fora productive two weeks.
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Study of Affine Surfaces with Self-maps
of Degree> 1 and the Jacobian Problem
(04rit553)

July 24–August 14, 2004

Organizer(s):Rajendra V. Gurjar (Tata Institute of Fundamental Research, India), Masayoshi
Miyanishi (Osaka University), Kayo Masuda (Himeji Institute of Technology), Peter Rus-
sell (McGill University)

The four members of our team met at BIRS from July 24 to August 14, 2004. We started with several
questions related to our proposed project of study of (proper or étale) self-maps of smooth affine surfaces.
It soon became clear that the study of differentA1-fibrations and existence of affine lines on such a surface
which are not fibre components of a given fibration is quite important for our purpose. Since our main aim
is the study of affine rational surfaces without non-trivialregular invertible functions, the base of anA1-
fibration for such a surface is either the affine lineA1 or the projective lineP1. We realised that the base of
the fibration makes a lot of difference to the properties of our surfaces. We defined several classes of smooth
affine rational surfaces, depending on how many differentA1-fibrations the surface has and what the base of
such a fibration is. The study of interrelations between these classes formed an important part of our work.
In the description below, by a surface we mean a smooth complex, affine surface with no non-trivial regular
invertible functions.

A surfaceX is called anML0-surface ifX has at least two transverseA1-fibrations with baseA1. It
is called anML1-surface if it has exactly one such fibration with baseA1 and anML2-surface if it has no
A1-fibration overA1.

The main results which we have proved so far are as follows. The assumption about torsionness of the
Picard group ofX in some statements below is quite natural in our context since we intend to study surfaces
which are as close to the affine planeC2 as possible, since the famous unsolved Jacobian Problem is always
at the back of our mind.

1. (a) LetX be anML0 surface with torsion Picard group. Then any affine lineC ⊂ X is a fiber of an
A1-fibration overX with baseA1.

(b) If X is anML1 surface with torsion Picard group then any affine line contained inX is a fiber
of the uniqueA1-fibration onX.
These results generalize the famous Abhyankar-Moh-Suzukiresult about uniqueness of embed-
ding of an affine line (upto automorphism ofC2) in C2. The proof uses full force of the classifi-
cation theory of non-complete surfaces.
If the rank of the Picard group ofX is > 0 then we found counterexamples to this result. The
constructions use special types of surfaces.
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2. LetX be anML0 surface with torsion Picard group. Iff : X → Y is either anétale finite or a finite
Galois map onto the surfaceY thenY is anML0 surface. Iff is assumed to be only proper thenY is
at leastML1.

The question whether the result is true only assuming properness off is a tantalizing one and is closely
connected to our project of proper self-maps.

3. We found examples ofML0 andML1 surfacesX such that in some casesC2 is an open subset ofX
and in some cases it is not. Our understanding of this phenomenon is far from being complete.

4. A somewhat unexpected result proved by us says that ifX is an ML0 surface such that the Picard
group ofX has rank> 0 thenX always has anA1-fibration with baseP1.

For the proof we had to study the set of all possibleA1-fibrations onX with baseA1 and an analysis
of the ring generated by all the base parameters for these fibrations.

These are some of the main results we have proved during our stay at BIRS. We also raised some new and
interesting questions, the answers to which will be quite important for the study of self-maps. Although the
members of our team have known each other for a long time, collaborated in pairs, met each other on several
occasions for short durations and followed each other’s work closely, this is the first time we got together for
intense discussions about problems of interests to all of us. The three week period has been mathematically
very exhilarating for each of us and has given us much to thinkabout when we go back to our respective
places of work and to continue our collaboration by e-mail.

Acknowledgements: We are very much thankful to BIRS for the generous invitationto spend three won-
derful weeks in the beautiful Banff surroundings. Special thanks are due to Ms. Andrea Lundquist, Ms. Jackie
Kler and all other staff of BIRS and Banff Center for their warm, friendly help. The buffets in the Cameron
Hall were sumptuous and the nearby mountains, lakes and river very inviting for their exploration. All this
certainly has had a very positive effect on our research workat Banff.
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Competing Species, Predator-Prey
Models and Measured-valued Diffusions
(04rit050)

August 1–14, 2004

Organizer(s):Richard Durrett (Cornell University), Leonid Mytnik (Technion, Israel), Ed
Perkins (University of British Columbia)

In [5] Evans and Perkins introduced a class of measure-valued branching diffusions which modelled
two populations undergoing migration and near critical reproduction which compete for resources. The
mathematically challenging part of the model was that competition only occurs when members of the two
populations are zero distance apart. This produces a singular interaction involving the collision local time of
the two processes. The processes were constructed as solutions of a singular martingale problem in dimen-
sions3 or less and it was shown that solutions do not exist in higher dimensions. Uniqueness of solutions was
established in one dimension and in some special cases–e.g.when only one population feels the competitive
effect. In 1998 Durrett conjectured that in these special cases these processes should arise as the weak limit
of a space-time rescaling of a model studied by Durrett and Levin [3] in which two contact processes interact
through one having a linear competitive effect on the other.At about the same time Mytnik [7] proved unique-
ness of solutions to the original model in the more interesting case of symmetric competition. Earlier Evans
and Perkins [6] had shown uniqueness of solutions to an associated historical martingale problem. This is
an enriched setting in which one keeps track of the genealogical histories of the interacting populations.

In 1999, Durrett, Mytnik and Perkins began to work on a general project to show a more general class
of competing and cooperating contact processes under rescaling will converge to a more general class of
singularly interacting measure-valued diffusions in dimensions3 or less. The interactions included both
competing species and predator-prey type models. We workedon this pairwise for many years and a lengthy
manuscript began circulating between the three of us in the spring of 2003. There were some technical issues
to work out still just to get tightness of the approximating systems and to identify the limit points as solutions
of the natural martingale problems. A full uniqueness theorem was also missing. A two week meeting at BIRS
was proposed as a venue where this project could be completed. It allowed all three of us to work on the
problem simultaneously for the first time.

The second week of the Research in Teams period coincided with the related 5-day workshop on “Stochas-
tic processes in evolutionary and disease genetics” which was of great interest to all of us and to which Rick
Durrett was already committed. We met daily during the first week. During the second week Rick Durrett
attended the workshop lectures while Leonid Mytnik and myself attended about a third of the lectures. The
three of us continued to meet daily. Early in the first week a serious error was found in our earlier work and
correcting it took several days. It was very fortunate that we were all together for this period. We extended
the known uniqueness results to some additional cases in thepredator-prey setting including the general one-
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dimensional setting and special cases in the higher dimensional setting. The full uniqueness theorem still
remains an open problem although we know how to obtain a general convergence result in the competing
species setting by using [6]. A fair amount of work was done onthe write-up as well and a completed (as of
two days ago) 74-page manuscript is now ready for submission[4].

Several other problems were also discussed including an ongoing project between Mytnik and myself on
weak uniqueness for signed solutions of the one-dimensional stochastic PDE for super-Brownian motion.

Having the 5-day workshop overlap with our meeting worked out very well. First it was a superb meet-
ing and a pleasant diversion from our technical problems. Secondly, Ted Cox was attending the meeting
and Cox, Durrett and myself had some very fruitful discussions on another rescaling limit theorem for high
density Lotka-Volterra models. The issue here was to obtaina limit theorem in the regime where both popu-
lations are of the same order of magnitude. In earlier work Cox and myself ([1], [2]) had established a limit
theorem in the case where one population is rare and used it toget information on coexistence and survival
in the regime where the populations prefer each other to their own type. We were interested in proving an
analogous result for the other parameter regime and in particular in showing that the critical survival curve
has a discontinuous derivative at the phase transition point where you go from preferring the other type to
preferring your own type. Durrett’s expertise on related rapidly stirring limits proved to be instrumental in
laying out a game plan for getting information on the survival and co-existence questions in this other pa-
rameter regime. It involves first showing that in the regime when both populations are large, the appropriate
limit is the solution of a particular nonlinear PDE. We believe this leads to a valid approach for establishing
the above derivative discontinuity. We feel we only need a bit of time to flesh out the proofs. Perhaps we
would be fortunate enough to secure another period at BIRS next year? It was an exciting development in a
spectacular setting.
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Geometry and Analysis on Cauchy
Riemann Manifolds (04rit554)

September 4–18, 2004

Organizer(s):John Bland (University of Toronto), Tom Duchamp (University of Washing-
ton), Peter Garfield (Case Western Reserve University), Robert Hladky (Dartmouth Col-
lege), Jack Lee (University of Washington)

One of the famous open questions in several complex variables is the following:

Is every 5 dimensional strongly pseudoconvex CR manifold locally embeddable?

This is a remarkably subtle question relating geometry, complex analysis and partial differential equa-
tions. To shed some light on this question, we will briefly recall the definitions and known results.

Let M be a smooth oriented2n + 1-manifold. An almost CR structure(for Cauchy-Riemann) onM
is a complex subbundleH(1,0)M of the complexified tangent bundle such thatH(0,1)M := H(1,0)M is
everywhere transverse toH(1,0)M . The almost CR structure is aCR structureif in addition H(0,1)M is
integrable as a complex subbundle of the complexified tangent bundleTCM.

Let η be a real one-form annihilatingH(1,0)M ; it is determined up to multiplication by a nonvanishing
function. We choose the sign ofη such that the orientation determined byη and the natural orientation for
H(1,0)M agrees with the orientation forM . We define theLevi form associated toη to be the Hermitian
form onH(1,0)M determined by

L(Z, W ) = −idη(Z, W )

for all Z, W ∈ H(1,0)M . If the Levi form is positive definite, then the CR structure is said to bestrongly
pseudoconvex. This condition is independent of the choice ofη (except for its sign).

Remark 74.1LetU be a smoothly bounded strongly pseudoconvex open set in a complex manifoldX. Then
the complex structure fromX restricts to∂U as a strongly pseudoconvex CR structure; the Levi form defined
here is the same as the usual Levi form defined in complex analysis.

A CR functionon M is a functionf : M → C such thatZ̄(f) = 0 for everyZ̄ ∈ H(0,1)M . These are
thetangential Cauchy-Riemann equations.We denote this̄∂bf = 0.

One of the most basic questions in the study of CR manifolds isthe following:

Question 74.2Given a strongly pseudoconvex CR manifold(M, H(1,0)M), is it embeddable? That is, does
there exist a smooth embeddingX : M ↪→ CN such the the components ofX are CR functions:̄∂bX = 0.

Notice that this is strictly a question in PDEs – the solvability of a linear PDE.
We now recall some well known results concerning the embeddability of strongly pseudoconvex manifolds.

The first is a result by Boutet de Monvel.
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Theorem 74.3 (Boutet de Monvel [Bouzz])Let M be a compact strongly pseudoconvex CR manifold of di-
mension(2n + 1) ≥ 5. ThenM is embeddable.

The idea of the proof is as follows. Associated to∂̄b is a natural subelliptic Laplacian�b. Using standard
techniques, one solves thē∂b equations with weights in order to specify the differentials at a point, and the
value at two points.

The situation is entirely different in three dimensions.

Example 74.4 (Rossi [R])There is a real analytic deformation of the standard structure on S3 which is
nonembeddable.

The basic idea is that the mappingΦ : (z, w) 7→ (z2 + εw̄2/r4, zw − εz̄w̄/r4, w2 + εz̄2/r4) maps
C2 \ {0} → C3 as a2 : 1-cover of the quadricXZ − Y 2 = ε. The induced CR structure onS3 is strongly
pseudoconvex, but forε 6= 0 all CR functions descend to the quotient, hence do not separate points.

In fact, the space of CR structures onS3 near the standard one is locally a Hilbert space, and the subspace
of embeddable structures is a Hilbert subspace of infinite dimension and codimension.

It is natural to ask the same question for local embeddability.
First, it is worth pointing out that for the local question, the answer is always positive in the real analytic

case. This follows easily from Cauchy-Kowalewski. This already provides an indication that the question in
the smooth case is likely to be either easy or delicate; the latter turns out to be the case.

Here we have the following results.

Theorem 74.5 (Kuranishi [Kur]) Let M be a strongly pseudoconvex manifold (not necessarily compact) of
dimension2n + 1 ≥ 9. ThenM is locally embeddable.

This result was extended to cover the seven dimensional caseby Akahori, and simplified by Webster.

Theorem 74.6 (Akahori [Aka], Webster [Web1] [Web2])Let M be a strongly pseudoconvex manifold (not
necessarily compact) of dimension(2n + 1) ≥ 7. ThenM is locally embeddable.

However, local embeddability fails dramatically in the3 dimensional case. (See, for example, the example
by Nirenberg [Nir]).

This leaves the following famous open question.

Question 74.7Does local embeddability hold for5 - dimensional strongly pseudoconvex CR manifolds?

This question is remarkably delicate, and resolving it is not simply a matter of obtaining better estimates.
Indeed, on the infinitesimal level, there is no obstruction.On the other hand, we have the following example.

Example 74.8 (Nagel-Rosay, [NR])OnS5, we consider the one-form

ω := (z̄1dz̄2 − z̄2dz̄1) /(|z1|2 + |z2|2)2 .

This is∂̄-closed (Bochner-Martinelli), but

ω ∧ dz1 ∧ dz2

is twice the volume form on the 3 spheres[z3 = c] ∩ S5. In particular, it is not in the range of̄∂b. While
it is not smooth when|z3| = 1 (that is, z1 = z2 = 0), it can be approximated by smooth forms, giving
“approximate cohomology”; in particular, it eliminates the possibility of a homotopy formula.

Webster also identifies the special difficulty which arises in dimension 5. One approach to solving the∂̄b-
equations is to use the integral kernels of Henkin. In this case, thē∂b equation is always solvable if there exists
a homotopy formula of the formα = ∂̄bPα+Q∂̄bα . However, Webster shows that in the5-dimensional case,
the local formula becomesα = ∂̄bPα + Q∂̄bα + H(α); the final termH represents possible obstructions
to embeddability. The subtlety of the problem is indicated by the fact that at the infinitesimal level, the
obstruction identified byH vanishes for integrable structures.
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One of the new ingredients to shed light on the analysis of thesituation is the geometry which arises
from the compact three dimensional case. This situation canbe understood geometrically. If the structure is
embeddable, then it is embeddable as the boundary of a convexset inCn+1. By taking slices of the convex
set with complex hyperplanes parallel to the tangent complex hyperplane at a point, we obtain a (singular)
foliation of M by embeddable CR3-spheres. On the other hand, one can choose a foliation ofM by 3-
spheres, and first try to normalize the CR structure onM in such a way that the3-spheres are CR3-spheres.
Then, roughly speaking,M is embeddable if and only if all of the3-spheres in the foliation are embeddable.

This research problem and the approach outlined was the subject of the RIT.
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183-207.

351



Chapter 75

Research on Stochastic Models for the
Web Graph and Other Scalefree
Networks (04rit060)

September 18–25, 2004

Organizer(s):Anthony Bonato (Wilfrid Laurier University), Jeannette Janssen (Dalhousie
University)

The web graph has nodes representing web pages, and edges representing the links between pages. The
web graph is a massive network possessing several billion nodes and edges, with new nodes and edges
appearing and disappearing over time. The explosive growthof the web graph itself is mirrored by the recent
rapid increase in research on its structural properties, stochastic models, and mining. The web graph is
only one example of a massive self-organizing network; other examples are biological networks such as the
protein-protein interaction network in a living cell. For arecent survey on the web graph and other massive
networks, see [2].

The existing research on models for the web graph deals almost exclusively with finite graphs. However,
in the natural sciences, models are often studied by taking the infinite limit. Limiting behaviour can clarify
the similarities and differences between models, and show the consequences of the choices made in the model.
The first study of limiting behaviour of web graph models was made by the authors in [3]. In that paper, a
study was made of deterministic infinite graphs satisfying the locally e.c. adjacency property. As motivation,
this adjacency property is satisfied with probability1 by limit graphs generated by the copying model of
Kumar et al [7]. Subsequent work on limiting behaviour of thepreferential attachment web graph models
appeared in [6].

A new copying model for massive networks, writtenG(p, ρ, H), was recently introduced by Bonato,
Janssen [4], motivated by the copying model of Kumar et al. [7], the generalized copying graphs of Adler,
Mitzenmacher [1], and partial duplication model for biological networks in Chung et al. [5]. The three
parameters of the modelG(p, ρ, H) are a probabilityp ∈ (0, 1), a monotone increasingrandom link function
ρ : N→ N, and a fixed finite initial graphH. The new nodevt+1 acquires its neighbours as follows. Choose
an existing nodeu from Gt uniformly at random. For each neighbourw of u, independently add an edge
from vt+1 to w with probabilityp. In addition, chooseρ(t)-many nodes fromV (Gt) uniformly at random,
and add edges fromvt+1 to each of these nodes.

For our week spent at BIRS as part of the Research in Teams program, we investigated the limiting
behaviour of theG(p, ρ, H) copying model. We studied the randomness of the limits for various choices of
ρ, measured by then-e.c. adjacency properties (the large the value ofn, the more properties the limit shares
with the infinite random graph). Our original approach to this problem involved the use of expectation, and
convergence properties of infinite products. During the course of the week, however, it emerged that more
advanced techniques from random graph theory were needed. We found that submartingales were the correct
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tool, and were able to prove a key theorem using the Kolmogorov-Doob inequality for submartingales.
Overall, we found the BIRS environment very conducive to ourresearch methodology, which mainly

consists of extended discussions at a whiteboard. On a side note, we had originally planned to work each day
from morning until dinner only, but we often found ourselvesworking into the late evening!

Now that the main theoretical work for our project is complete, we are finalizing a paper for submission
to Random Structures and Algorithms, which is one of the top journals on probabilistic methods ingraph
theory and combinatorics. Our work has lead to many additional interesting questions surrounding web
graph models and their limiting behavior. Our next step is tostudy the degree distribution of theG(p, ρ, H),
which we think follows a power law. We also plan on generalizing our approach to other models for the web
graph.
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Chapter 76

MITACS–MSRI–PIMS Special Program
on Infectious Diseases, Summer School
& Workshop (04ss101 & 04ss100)

June 19–July 2, 2004

Organizer(s): Fred Brauer (University of British Columbia), Mark Lewis (University of
Alberta), Pauline van den Driessche (University of Victoria), James Watmough (University
of New Brunswick), Jianhong Wu (York University), Ping Yan (Health Canada)

The objectives of this special program were to continue the success of the MITACS-PIMS Health Canada
Meeting on SARS (held in BIRS, Banff, September 6–7, 2003) infurthering the fruitful interplay among
mathematical, statistical and epidemiological sciences and to provide effective training for graduate students
and junior researchers on collaborative research and the mathematical modeling and qualitative analysis of
infectious diseases.

The program, organized by the MITACS project “TransmissionDynamics and Spatial Spread of Infectious
Diseases: Modeling, Prediction and Control”, consisted ofa Summer School (for graduate students and
beginning postdoctoral fellows) June 19–27 followed by a Research Workshop June 28–July 2, 2004.

Admission to the Summer School was competitive since the maximum capacity of the BIRS lecture room
was 43. All of the 43 students admitted attended the Summer School: 10 from USA, 32 from Canada and
one from China as part of the MITACS exchange program with Chinese Ministry of Higher Education. We
were very pleased to have 25 female students for the school. This is a very encouraging sign in our effort
to build the interaction of mathematics and epidemiology. Although, several students came from the medical
sciences (Health Canada and St. Michael Hospital, for example), most were from graduate programs in
mathematical and statistical sciences since the required level of mathematical and statistical background was
high. (However, see the comments below about a future coursetargeted at students and research scientists in
the medical community.)

Dr. Yicang Zhou, a MITACS-Chinese Ministry of High Education exchange scholar, attended the school
as an observer and took part in the workshop in order to obtainsome ideas on organizing such a school at
home.

The Summer School was taught by 11 leading and active researchers from Canada and USA. Most in-
structors were at BIRS during the entire Summer School, enhancing the direct interactions of all students
with first-rate scientists in the field.

The Summer School lectures covered a wide range of topics central to the mathematical and statisti-
cal modeling of infectious diseases: topics ranged from deterministic and stochastic models to parameter
identification, reporting delay adjustments and incubation period estimation; from general theory to specific
case studies (of West Nile virus, childhood disease, and of spatial spreading of rabies, for example); from
homogeneous mixing to spatial structures (global transportation, spatial dispersal), social networking, age
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structures and super-spreading events (of SARS). We also organized a computer tutorial and problem drop-in
session.

The organizers and instructors believe that there is no single textbook or research monograph covering
the wide range of topics included in the Summer School. Putting this material together as a book would be a
valuable contribution if it could be done relatively quickly. Feedback from students also encourages such an
effort.

Group projects were an important part of the Summer School. Students were divided into eight teams
working on one of five projects: HIV/AIDS, SARS, Cholera, TB,Malaria. Since students ranged from re-
cent PhD.’s to recent BA’s, we made an effort to have each teamcontain a mixture of experienced and less
experienced students and a mixture of students from mathematical, statistical and medical backgrounds. Ev-
ery afternoon, all instructors made themselves available for advice and help on the projects. The students
blended well, and everyone seemed to have benefited significantly from their participation. The group pre-
sentations were extremely impressive, and all teams managed very well (within five days) to put together
their proposed models, some qualitative analysis, computer simulations, epidemiological background and
applications. Two of the teams were later invited to give their presentations in the Workshop and one team
(working on modeling Cuba’s HIV/AIDS dynamics) had such a wonderful project complete that they were
invited on the spot by Dr. Ping Yan to give a formal presentation at a Health Canada meeting. They were also
encouraged to submit their work for a journal publication.

Despite the hard work and long hours spent on the projects, participants to the Summer School still found
time for group recreational activities including hiking, basketball, volleyball, soccer, and water basketball
and excursions to downtown Banff.

Before the Summer School, a list of general references was posted in the Special Program’s web page. We
also managed to have copies of some standard reference booksin the reading room of BIRS during the entire
Summer School. These, together with the electronic access to many research papers, provided a temporary
library at BIRS.

The Workshop attracted participants from medical schools (UCLA, UC Berkeley/Yale), health research
centers (USA CDC, UBC CDC, National Microbiology Laboratory, the National Research Council, Cadham
Provincial Laboratory) and Health Canada and mathematicalmodelers from across Canada and worldwide.
This provided a wonderful forum for intensive discussions on how mathematical modeling and analysis are
and should be directly related to informed public health policy. Eleven relatively senior students from the
Summer School were also invited to participate in the workshop.

During the Workshop, there were invited lectures on variousissues including modeling and assessing
control strategies and intervention measures, stochasticaspects of disease transmission, sensitivity and un-
certainty analysis, vaccination planning and immunity control, drug resistance, social networking, global
transportation and the analysis of the National Microbiology Laboratory SARS database. There were also
organized discussion sessions on the current status and future directions of mathematics in epidemiology.
These discussions focused on how mathematics can make significant contributions to public health policy and
how to enhance communication between modelers and epidemiologists. There were also long discussions on
how the MITACS team could sustain its current productivity and further its outreach and collaboration with
epidemiologists and researchers in public health policy.

The MITACS team members held a joint informal meeting with participants from Canadian health re-
search organizations. It was agreed that we should work closely to make a plan for a similar program
targeted at the medical community and graduate students in medical schools.

During the workshop, Fred Brauer and Jianhong Wu were interviewed by Canwest and four newspapers:
the Calgary Herald, the Edmonton Journal, the Ottawa Citizen and the Banff Crag & Canyon. Shortly after
the Program, Troy Day (Queen’s University) was also interviewed on QR77 Radio (Calgary). We believe
the media coverage provided some healthy information to thegeneral public why and how mathematical
modeling can assist in the prediction and control of infectious diseases.

In summary, we believe

• The investment by the three funding institutes and BIRS on the Summer School is appreciated by all
students and helps Canada build its national capacity for interdisciplinary research in infectious dis-
eases;

• The Workshop, with participants from the applied mathematics community, medical schools and health
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research institutes, provided a timely and much needed forum to ensure the current effort in mathemat-
ical modeling be directed by the issues important for publichealth;

• There has been an increasing demand for the study of infectious diseases to become a predictive sci-
ence, and there has been a growing need for mathematical modeling and analysis developed on a solid
epidemiological and biological foundation. The Special Program represents a welcomed response to
the call for closer collaboration between mathematical modelers and epidemiologists for the predic-
tion, prevention and control of infectious diseases. Thereshould be more such special programs.
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